首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the detection of H13CN and HC15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/13C and 14N/15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm−1 resolution. The spectral range 1210-1310 cm−1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H12C14N, H13CN and HC15N from their bands at 713, 706 and 711 cm−1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find at 15° S, and at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane (82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/15N isotopic ratio is found equal to at 15° S and at 83° N. Combining the two values yields 14N/15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/14N ratio found in HCN is ∼3 times higher than in N2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784], which implies a large fractionation process in the HCN photochemistry.  相似文献   

2.
We have performed high-resolution spectral observations at mid-infrared wavelengths of C2H6 (12.16 μm), and C2H2 (13.45 μm) on Saturn. These emission features probe the stratosphere of the planet and provide information on the hydrocarbon photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer Celeste, in conjunction with the McMath-Pierce 1.5-m solar telescope in November and December 1994. We used Voyager IRIS CH4 observations (7.67 μm) to derive a temperature profile on the saturnian atmosphere for the region of the stratosphere. This profile was then used in conjunction with height-dependent volume mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. Our ground-based measurements indicate abundances of for C2H6 (1.0 mbar pressure level), and for C2H2 (1.6 mbar pressure level). We also derived new mixing ratios from the Voyager mid-latitude IRIS observations; 8.6±0.9×10−6 for C2H6 (0.1-3.0 mbar pressure level), and 1.6±0.2×10−7 for C2H2 (2.0 mbar pressure level).  相似文献   

3.
We report here the first detection of mono-deuterated acetylene (acetylene-d1, C2HD) in Titan's atmosphere from the presence of two of its emission bands at 678 and 519 cm−1 as observed in CIRS spectral averages of nadir and limb observations taken between July 2004 and mid-2007. By using new laboratory spectra for this molecule, we were able to derive its abundance at different locations over Titan's disk. We find the C2HD value () to be roughly constant with latitude from the South to about 45° N and then to increase slightly in the North, as is the case for C2H2. Fitting the 678 cm−1ν5 band simultaneously with the nearby C2H2 729 cm−1ν5 band, allows us to infer a D/H ratio in acetylene on Titan with an average of the modal values of 2.09±0.45×10−4 from the nadir observations, the uncertainties being mainly due to the vertical profile used for the fit of the acetylene band. Although still subject to significant uncertainty, this D/H ratio appears to be significantly larger than the one derived in methane from the CH3D band (upper limit of 1.5×10−4; Bézard, B., Nixon, C.A., Kleiner, I., Jennings, D.E., 2007. Icarus, 191, 397-400; Coustenis, A., Achterberg, R., Conrath, B., Jennings, D., Marten, A., Gautier, D., Bjoraker, G., Nixon, C., Romani, P., Carlson, R., Flasar, M., Samuelson, R.E., Teanby, N., Irwin, P., Bézard, B., Orton, G., Kunde, V., Abbas, M., Courtin, R., Fouchet, Th., