首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use our newly developed Dust Monte-Carlo (DMC) simulation technique [Crifo, J.F., Lukianov, G.A., Rodionov, A.V., Zakharov, V.V., 2005. Icarus 176, 192-219] to study the dynamics of dust grains in the vicinity of some of the benchmark aspherical, homogeneous cometary nuclei and of the benchmark spherical, inhomogeneous nuclei studied by us precedingly. We use the interim unrealistic simplifying assumptions of grain sphericity, negligible nucleus rotation rate, and negligible tidal force, but take accurately into account the nucleus gravitational force, gas coma aerodynamic force, and solar radiation pressure force, and consider the full mass range of ejectable spherical grains. The resulting complicated grain motions are described in detail, as well as the resulting complicated and often counter-intuitive dust coma structure. The results are used to answer several important questions: (1) When computing coma dust distributions, (a) is it acceptable to take into consideration only one or two of the above mentioned forces (as currently done)? (b) to which accuracy must these forces be known, in particular is it acceptable to represent the gravity of an aspherical nucleus by a spherically symmetric gravity? (c) how do the more efficient but less general Dust Multi-Fluid (DMF) computations compare with the DMC results? (2) Are there simple structural relationships between the dust coma of a nucleus at small heliocentric distance rh, and that of the same nucleus at large rh? (3) Are there similarities between the gas coma structures and the associated dust coma structures? (4) Are there dust coma signatures revealing non-ambiguously a spherical nucleus inhomogeneity or an homogeneous nucleus asphericity? (5) What are the implications of the apparently quite general process of grain fall-backs for the evolution of the nucleus surface, and for the survival of a landed probe?  相似文献   

2.
E.H. Beer  D. Prialnik 《Icarus》2006,180(2):473-486
We have developed a computer code (GEM—grain evolution model) to simulate the behavior of ice grains in a comet coma. The grains are assumed to be composed of water-ice with an admixture of dark material (“dirt”). An initial size distribution of grains is assumed to be ejected from the nucleus. The ejected mass is taken to be proportional to the rate of gas production by the nucleus. The efficiency for absorption and re-radiation of sunlight is computed from Mie scattering theory. The grain temperature and sublimation rate at a given heliocentric distance is then derived from energy balance considerations. The evolution of the grain size distribution is followed as a function of distance from the nucleus.  相似文献   

3.
We present the study of dust environment of dynamically new Comet C/2003 WT42 (LINEAR) based on spectroscopic and photometric observations. The comet was observed before and after the perihelion passage at heliocentric distances from 5.2 to 9.5 AU. Although the comet moved beyond the zone where water ice sublimation could be significant, its bright coma and extended dust tail evidenced the high level of physical activity. Afρ values exceeded 3000 cm likely reaching its maximum before the perihelion passage. At the same time, the spectrum of the comet did not reveal molecular emission features above the reflected continuum. Reddening of the continuum derived from the cometary spectrum is nonlinear along the dispersion with the steeper slop in the blue region. The pair of the blue and red continuum images was analyzed to estimate a color of the comet. The mean normalized reflectivity gradient derived from the innermost part of the cometary coma equals to 8% per 1000 Å that is typical for Oort cloud objects. However, the color map shows that the reddening of the cometary dust varies over the coma increasing to 15% per 1000 Å along the tail axis. The photometric images were fitted with a Monte Carlo model to construct the theoretical brightness distribution of the cometary coma and tail and to investigate the development of the cometary activity along the orbit. As the dust particles of distant comets are expected to be icy, we propose here the model, which describes the tail formation taking into account sublimation of grains along their orbits. The chemical composition and structure of these particles are assumed to correspond with Greenberg’s interstellar dust model of comet dust. All images were fitted with the close values of the model parameters. According to the results of the modeling, the physical activity of the comet is mainly determined by two active areas with outflows into the wide cones. The obliquity of the rotation axis of the nucleus equals to 20° relative to the comet’s orbital plane. The grains occupying the coma and tail are rather large amounting to 1 mm in size, with the exponential size distribution of a−4.5. The outflow velocities of the dust particles vary from a few centimeters to tens of meters per second depending on their sizes. Our observations and the model findings evidence that the activity of the nucleus decreased sharply to a low-level phase at the end of April–beginning of May 2007. About 190 days later, in the first half of November 2007 the nucleus stopped any activity, however, the remnant tail did not disappear for more than 1.5 years at least.  相似文献   

