首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present thermal infrared photometry and spectrophotometry of six Near-Earth Asteroids (NEAs) using the 3.8 m United Kingdom Infrared Telescope (UKIRT) together with quasi-simultaneous optical observations of five NEAs taken at the 1.0 m Jacobus Kapteyn Telescope (JKT). For Asteroid (6455) 1992 HE we derive a rotational period P=2.736±0.002 h, and an absolute visual magnitude H=14.32±0.24. For Asteroid 2002 HK12 we derive . The Standard Thermal Model (STM), the Fast Rotating Model (FRM) and the Near-Earth Asteroid Thermal Model (NEATM) have been fitted to the measured fluxes to derive albedos and effective diameters. The derived geometric albedos and effective diameters are (6455) 1992 HE: pv=0.26±0.08, Deff=3.55±0.5 km; 1999 HF1: pv=0.18±0.07, ; 2000 ED104: pv=0.18±0.05, Deff=1.21±0.2 km; 2002 HK12: , Deff=0.62±0.2 km; 2002 NX18: pv=0.031±0.009, Deff=2.24±0.3 km; 2002 QE15: , Deff=1.94±0.4 km. The limitations of using the NEATM to observe NEAs at high phase angles are discussed.  相似文献   

2.
With the collection of six years of MGS tracking data and three years of Mars Odyssey tracking data, there has been a continual improvement in the JPL Mars gravity field determination. This includes the measurement of the seasonal changes in the gravity coefficients (e.g., , , , , , ) caused by the mass exchange between the polar ice caps and atmosphere. This paper describes the latest gravity field MGS95J to degree and order 95. The improvement comes from additional tracking data and the adoption of a more complete Mars orientation model with nutation, instead of the IAU 2000 model. Free wobble of the Mars' spin axis, i.e. polar motion, has been constrained to be less than 10 mas by looking at the temporal history of and . A strong annual signature is observed in , and this is a mixture of polar motion and ice mass redistribution. The Love number solution with a subset of Odyssey tracking data is consistent with the previous liquid outer core determination from MGS tracking data [Yoder et al., 2003. Science 300, 299-303], giving a combined solution of k2=0.152±0.009 using MGS and Odyssey tracking data. The solutions for the masses of the Mars' moons show consistency between MGS, Odyssey, and Viking data sets; Phobos GM=(7.16±0.005)×10−4 km3/s2 and Deimos GM=(0.98±0.07)×10−4 km3/s2. Average MGS orbit errors, determined from differences in the overlaps of orbit solutions, have been reduced to 10-cm in the radial direction and 1.5 m along the spacecraft velocity and normal to the orbit plane. Hence, the ranging to the MGS and Odyssey spacecraft has resulted in position measurements of the Mars system center-of-mass relative to the Earth to an accuracy of one meter, greatly reducing the Mars ephemeris errors by several orders of magnitude, and providing mass estimates for Asteroids 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta, and 324 Bamberga.  相似文献   

3.
4.
5.
6.
We describe a strategy for scheduling astrometric observations to minimize the number required to determine the mutual orbits of binary transneptunian systems. The method is illustrated by application to Hubble Space Telescope observations of (42355) Typhon-Echidna, revealing that Typhon and Echidna orbit one another with a period of 18.971±0.006 days and a semimajor axis of 1628±29 km, implying a system mass of (9.49±0.52)×1017 kg. The eccentricity of the orbit is 0.526±0.015. Combined with a radiometric size determined from Spitzer Space Telescope data and the assumption that Typhon and Echidna both have the same albedo, we estimate that their radii are and , respectively. These numbers give an average bulk density of only , consistent with very low bulk densities recently reported for two other small transneptunian binaries.  相似文献   

7.
In this paper it is derived that the libration of Mercury can be described by where Φ0 is the unknown libration amplitude, M is Mercury's mean anomaly and K=−9.483. Φ0 can be determined by comparing pairs of images of the same landmarks taken by an orbiter at different positions of Mercury. If the angle between the orbit plane of a polar orbiter and Mercury's line of periapsis is between −60° and 60° and if one landmark at the equator is imaged per day with a relative precision of , then the libration amplitude can be determined in two Mercury years (176 days) with an accuracy of or better, which is sufficient to answer the question whether Mercury has a solid or fluid core.  相似文献   

8.
We have obtained full-disk spatially resolved spectra of the Venus nightside at near-infrared wavelengths during July 2007 using the Anglo-Australian Telescope and Infrared Imager and Spectrograph 2 (IRIS2). The data have been used to map the intensity and rotational temperature of the O2(a1Δg) airglow band at . The temperatures agree with those obtained in earlier IRIS2 observations and are significantly higher than expected from the Venus International Reference Atmosphere (VIRA) profile. We also report the detection of the corresponding ν=0-1O2 airglow band at with a similar spatial distribution to the ν=0-0 band. Observations in the thermal window have been used to image surface topography using two different methods of cloud correction. We have also obtained images that can be used to study cloud motion.  相似文献   

