首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maximum size of impact craters on finite bodies marks the largest impact that can occur short of impact induced disruption of the body. Recently attention has started to focus on large craters on small bodies such as asteroids and rocky and icy satellites. Here the large crater on the recently imaged Asteroid (2867) Steins (with crater diameter to mean asteroid radius ratio of 0.79) is shown to follow a limit set by other similar sized bodies with moderate macroporosity (i.e. fractured asteroids). Thus whilst large, the crater size is not novel, nor does it require Steins to possess an extremely large porosity. In one of the components of the binary Asteroid (90) Antiope there is the recently reported presence of an extremely large depression, possibly a crater, with depression diameter to mean asteroid radius ratio of ∼(1.4–1.62). This is consistent with the maximum size of a crater expected from previous observations of very porous rocky bodies (i.e. rubble-pile asteroids). Finally, a relationship between crater diameter (normalised to body radius) is proposed as a function of body porosity which suggests that the doubling of porosity between fractured asteroids and rubble-pile asteroids, nearly doubles the size (D/R value) of the largest crater sustainable on a rocky body.  相似文献   

2.
Isotopic and chemical compositions of meteorites, coupled with dynamical simulations, suggest that the main belt of asteroids between Mars and Jupiter contains objects formed in situ as well as a population of interlopers. These interlopers are predicted to include the building blocks of the terrestrial planets as well as objects that formed beyond Neptune ( [Bottke et al., 2006] , [Levison et al., 2009] and [Walsh et al., 2011] ). Here we report that the main belt asteroid (21) Lutetia – encountered by the Rosetta spacecraft in July 2010 – has spectral (from 0.3 to 25 μm) and physical (albedo, density) properties quantitatively similar to the class of meteorites known as enstatite chondrites. The chemical and isotopic compositions of these chondrites indicate that they were an important component of the formation of Earth and other terrestrial planets. This meteoritic association implies that Lutetia is a member of a small population of planetesimals that formed in the terrestrial planet region and that has been scattered in the main belt by emerging protoplanets (Bottke et al. 2006) and/or by the migration of Jupiter (Walsh et al. 2011) early in its history. Lutetia, along with a few other main-belt asteroids, may contains part of the long-sought precursor material (or closely related materials) from which the terrestrial planets accreted.  相似文献   

3.
During its close Earth approach in 2001, the E-class near-Earth Asteroid (33342) 1998 WT24 was the focus of extensive radar, optical, and thermal infrared observations. We present a physical model of this object, estimated from Arecibo and Goldstone radar images that cover multiple rotations and span over 100° of sky motion. The asteroid has an equivalent diameter of 415±40 m and a diffuse radar scattering law that is identical in both senses of circular polarization, implying a surface that is extremely rough on centimeter-to-decimeter scales. The shape is dominated by three large basins, which may be impact craters or a relic of past dynamical disruption of the object. Analysis of YORP perturbations on WT24's spin state predicts that the asteroid's spin rate is decreasing at a rate of . Simply extrapolating this rate suggests that the asteroid will despin over the next 150 kyr and was spinning at its surface disruption rate 75 kyr ago, but the rotational evolution of WT24 depends on the surface's thermal properties and probably is more complex than a simple spin-down.  相似文献   

4.
Near-Earth Asteroid (29075) 1950 DA may closely encounter Earth in 2880. The probability of Earth impact may be as high as 1/300, but the outcome of the encounter depends critically on the physical properties of the asteroid [Giorgini et al., 2002. Science 196, 132-136]. We have used Arecibo and Goldstone radar data and optical lightcurves to estimate the shape, spin state, and surface structure of 1950 DA. The data allow two distinct models. One rotates prograde and is roughly spheroidal with mean diameter 1.16±0.12 km. The other rotates retrograde and is oblate and about 30% larger. Both models suggest a nickel-iron or enstatite chondritic composition. Ground-based observations should be able to determine which model is correct within the next several decades.  相似文献   