4.
Extensive regions of low-density cometary comae are characterized by important deviations from the Maxwell-Boltzmann velocity distribution, i.e. breakdown of thermodynamic equilibrium. The consequences of this on the shapes of emission and absorption lines, and for the acceleration of solid bodies due to gas drag, have rarely been investigated.These problems are studied here to aid in the development of future coma models, and in preparation for observations of Comet 67P/Churyumov-Gerasimenko from the ESA Rosetta spacecraft. Two topics in particular, related to Rosetta, are preparation for in situ observations of water, carbon monoxide, ammonia, and methanol emission lines by the mm/sub-mm spectrometer MIRO, as well as gas drag forces on dust grains and on the Rosetta spacecraft itself.Direct Simulation Monte Carlo (DSMC) modeling of H2O/CO mixtures in spherically symmetric geometries at various heliocentric distances are used to study the evolution of the (generally non-Maxwellian) velocity distribution function throughout the coma. Such distribution functions are then used to calculate Doppler broadening profiles and drag forces.It is found that deviation from thermodynamic equilibrium indeed is commonplace, and already at 2.5 AU from the Sun the entire comet coma displays manifestations of such breakdown, e.g., non-equal partitioning of energy between kinetic and rotational modes, causing substantial differences between translational and rotational temperatures. We exemplify how deviations from thermodynamic equilibrium affect the properties of Doppler broadened line profiles. Upper limits on the size of liftable dust grains as well as terminal grain velocities are presented. Furthermore, it is demonstrated that the drag-to-gravity force ratio is likely to decrease with decreasing cometocentric distance, which may be of relevance both for Rosetta and for the lander probe Philae.  相似文献   

5.
D. Laufer 《Icarus》2005,178(1):248-252
Following the tracing of jets emanating from Comet Wild-2 to depressions in the ice by Brownlee et al. [2004. The Stardust—A successful encounter with the remarkable Comet Wild 2. Lunar Planet. Sci. 35. Abstract 1981], we demonstrated experimentally the formation of depressions and chaotic terrain on comet analogs when gas is released from underlying ice pockets. We also demonstrated experimentally the ejection of ice grains into the experimental cometary “coma.”  相似文献   

6.
S.M. Lederer  H. Campins  D.J. Osip 《Icarus》2009,199(2):477-843
We describe a 3-dimensional, time-dependent Monte Carlo model developed to analyze the chemical and physical nature of a cometary gas coma. Our model includes the necessary physics and chemistry to recreate the conditions applicable to Comet Hale-Bopp when the comet was near 1 AU from the Sun. Two base models were designed and are described here. The first is an isotropic model that emits particles (parents of the observed gases) from the entire nucleus; the second is a jet model that ejects parent particles solely from discrete active areas on the surface of the comet nucleus, resulting in coma jets. The two models are combined to produce the final model, which is compared with observations. The physical processes incorporated in both base models include: (1) isotropic ejection of daughter molecules (the observed gases) in the parent's frame of reference, (2) solar radiation pressure, (3) solar insolation effects, (4) collisions of daughter products with other molecules in the coma, and (5) acceleration of the gas in the coma. The observed daughter molecules are produced when a parent decays, which is represented by either an exponential decay distribution (photodissociation of the parent gas) or a triangular distribution (production from a grain extended source). Application of this model to the analysis the OH, C2 and CN gas jets observed in the coma of Comet Hale-Bopp is the focus of the accompanying paper [Lederer, S.M., Campins, H., Osip, D.J., 2008. Icarus, in press (this issue)].  相似文献   

7.
R. Vasundhara 《Icarus》2009,204(1):194-208
The pre-Deep Impact images of Comet Tempel-1 obtained at the Indian Astronomical Observatory are used to investigate the morphology of the dust coma of the comet. We show that the trajectory of a cometary grain under the influence of solar radiation pressure is a reliable diagnostic to estimate its initial velocity. Four main active regions at mean latitudes +45° ± 5°(D), 0° ± 5° (E),−30° ± 5°(A) and−60° ± 5°(F) are found to explain the morphology of the dust coma in the ground-based and published images obtained by the High Resolution Instrument(HRI) cameras aboard the Deep Impact flyby spacecraft. From a χ2 fit of the intensity distribution in the observed and the simulated images, we derive the fraction of the productivity of the active vents to the total dust emission of the comet to be 27%. Of this the southern source alone accounts for 19.8%. The grains are found to be ejected with a velocity distribution with an upper limit of 70 ± 7 m s−1. However, the broad region ‘A’ appears to eject slower grains with an upper limit of 24 ± 2.5 m s−1. This source, that is active throughout the cycle is likely to be driven by CO2 sublimation. We compute the dependence of the percentage contribution of the southern source on the heliocentric distance and show that this ratio varies over the apparition and reaches a maximum at around 260 days before perihelion. The published images of the nucleus of Comet Tempel-1 show significant departure from sphericity. Therefore, the torque exerted by the enhanced activity of the southern region may be significant enough to produce changes in the rotational state of the nucleus before each perihelion passage.  相似文献   

8.
We present observational data for two long-period and three dynamically new comets observed at heliocentric distances between 5.8 to 14.0 AU. All of the comets exhibited activity beyond the distance at which water ice sublimation can be significant. We have conducted experiments on gas-laden amorphous ice samples and show that considerable gas emission occurs when the ice is heated below the temperature of the amorphous-crystalline ice phase transition (T∼137 K). We propose that annealing of amorphous water ice is the driver of activity in comets as they first enter the inner Solar System. Experimental data show that large grains can be ejected at low velocity during annealing and that the rate of brightening of the comet should decrease as the heliocentric distance decreases. These results are consistent with both historical observations of distant comet activity and with the data presented here. If observations of the onset of activity in a dynamically new comet are ever made, the distance at which this occurs would be a sensitive indicator of the temperature at which the comet had formed or represents the maximum temperature that it has experienced. New surveys such as Pan STARRS, may be able to detect these comets while they are still inactive.  相似文献   

9.
S. Ganesh 《Icarus》2009,201(2):666-673
Comet NEAT C/2001 Q4 was observed for linear polarization using the optical polarimeter mounted at the 1.2 m telescope at Mt. Abu Observatory, during the months of May and June 2004. Observations were conducted through the International Halley Watch narrow band (continuum) and BVR broad band filters. During the observing run the phase angle ranged from 85.6° in May to 55° in June. As expected, polarization increases with wavelength in this phase angle range. Polarization colour in the narrow bands changes at different epochs, perhaps related to cometary activity or molecular emission contamination. The polarization was also measured in the cometary coma at different locations along a line, in the direction of the tail. As expected, we notice minor decrease in the polarization as photocenter (nucleus) is traversed while brightness decreases sharply away from it. Based on these polarization observations we infer that the Comet NEAT C/2001 Q4 has high polarization and a typical grain composition—mixture of silicates and organics.  相似文献   

10.
Martha S. Hanner 《Icarus》1981,47(3):342-350
Evaporation of icy grains over the distance scale of the visible cometary coma sets very specific limits on their temperature. Unless the grains are very pure water ice, the maximum size of an icy grain halo will be limited to a few hundred kilometers at heliocentric distances ?2.5 AU. It is unlikely that the 1.5- or 2-μm ice band could be detected in the scattering by icy grains. Detection of the 3?μm ice band might be possible in comets which display a coma at large heliocentric distances.  相似文献   