9.
The capture of arbitrarily shaped interstellar dust in the Solar System is investigated. Electromagnetic radiation and gravitational forces of the Sun and Lorentz force generated by interplanetary magnetic field are considered. The capture conditions appear to be very sensitive to the particle shape. Non-spherical particles as well as their spherical equivalents are captured only when they are moving initially in the vicinity of ecliptic plane. Capture of non-charged non-spherical dust typically occurs in the region , where RSun is solar radius and impact parameter b is defined as the smallest distance between the particle and the Sun if no forces existed. In contrast, charged particles are typically captured at b>150 RSun. The total amount of captured non-spherical sub-micron particles differs significantly from the corresponding amount of spherical dust grains. However, both amounts are comparable in the micron-sized range. It is shown that a certain mass of captured non-spherical particles may survive in the Solar System, while captured spherical ones hit the Sun or sublimate in its vicinity. Only a negligible amount of spherical particles can survive. Consideration of solar wind within around of yields that 20% of the captured non-spherical particles of the effective radius survive; the corresponding percentage for particles of the radius is 7%. The total mass of the surviving charged particles is about two orders of magnitude larger than the mass of the surviving non-charged particles. As a result, the sub-micron-sized particles are candidates to contribute to the density increase of the circumsolar dust cloud.  相似文献   

10.
As a prelude to the design of sampling devices able to extract materials from the icy surfaces of comets, outer-planet satellites, and the martian poles, it is necessary to understand some of the physical properties of these ices. To this end we have investigated the mechanical resistance displayed by two ices subjected to coring operations at low temperatures and under vacuum. The ices used in this study were water ice, frozen from liquid water, and carbon dioxide ice grown from its vapour. The coring tool employed had dimensions and required power levels that were comparable to a sample extraction system designed for a present-day spacecraft lander. The specific cutting strength, a parameter that measures the toughness of the material, has been measured while coring these two ices. For water ice this property rose from at an ice temperature of , to at . At the lower temperature of , pore-free carbon dioxide ice has also been measured to have a specific cutting strength approximately half that of water ice at the same temperature. These laboratory-based measurements may be used as guides for the power levels needed to core solid water and CO2 ices at certain rates.  相似文献   

11.
Meteoric ions in the atmosphere of Mars   总被引:1,自引:0,他引:1  
  相似文献   

12.
New numerical simulations of the formation and evolution of Jupiter are presented. The formation model assumes that first a solid core of several M accretes from the planetesimals in the protoplanetary disk, and then the core captures a massive gaseous envelope from the protoplanetary disk. Earlier studies of the core accretion-gas capture model [Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y., 1996. Icarus 124, 62-85] demonstrated that it was possible for Jupiter to accrete with a solid core of 10-30 M in a total formation time comparable to the observed lifetime of protoplanetary disks. Recent interior models of Jupiter and Saturn that agree with all observational constraints suggest that Jupiter's core mass is 0-11 M and Saturn's is 9-22 M [Saumon, G., Guillot, T., 2004. Astrophys. J. 609, 1170-1180]. We have computed simulations of the growth of Jupiter using various values for the opacity produced by grains in the protoplanet's atmosphere and for the initial planetesimal surface density, σinit,Z, in the protoplanetary disk. We also explore the implications of halting the solid accretion at selected core mass values during the protoplanet's growth. Halting planetesimal accretion at low core mass simulates the presence of a competing embryo, and decreasing the atmospheric opacity due to grains emulates the settling and coagulation of grains within the protoplanet's atmosphere. We examine the effects of adjusting these parameters to determine whether or not gas runaway can occur for small mass cores on a reasonable timescale. We compute four series of simulations with the latest version of our code, which contains updated equation of state and opacity tables as well as other improvements. Each series consists of a run without a cutoff in planetesimal accretion, plus up to three runs with a cutoff at a particular core mass. The first series of runs is computed with an atmospheric opacity due to grains (hereafter referred to as ‘grain opacity’) that is 2% of the interstellar value and . Cutoff runs are computed for core masses of 10, 5, and 3 M. The second series of Jupiter models is computed with the grain opacity at the full interstellar value and . Cutoff runs are computed for core masses of 10 and 5 M. The third series of runs is computed with the grain opacity at 2% of the interstellar value and . One cutoff run is computed with a core mass of 5 M. The final series consists of one run, without a cutoff, which is computed with a temperature dependent grain opacity (i.e., 2% of the interstellar value for ramping up to the full interstellar value for ) and . Our results demonstrate that reducing grain opacities results in formation times less than half of those for models computed with full interstellar grain opacity values. The reduction of opacity due to grains in the upper portion of the envelope with has the largest effect on the lowering of the formation time. If the accretion of planetesimals is not cut off prior to the accretion of gas, then decreasing the surface density of planetesimals lowers the final core mass of the protoplanet, but increases the formation timescale considerably. Finally, a core mass cutoff results in a reduction of the time needed for a protoplanet to evolve to the stage of runaway gas accretion, provided the cutoff mass is sufficiently large. The overall results indicate that, with reasonable parameters, it is possible that Jupiter formed at 5 AU via the core accretion process in 1 Myr with a core of 10 M or in 5 Myr with a core of 5 M.  相似文献   