5.
The known close approach of Asteroid (99942) Apophis in April 2029 provides the opportunity for the case study of a potentially hazardous asteroid in advance of its encounter. The visible to near-infrared (0.55 to 2.45 μm) reflectance spectrum of Apophis is compared and modeled with respect to the spectral and mineralogical characteristics of likely meteorite analogs. Apophis is found to be an Sq-class asteroid that most closely resembles LL ordinary chondrite meteorites in terms of spectral characteristics and interpreted olivine and pyroxene abundances, although we cannot rule out some degree of partial melting. A meteorite analog allows some estimates and conjectures of Apophis' possible range of physical properties such as the grain density and micro-porosity of its constituent material. Composition and size similarities of Apophis with (25143) Itokawa suggest a total porosity of 40% as a “current best guess” for Apophis. Applying these parameters to Apophis yields a mass estimate of 2×1010 kg with a corresponding energy estimate of 375 Mt for its potential hazard. Substantial unknowns, most notably the total porosity, allow uncertainties in these mass and energy estimates to be as large as factors of two or three.  相似文献   

6.
We present the results of a visible spectroscopic survey of igneous asteroids belonging to the small and intriguing E-class, including 2867 Steins, a target of the Rosetta mission. The survey was carried out at the 3.5 m Telescopio Nazionale Galileo (TNG), and at the 3.5 m New Technology Telescope (NTT) of the European Southern Observatory. We obtained new visible spectra for eighteen E-type asteroids, and near infrared spectra for eight of them. We confirm the presence of three different mineralogies in the small E-type populations. We classify each object in the E[I], E[II] or E[III] subgroups [Gaffey, M.J., Kelley, M.S., 2004. Lunar Planet. Sci. XXXV. Abstract 1812] on the basis of the spectral behavior and of the eventual presence of absorption features attributed to sulfides (such the 0.49 μm band, on E[II]), or to iron bearing silicates (0.9 μm band, on E[III]). We suggest that some asteroids (i.e. 64 Angelina, 317 Roxane, and 434 Hungaria), which show different spectral behavior comparing our data with those available in literature, have an inhomogeneous surface composition. 2867 Steins, a target of the Rosetta mission, shows a spectral behavior typical of the E[II] subgroup, as already suggested by Barucci et al. [Barucci, M.A., Fulchignoni, M., Fornasier, S., Dotto, E., Vernazza, P., Birlan, M., Binzel, R.P., Carvano, J., Merlin, F., Barbieri, C., Belskaya, I., 2005. Astron. Astrophys. 430, 313-317] and Fornasier et al. [Fornasier, S., Marzari, F., Dotto, E., Barucci, M.A., Migliorini, A., 2007. Astron. Astrophys. 474, 29-32]. Litva and 1990 TN1, initially classified as E-types, show a visible and near infrared behavior consistent with the olivine rich A-class asteroids, while 5806 Archieroy, also supposed to belong to the E-class, has a spectral behavior consistent with the S(V) classification following the Gaffey et al. [Gaffey, M.J., Burbine, T.H., Piatek, J.L., Reed, K.L., Chaky, D.A., Bell, J.F., Brown, R.H., 1993. Icarus 106, 573-602] classification scheme. To fully investigate the E-type population, we enlarged our sample including 6 E-type asteroids spectra available in literature, resulting in a total sample of 21 objects. The analysis of the spectral slope for the 3 different E-type subgroups versus the orbital elements show that E[III] members have the lowest mean spectral slope value inside the whole sample, and that they are located between 2.2-2.7 AU in low inclination orbits. E[II] members has the highest spectral slope inside the sample, half of them are located in the Hungaria region, 2 are NEA and 2 (64 Angelina and 2867 Steins), are in the main belt. A similar distribution is found for the 5 featureless E[I] members, located mainly in the Hungaria region (3 members), one in the middle main belt while one is a NEA (2004 VD17). Finally, for the five E-type asteroids observed both in the visible and near infrared range, plus 2867 Steins, we attempt to model their surface composition using linear geographical mixtures of no more than 3 components, selected from aubrite meteorites and correlated minerals. In particular we suggest that the aubrite Peña Blanca might have the E[III] Asteroid 317 Roxane as parent body, and that the aubrite ALH78113 might be related to the E[II] subgroup asteroids.  相似文献   