11.
The dayside near-nucleus comae formed by solar-driven sublimation from two different aspherical nuclei made of an homogeneous mixture of ice and dust are computed by (1) solving Navier-Stokes equations and (2) direct Monte Carlo simulations, for different nucleus sizes, heliocentric distances, and dust-to-ice mixing ratios. Excellent agreement between the two methods is found down to surprisingly low production rates; it is found that the limit of validity of the first method is not simply related to the coma rarefaction: a new dimensionless number is tentatively offered to characterize this limit. The present solutions show that the weak shocks always present in the fluid coma persist practically down to truly free-molecular conditions, excluding the observational discovery of a structureless coma. They also show that rarefied flow in the near-nucleus coma can have a quite complicated structure, in particular inside topographic depressions. As an example, coma recondensation on the sunlit flanks of a cavity was found to be possible. We compute, for the first time, a true collisionless coma and show that structures are still present in it but are confined to the immediate vicinity of the surface. Finally, we describe in detail the kinetic conditions in a rarefied water coma, i.e., the velocity distribution asymmetry and the rotational-translational nonequilibrium. The significance of the results for future missions to comets is outlined.  相似文献   

12.
Comet Hale-Bopp was imaged at wavelengths from 1.87 to 2.22 μm by HST/NICMOS in post-perihelion observations starting on UT 1997 August 27.95. Diffraction-limited (∼02) images were obtained at high signal-to-noise (∼1500) to probe the composition and dynamics of the inner coma and also the size and activity of the nucleus. The velocities of several unusual morphological features over a 1.7 h period, indicate that a significant outburst occurred 7.4 h prior to these images while the comet was at a heliocentric distance of 2.49 AU. Similar features are also apparent after re-analysis of pre-perihelion ground-based images. The inner coma (radius ?2500 km) is dominated by an “arc” feature, which expanded and became more diffuse with time. This feature can be modeled as the bright central portion of a “jet of outburst” from a near-equatorial region of the nucleus. Less prominent, time-variable linear and circular morphologies are also apparent. The expansion rates of both the arc feature and the circular morphologies imply a common origin and also suggest a grain size distribution with two broad maxima. In addition, several static linear features extend to the edge of the field of view (21,100 km). Radial brightness profiles are highly asymmetric and only approach a ρ−1 decline at distances ?15,000 km. Images in a narrow-band filter at 2.04 μm exhibit a ∼4% absorption feature relative to nearly simultaneous images at wavelengths of 2.22, 1.90, and 1.87 μm. This absorption is attributed to H2O ice in the coma grains. The spatial distribution and expansion velocity of the absorption at 2.04 μm indicate that these grains are associated with the outburst. The constancy of the absorption feature indicates no appreciable sublimation over 1.7 h. The unresolved nucleus has a flux density consistent with a 40±10 km diameter assuming a 4% geometric albedo.  相似文献   

13.
We discuss the composition and size distribution of the dust in the coma of Comet Hale-Bopp. We do this using a model fit for the infrared emission measured by the Infrared Space Observatory (ISO) and the measured degree of linear polarization of scattered light at various phase angles and wavelengths. The effects of particle shape on the modeled optical properties of the dust grains are taken into account. Both the short wavelength (7-44 μm) and the long wavelength (44-120 μm) infrared spectrum are fitted using the same dust parameters, as well as the degree of linear polarization at twelve different wavelengths in the optical to near-infrared domains. We constrain our fit by forcing the abundances of the major rock forming chemical elements to be equal to those observed in meteorites. The infrared spectrum at long wavelengths reveals that large grains are needed in order to fit the spectral slope. The size and shape distribution we employ allows us to estimate the sizes of the crystalline silicates. The ratios of the strength of various forsterite features show that the crystalline silicate grains in Hale-Bopp must be submicrometer-sized. On the basis of our analysis the presence of large crystalline silicate grains in the coma can be excluded. Because of this lack of large crystalline grains combined with the fact that we do need large amorphous grains to fit the emission spectrum at long wavelengths, we need only approximately 4% of crystalline silicates by mass (forsterite and enstatite) to reproduce the observed spectral features. After correcting for possible hidden crystalline material included in large amorphous grains, our best estimate of the total mass fraction of crystalline material is ∼7.5%, which is significantly lower than deduced in previous studies in which the typical derived crystallinity is ∼20-30%. The implications of this low abundance of crystalline material on the possible origin and evolution of the comet are discussed. We conclude that the crystallinity we observe in Hale-Bopp is consistent with the production of crystalline silicates in the inner Solar System by thermal annealing and subsequent radial mixing to the comet forming region (∼30 AU).  相似文献   