13.
The Planetary Fourier Spectrometer (PFS) for the Mars Express mission is an infrared spectrometer optimised for atmospheric studies. This instrument has a short wave (SW) channel that covers the spectral range from 1700 to (1.2-) and a long-wave (LW) channel that covers 250- (5.5-). Both channels have a uniform spectral resolution of . The instrument field of view FOV is about 1.6° (FWHM) for the Short Wavelength channel (SW) and 2.8° (FWHM) for the Long Wavelength channel (LW) which corresponds to a spatial resolution of 7 and 12 km when Mars is observed from an height of 250  km. PFS can provide unique data necessary to improve our knowledge not only of the atmosphere properties but also about mineralogical composition of the surface and the surface-atmosphere interaction.The SW channel uses a PbSe detector cooled to 200-220 K while the LW channel is based on a pyroelectric (LiTaO3) detector working at room temperature. The intensity of the interferogram is measured every 150 nm of physical mirrors displacement, corresponding to 600 nm optical path difference, by using a laser diode monochromatic light interferogram (a sine wave), whose zero crossings control the double pendulum motion. PFS works primarily around the pericentre of the orbit, only occasionally observing Mars from large distances. Each measurements take 4 s, with a repetition time of 8.5 s. By working roughly 0.6 h around pericentre, a total of 330 measurements per orbit will be acquired 270 looking at Mars and 60 for calibrations. PFS is able to take measurements at all local times, facilitating the retrieval of surface temperatures and atmospheric vertical temperature profiles on both the day and the night side.  相似文献   

14.
15.
We performed impact disruption experiments on pieces from eight different anhydrous chondritic meteorites—four weathered ordinary chondrite finds from North Africa (NWA791, NWA620, NWA869 and MOR001), three almost unweathered ordinary chondrite falls (Mbale, Gao, and Saratov), and an almost unweathered carbonaceous chondrite fall (Allende). In each case the impactor was a small (1/8 or 1/4 in) aluminum sphere fired at the meteorite target at , comparable to the mean collision speed in the main-belt. Some of the ∼5 to debris from each disruption was collected in aerogel capture cells, and the captured particles were analyzed by in situ synchrotron-based X-ray fluorescence. For each meteorite, many of the smallest particles ( up to in size, depending on the meteorite) exhibit very high Ni/Fe ratios compared to the Ni/Fe ratios measured in the larger particles , a composition consistent with the smallest debris being dominated by matrix material while the larger debris is dominated by fragments from olivine chondrules. These results may explain why the interplanetary dust particles (IDPs) collected from the Earth's stratosphere are C-rich and volatile-rich compared to the presumed solar nebula composition. The IDPs may simply sample the matrix of an inhomogeneous parent body, structurally and mineralogically similar to the chondritic meteorites, which are inhomogeneous assemblages of compact, strong, C- and volatile-poor chondrules that are distributed in a more porous, C- and volatile-rich matrix. In addition, these results may explain why the micrometeorites, which are to millimeters in size, recovered from the polar ices are Ni- and S-poor compared to chondritic meteorites, since these polar micrometeorites may preferentially sample fragments from the Ni- and S-poor olivine chondrules. These results indicate that the average composition of the IDPs may be biased towards the composition of the matrix of the parent body while the average composition of the polar micrometeorites may be more heavily weighted towards the composition of the chondrules and clasts. Thus, neither the IDPs nor the polar micrometeorites may sample the bulk composition of their respective parent bodies.We determined the threshold collisional specific energy for these chondritic meteorites to be 1419 J/kg, about twice the value for terrestrial basalt. Comparison of the mass of the largest fragment produced in the disruption of an sample of the porous ordinary chondrite Saratov with the largest fragment produced in the disruption of an sample of the compact ordinary chondrite MOR001 when each was struck by an impactor having approximately the same kinetic energy confirms that it requires significantly more energy to disrupt a porous target than a non-porous target.These results may also have important implications for the design of spacecraft missions intended to sample the composition and mineralogy of the chondritic asteroids and other inhomogeneous bodies. A Stardust-like spacecraft intended to sample asteroids by collecting only the small debris from a man-made impact onto the asteroid may collect particles that over-sample the matrix of the target and do not provide a representative sample of the bulk composition. The impact collection technique to be employed by the Japanese HAYABUSA (formerly MUSES-C) spacecraft to sample the asteroid Itokawa may result in similar mineral segregation.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号