7.
In this paper we present the observational campaign carried out at ESO NTT and VLT in April and May 2006 to investigate the nature and the structure of the near-Earth object (144898) 2004 VD17. In spite of a great quantity of dynamical information, according to which it will have a close approach with the Earth in the next century, the physical properties of this asteroid are largely unknown. We performed visible and near-infrared photometry and spectroscopy, as well as polarimetric observations. Polarimetric and spectroscopic data allowed us to classify 2004 VD17 as an E-type asteroid. A good agreement was also found with the spectrum of the aubrite meteorite Mayo Belwa. On the basis of the polarimetric albedo (pv=0.45) and of photometric data, we estimated a diameter of about 320 m and a rotational period of about 2 h. The analysis of the results obtained by our complete survey have shown that (144898) 2004 VD17 is a peculiar NEO, since it is close to the breakup limits for fast rotator asteroids, as defined by Pravec and Harris [Pravec, P., Harris, A.W., 2000. Icarus 148, 12-20]. These results suggest that a more robust structure must be expected, as a fractured monolith or a rubble pile in a “strength regime” [Holsapple, K.A., 2002. Speed limits of rubble pile asteroids: Even fast rotators can be rubble piles. In: Workshop on Scientific Requirements for Mitigation of Hazardous Comets and Asteroids, Washington, September, 2002].  相似文献   

8.
A preliminary study of the surface of the asteroid 21 Lutetia with ground-based methods is of significant importance, because this object is included into the Rosetta space mission schedule. From August 31 to November 20, 2000, about 50 spectra of Lutetia and the same number of spectra of the solar analog HD10307 (G2V) and regional standards were obtained with a resolution of 4 and 3 nm at the MTM-500 telescope television system of the Crimean astrophysical observatory. From these data, the synthetic magnitudes of the asteroid in the BRV color system have been obtained, the reflected light fluxes have been determined in absolute units, and its reflectance spectra have been calculated for a range of 370–740 nm. In addition, from the asteroid reflectance spectra obtained at different rotation phases, the values of the equivalent width of the most intensive absorption band centered at 430–440 nm and attributed to hydrosilicates of the serpentine type have been calculated. A frequency analysis of the values V(1, 0) confirmed the rotation period of Lutetia 0.d3405 (8.h172) and showed a two-humped light curve with a maximal amplitude of 0.m25. The color indices B-V and V-R showed no noticeable variations with this period. A frequency analysis of the equivalent widths of the absorption band of hydrosilicates near 430–440 nm points to the presence of many significant frequencies, mainly from 15 to 20 c/d (c/d is the number of cycles per day), which can be caused by a heterogeneous distribution of hydrated material on the surface of Lutetia. The sizes of these heterogeneities (or spots) on the asteroid surface have been estimated at 3–5 to 70 km with the most frequent value between 30 and 40 km.  相似文献   

9.
The European Space Agency Rosetta Spacecraft passed within 803 km of the main belt asteroid (2867) Steins on 5 September 2008. The Rosetta Spacecraft carries a number of scientific instruments including a millimeter and submillimeter radiometer and spectrometer. The instrument, named MIRO (Microwave Instrument for the Rosetta Orbiter), consists of a 30-cm diameter, offset parabolic reflector telescope followed by two heterodyne receivers. Center-band operating frequencies of the receivers are near 190 GHz (1.6 mm) and 562 GHz (0.53 mm). Broadband continuum channels are implemented in both frequency bands for the measurement of near surface temperatures and temperature gradients. A 4096 channel CTS (chirp transform spectrometer) having 180 MHz total bandwidth and ∼44 kHz resolution is also connected to the submillimeter receiver. We present the continuum observations of asteroid (2867) Steins obtained during the fly-by with the MIRO instrument. Spectroscopic data were also collected during the fly-by using the MIRO spectrometer fixed-tuned to rotational lines of several molecules. Results of the spectroscopic investigation will be the topic of a separate publication.Comparative thermal models and radiative transfer calculations for Steins are presented. Emissivities of Steins were determined to be 0.6-0.7 and 0.85-0.9 at wavelengths of 0.53 and 1.6 mm, respectively. The thermal inertia of Steins was estimated to be in the range 450-850 J/(m2 s0.5 K). Assuming that the emissivity of Steins is determined by the Fresnel reflection coefficients of the surface material, the area-averaged dielectric constant of the surface material is in the range 4-20. These values are rock-like, and are unlike the powdered-regolith surface of the Moon.  相似文献   