14.
The European Space Agency (ESA) Rosetta spacecraft (Schulz, R., Alexander, C., Boehnhardt, H., Glassmeier, K.H. (Eds.) [2009]. “ROSETTA - ESA”) will encounter Comet 67P/Churyumov-Gerasimenko in 2014 and spend the next 18 months in the vicinity of the comet, permitting very high spatial and spectral resolution observations of the coma and nucleus. During this time, the heliocentric distance of the comet will change from ∼3.5 AU to ∼1.3 AU, accompanied by an increasing temperature of the nucleus and the development of the coma. The Microwave Instrument for the Rosetta Orbiter (MIRO) will observe the ground-state rotational transition (110-101) of H216O at 556.936 GHz, the two isotopologues H217O and H218O and other molecular transitions in the coma during this time (Gulkis, S. et al., [2007]. MIRO: Microwave Instrument for Rosetta Orbiter. Space Sci. Rev. 128, 561-597).The aim of this study is to simulate the water line spectra that could be obtained with the MIRO instrument and to understand how the observed line spectra with various viewing geometries can be used to study the physical conditions of the coma and the water excitation processes throughout the coma. We applied an accelerated Monte Carlo method to compute the excitations of the seven lowest rotational levels (101, 110, 212, 221, 303, 312, and 321) of ortho-water using a comet model with spherically symmetric water outgassing, density, temperature and expansion velocity at three different heliocentric distances 1.3 AU, 2.5 AU, and 3.5 AU. Mechanisms for the water excitation include water-water collisions, water-electron collisions, and infrared pumping by solar radiation.Synthetic line spectra are calculated at various observational locations and directions using the MIRO instrument parameters. We show that observations at varying viewing distances from the nucleus and directions have the potential to give diagnostic information on the continuum temperature and water outgassing rates at the surface of the nucleus, and the gas density, expansion velocity, and temperature of the coma as a function of distance from the nucleus. The gas expansion velocity and temperature affect the spectral line width and frequency shift of the line from the rest frequency, while the gas density (which is directly related to the outgassing rate) and the line excitation temperature determine the antenna temperature of the absorption and emission signal in the line profile.  相似文献   

15.
The H2CO production rates measured in Comet C/1995 O1 (Hale-Bopp) from radio wavelength observations [Biver, N., and 22 colleagues, 2002a. Earth Moon Planets 90, 5-14] showed a steep increase with decreasing heliocentric distance. We studied the heliocentric evolution of the degradation of polyoxymethylene (formaldehyde polymers: (CH2O)n, also called POM) into gaseous H2CO. POM decomposition can indeed explain the H2CO density profile measured in situ by Giotto spacecraft in the coma of Comet 1P/Halley, which is not compatible with direct release from the nucleus [Cottin, H., Bénilan, Y., Gazeau, M.-C., Raulin, F., 2004. Icarus 167, 397-416]. We show that the H2CO production curve measured in Comet C/1995 O1 (Hale-Bopp) can be accurately reproduced by this mechanism with a few percents by mass of solid POM in grains. The steep heliocentric evolution is explained by the thermal degradation of POM at distances less than 3.5 AU. This study demonstrates that refractory organics present in cometary dust can significantly contribute to the composition of the gaseous coma. POM, or POM-like polymers, might be present in cometary grains. Other molecules, like CO and HNC, might also be produced by a similar process.  相似文献   

16.
G. Notesco 《Icarus》2005,175(2):546-550
Following the observations of ice grains in cometary comae and their size distributions, we reexamined experimentally our previous conclusion that the ice grains which agglomerated to form comet nuclei were formed at ∼25 K. The suggestion of a ∼25 K formation temperature was confirmed experimentally. Moreover, we suggest that these ice grains had to be of submicron size.  相似文献   

17.
We report on observations of the dust trail of Comet 67P/Churyumov-Gerasimenko (CG) in visible light with the Wide Field Imager at the ESO/MPG 2.2 m telescope at 4.7 AU before aphelion, and at with the MIPS instrument on board the Spitzer Space Telescope at 5.7 AU both before and after aphelion. The comet did not appear to be active during our observations. Our images probe large dust grains emitted from the comet that have a radiation pressure parameter β<0.01. We compare our observations with simulated images generated with a dynamical model of the cometary dust environment and constrain the emission speeds, size distribution, production rate and geometric albedo of the dust. We achieve the best fit to our data with a differential size distribution exponent of −4.1, and emission speeds for a β=0.01 particle of 25 m/s at perihelion and 2 m/s at 3 AU. The dust production rate in our model is on the order of 1000 kg/s at perihelion and 1 kg/s at 3 AU, and we require a dust geometric albedo between 0.022 and 0.044. The production rates of large (>) particles required to reproduce the brightness of the trail are sufficient to also account for the coma brightness observed while the comet was inside 3 AU, and we infer that the cross-section in the coma of CG may be dominated by grains of the order of .  相似文献   

18.
Our work was inspired by the recent brightening of Comet 17P/Holmes. The recently observed increase in brightness of this comet was correlated with emission of dust, probably larger in mass than the dust mantle of the nucleus. We analyzed the hypothesis that the comet can eject a large mass of dust due to non-uniform crystallization of amorphous water ice. For this purpose, we simulated the evolution of a model nucleus on the orbit of Comet 17P/Holmes. The nucleus is composed of water ice and dust and has the shape of an elongated ellipsoid. The simulations include crystallization of amorphous ice in the nucleus, changes in the dust mantle thickness, and changes in the nucleus orientation in space. Our computations indicate that: (i) ejection of the dust cover triggers crystallization of ice independently on the material properties of the nucleus; (ii) moderate changes in the nucleus orientation (∼50°) may result in an acceleration of the crystallization of ice in the northern hemisphere, while a rather large change in the orientation (∼120°) is needed to cause a significant jump of the crystallization front in the southern hemisphere, where the emission of dust during the recent brightening was strongest. We investigated the possible reason for an explosion and we have found that the crystallization of the water ice itself is probably not sufficient.  相似文献   

19.
A longstanding problem in thermophysical modeling of cometary nuclei has been to accurately formulate the boundary conditions at the nucleus/coma interface. A correct treatment of the problem, where the Knudsen layer gas just above the cometary surface (which is not in thermodynamic equilibrium) is modeled in parallel with the nucleus, is extremely time-consuming and has so far been avoided. Instead, simplifying assumptions regarding the coma properties are used, e.g., the surface gas density is assumed equal to zero or set to the local saturation value, and the coma backflux is neglected or given some realistic but approximate value. The resulting inaccuracy regarding the exchange of mass, energy, and momentum between the nucleus and the coma, may introduce significant errors in the calculated nucleus temperature profiles, gas production rates, and momentum transfer efficiencies. In this paper, we present a practical, accurate, and time-efficient tool which makes it possible to consider the nucleus and the innermost coma of a comet (the former assumed to consist of a porous mixture of crystalline water ice and dust) as a coupled, physically consistent system. The tool consists of interpolation tables for the surface gas density and pressure, the recondensing coma backflux, and the cooling energy flux due to diffusely scattered coma molecules. The tables cover a wide range of surface temperatures and sub-surface temperature profiles, and can be used to improve the boundary conditions used in thermophysical models. The interpolation tables have been obtained by calculating the transmission distribution functions of gas emerging from sublimating porous ice/dust mixtures with various temperature profiles, which then are used as source functions in a Direct Simulation Monte Carlo model of inelastic intermolecular collisions in the Knudsen layer.  相似文献   