10.
Arecibo (2380 MHz, 13 cm) radar observations of 2005 CR37 provide detailed images of a candidate contact binary: a 1.8-km-long, extremely bifurcated object. Although the asteroid's two lobes are round, there are regions of modest topographic relief, such as an elevated, 200-m-wide facet, that suggest that the lobes are geologically more complex than either coherent fragments or homogeneous rubble piles. Since January 1999, about 9% of NEAs larger than ∼200 m imaged by radar can be described as candidate contact binaries.  相似文献   

11.
Bottke et al. [Bottke, W.F., Vokrouhlicky, D., Nesvorný, D., 2007. Nature 449, 48–53] linked the catastrophic formation of Baptistina Asteroid Family (BAF) to the K/T impact event. This linkage was based on dynamical and compositional evidence, which suggested the impactor had a composition similar to CM2 carbonaceous chondrites. However, our recent study [Reddy, V., Emery, J.P., Gaffey, M.J., Bottke, W.F., Cramer, A., Kelley, M.S., 2009. Meteorit. Planet. Sci. 44, 1917–1927] suggests that the composition of (298) Baptistina is similar to LL-type ordinary chondrites rather than CM2 carbonaceous chondrites. This rules out any possibility of it being related to the source of the K/T impactor, if the impactor was of CM-type composition. Mineralogical study of asteroids in the vicinity of BAF has revealed a plethora of compositional types suggesting a complex formation and evolution environment. A detailed compositional analysis of 16 asteroids suggests several distinct surface assemblages including ordinary chondrites (Gaffey SIV subtype), primitive achondrites (Gaffey SIII subtype), basaltic achondrites (Gaffey SVII subtype and V-type), and a carbonaceous chondrite. Based on our mineralogical analysis we conclude that (298) Baptistina is similar to ordinary chondrites (LL-type) based on olivine and pyroxene mineralogy and moderate albedo. S-type and V-type in and around the vicinity of BAF we characterized show mineralogical affinity to (8) Flora and (4) Vesta and could be part of their families. Smaller BAF asteroids with lower SNR spectra showing only a ‘single’ band are compositionally similar to (298) Baptistina and L/LL chondrites. It is unclear at this point why the silicate absorption bands in spectra of asteroids with formal family definition seem suppressed relative to background population, despite having similar mineralogy.  相似文献   

12.
Detailed near-infrared spectral observations of Asteroid 1459 Magnya reveal an asteroid that is primarily composed of pyroxene and plagioclase feldspar, confirming earlier suggestions that Magnya has a basaltic composition. The average Magnya spectrum for March 23, 2002 has a Band I center of 0.926 μm and a Band II center of 1.938 μm. Observations over  hours show little variation in band center positions. The feldspar-to-pyroxene ratio is ∼0.6 on Magnya's surface. Comparing Magnya with the spectral parameters from 4 Vesta shows discordant pyroxene chemistries; Magnya's pyroxenes contain ∼10 mol% less Fs than Vesta's pyroxenes. This suggests that Magnya originated from a parent body other than 4 Vesta and that its progenitor formed in a more chemically reduced region of the solar nebula within the asteroid belt.  相似文献   

13.
The observation light curves of the main belt asteroid (469) Argentina, obtained on March 9–11 2002 and August 10–11 2004, are presented in this paper. The complex light curve of the (469) suggests that it may be in NPA rotation. Using the Fourier analysis method, some prominent spectrum values are derived individually for two subset data. Among these period values, periods of 13.00 and 8.74 h are regarded as basic components. Other derived period values can be combined linearly with these two basic period values. If the (469) is in a free-force precession mode, the motion mode will be LAM (largest-axis mode) according the ratio of precession and rotation periods. And the minimum of I 1/I 3 (ratio of the largest and smallest principal momentum of inertial) is 3.05. Assuming an external torque releasing by a satellite forces the (469) to precess, the mass of satellite roughly is the same order as the primary’s on condition that the precession and rotation periods are two basic values. At present, we cannot draw an unambiguous conclusion on (469)’s motion for sparse data, So the further observations are necessary for understanding the (469)’s tumbling motion farther.  相似文献   

14.
王晓彬  张西亮 《天文学报》2006,47(2):202-211
小行星自转参数的资料不仅可以为小行星碰撞演化提供数据,还可以为太阳系的演化研究提供依据.利用云南天文台1米望远镜对主带碳类小行星(360)Carlova进行了新的CCD测光观测,结合前人的测光资料,利用Epoch-方法对(360)的自转参数进行了反演计算,得到该小行星自转的恒星周期为0.25780417±0.00000003天,自转轴的黄道坐标为(95°±3,°40°±1°).新的结果与前人的结果相比较为一致,其精度稍高于以前的估算结果.  相似文献   

15.
We report the results of the Cornell Mid-IR Asteroid Spectroscopy (MIDAS) survey, a program of ground-based observations designed to characterize the 8-13 μm spectral properties of a statistically significant sample of asteroids from a wide variety of visible to near-IR spectral classes. MIDAS is conducted at Palomar Observatory using the Spectrocam-10 (SC-10) spectrograph on the 200-in Hale telescope. We have measured the mid-infrared spectra of twenty-nine asteroids and have derived temperature estimates from our data that are largely consistent with the predictions of the standard thermal model. We have also generated relative emissivity spectra for the target asteroids. On only one asteroid, 1 Ceres, have we found emissivity features with spectral contrast greater than 5%. Our spectrum of 4 Vesta suggests emissivity variation at the 2-3% level. Published spectra of several of the small number of asteroids observed with ISO (six of which are also included in our survey), which appeared to exhibit much stronger emissivity features, are difficult to reconcile with our measurements. Laboratory work on mineral and meteorite samples has shown that the contrast of mid-IR spectral features is greatly reduced at fine grain sizes. Moreover, the NEAR mission found that 433 Eros is covered by a relatively thick fine-grained regolith. If small bodies in general possess such regoliths, their mid-IR spectral features may be quite subtle. This may explain the evident absence of strong emissivity variation in the majority of the MIDAS spectra.  相似文献   

16.
We estimate Asteroid 1992 SK's physical properties from delay-Doppler images and Doppler-only echo spectra obtained during March 22-27, 1999, at Goldstone and from optical lightcurves obtained during February-March 1999 at Ond?ejov Observatory. The images span only about 15° of sky motion and are not strong, but they place up to twenty 40 m by 160 m pixels on the asteroid and have complete rotational phase coverage. Our analysis establishes that the radar observations are confined to subradar latitudes between −20° and −40°. The echo spectra and optical lightcurves span ∼80° of sky motion, which provides important geometric leverage on the pole direction. The lightcurves are essential for accurate estimation of the asteroid's shape and spin state. We estimate the asteroid's period to be 7.3182±0.0003 h and its pole direction to be at ecliptic longitude, latitude=(99°±5°,−3°±5°). The asteroid is about 1.4 km in maximum extent and mildly asymmetric, with an elongation of about 1.5 and relatively subdued topography. The OC radar albedo is 0.11±0.02 and the SC/OC ratio is 0.34±0.05. The current orbital solution permits accurate identification of planetary close approaches during 826-2690. We use our model to predict salient characteristics of radar images and optical lightcurves obtainable during the asteroid's March 2006 approach.  相似文献   

17.
A.S. Rivkin  R.P. Binzel  S.J. Bus  A. Saxena 《Icarus》2004,172(2):408-414
We have obtained near-infrared (0.8-2.5 μm) spectra of Hermes (1937 UB) using the NASA Infrared Telescope Facility on Mauna Kea. We find Hermes to have spectral properties consistent with L/LL chondrites, with a strong visual similarity to Gaffey (1976, J. Geophys. Res. 81, 905) average L6 chondrites. We define a ratio of band areas (RBA) using the Modified Gaussian Method (MGM: Sunshine and Pieters, 1990, in: Lunar and Planetary Institute Conference Abstracts, p. 1223, 1993, J. Geophys. Res. 98, 9075) to quantify near-infrared asteroidal data lacking a visible component. Hermes has a spectrum nearly indistinguishable from (19356) 1997 GH3. Together, these asteroids represent new endmembers on the continuum of spectra from ordinary chondrite meteorites to large main-belt S-class asteroids. We discuss regolith effects that may be occurring on Hermes and other possible ordinary chondrite parent bodies, and constrain the albedo of Hermes to 0.4 or higher (effective diameter 650 m or smaller) if it has a regolith. This value for albedo/diameter is consistent with radar results.  相似文献   