20.
Ways to rationalize the different periods (e.g., 15.08 h, Luu and Jewitt, 1990, Icarus 86, 69-81; 11.01 h, Fernández et al., 2004, Icarus, in this issue; Lowry et al., 2003, Lunar Planet. Sci. XXXIV, Abstract 2056) seen in near aphelion R-band light curves of Comet 2P/Encke are explored. We show that the comet is usually active at aphelion and it's observed light curves contain signal from both the nucleus and an unresolved coma. The coma contribution to the observed brightness is generally found to dominate with the nucleus providing from 28 to 87% of the total brightness. The amplitude of the observed variations cannot be explained by the nucleus alone and are due to coma activity. We show that some seven periodicities exist in the observed light curves at various times and that this is likely the result of an active nucleus spinning in an excited spin state. The changing periodicities are probably due to changes in the relative strengths of the active areas. We work out possible excited states based on experience with model light curves and by using an analogy to light curve observations of Comet 1P/Halley for which the spin state has been separately determined from spacecraft observations. There is a possibility of a fully relaxed principal axis spin state (0.538 d−1; P=44.6 h) but, because it provides a poorer fit to the observed periodicities than the best fit excited state together with the absence of a peak near 1.08 d−1 (2fφ) in the frequency spectrum of the Fernández et al. (2000, Icarus 147, 145-160) thermal IR lightcurve, we consider it unlikely. Both SAM and LAM excited states are allowed by the underlying periodicities and additional information is needed to choose between these. Our choice of a low excitation SAM state, i.e., one in which the instantaneous spin axis nutates around the total angular momentum vector in a motion that is characterized by limited angular oscillations around the long axis, is based on Sekanina's (1988, Astron J. 95, 911-924, 1988, Astron. J. 96, 1455-1475) interpretation of the fan coma that this comet often displays. We argue that possible LAM states are excluded either because they are too difficult to excite or because they would be inconsistent with the formation of the observed fan morphology. Two possible SAM states emerge that provide good fits to the observed periodicities, one with a precessional frequency for the long axis about the total angular momentum vector of 1.614 d−1 (P?=14.9 h) and an oscillation frequency around the long axis of 0.539 d−1 (Pψ=44.5 h) and a second with a precessional frequency of 2.162 d−1 (P?=11.1 h) combined with an oscillation around the long axis of 0.502 d−1 (Pψ=47.8 h). While either solution is possible, the latter is, in a least squares sense, more likely to be the actual spin state. In both cases the direction of the total angular momentum vector (αM,δM[J2000]=198.6, −0.3 deg) is assumed to be defined by the evolving geometry and morphology of the coma (Sekanina, 1988, Astron J. 95, 911-924, 1988, Astron. J. 96, 1455-1475; Festou and Barale, 2000, Astron J. 119, 3119-3132). We discuss the possible locations of the primary active areas found by Sekanina (1988, Astron J. 95, 911-924, 1988, Astron. J. 96, 1455-1475) and, while they are at high cometographic latitudes, they do not have to be physically located close the region were the axis of maximum moment of inertia pierces the surface (i.e., at high cometocentric latitude). We offer a new interpretation of the 10.7 μm data by Fernández et al. (2000, Icarus 147, 145-160) which yields an axial ratio a/b=2.04. This, with the two SAM states that we have found, requires that b/c>1.18 or >1.09 implying a significant asymmetry in the shape of the elongated nucleus. For the observed fan morphology to be maintained, the true axial ratio b/c cannot be much larger than these limiting values otherwise the amplitude of the oscillation about the long axis becomes too large and the fan morphology would be destroyed. The precise phasing of the spin modes, i.e., the value of the Euler angles at a particular time, is not determinable from the current data set, but a set of well sampled thermal infrared observations of the nucleus covering many periods and a wide range of observing geometries could provide this information in the future as well as clearly distinguishing between the two excited spin states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号