18.
Near-Earth Asteroid (66391) 1999 KW4 was the subject of the recently published first extensive radar imaging, shape and mutual orbit modeling, and physical and dynamical characterization of a binary asteroid. In this paper we present in detail our numerical simulation of KW4 behind that work. Our propagations of the system with some variation in estimated parameters cover the set of KW4's possible current dynamical states consistent with the body models and other information obtained directly from the observations. We also apply our implementation of this simulation capability to address some of the dynamical mechanisms by which KW4 may be moved into the more energetically excited of those possible current states, particularly solar gravity interaction. Through comparison of the results with certain features of the observation data, we conclude that the actual KW4 system is not in the most energetically relaxed configuration but must be moderately excited. The system occupies a generalized Cassini state 2 which is different from that considered in most previously published treatments of Cassini states in that it involves co-precession of the primary's spin frame and the mutual orbit rather than co-precession of a satellite's spin frame and that satellite's orbit about the primary. We present a simple analytical theory describing the system's dynamics, which should be applicable to any other binary systems, of which KW4 is representative, in which a massive, roughly oblate primary is spinning rapidly relative to the rate of its mutual orbit with an on-average synchronous, elongated secondary. We examine separately both the effect of the larger binary component's oblateness, and the effect of the smaller component's roughly triaxial ellipsoid shape. The simple analytical formulae obtained agree with full-detail numerical simulation results, and can be used for remote estimation of binary mass properties from observed system motion.  相似文献   

19.
We describe interferometric observations of the Asteroid (41) Daphne in the thermal infrared obtained with the Mid-Infrared Interferometric Instrument (MIDI) and the Auxiliary Telescopes (ATs) of the European Southern Observatory (ESO) Very Large Telescope Interferometer (VLTI). We derived the size and the surface thermal properties of (41) Daphne by means of a thermophysical model (TPM), which is used for the interpretation of interferometric data for the first time. From our TPM analysis, we derived a volume equivalent diameter for (41) Daphne of 189 km, using a non-convex 3-D shape model derived from optical lightcurves and adaptive optics images (B. Carry, private communication). On the other hand, when using the convex shape of Kaasalainen et al. (Kaasalainen, M., Mottola, S., Fulchignoni, M. [2002]. Icarus 159, 369-395) in our TPM analysis, the resulting volume equivalent diameter of (41) Daphne is between 194 and 209 km, depending on the surface roughness. The shape of the asteroid is used as an a priori information in our TPM analysis. No attempt is made to adjust the shape to the data. Only the size of the asteroid and its thermal parameters such as, albedo, thermal inertia and roughness are adjusted to the data. We estimated our model systematic uncertainty to be of 4% and of 7% on the determination of the asteroid volume equivalent diameter depending on whether the non-convex or the convex shape is used, respectively. In terms of thermal properties, we derived a value of the surface thermal inertia smaller than 50 J m−2 s−0.5 K−1 and preferably in the range between 0 and ∼30 J m−2 s−0.5 K−1. Our TPM analysis also shows that Daphne has a moderate macroscopic surface roughness.  相似文献   

20.
The ESA astrometric mission Gaia, due for a launch in late 2011, will observe a huge number of asteroids (∼350,000 brighter than V<20) with an unprecedented positional precision (at the sub-milliarcsecond level). This precision will play an important role for the mass determination of about hundred minor planets with a relative precision better than 50%. Presently, due primarily to their perturbations on Mars, the uncertainty in the masses of the largest asteroids is the limiting factor in the accuracy of the solar system ephemerides. Besides, such high precision astrometry will enable to derive direct measurements of the masses of the largest asteroids which are of utmost significance for the knowledge of their physical properties. The method for computing the masses is based on the analysis of orbital perturbations during close encounters between massive asteroids (perturbers) and several smaller minor planets (targets). From given criteria of close approaches selection, we give the list of asteroids for which the mass can be determined, and the expected precision of these masses at mission completion. We next study the possible contribution of the ground-based observations for the mass determination in some special observation cases of close approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号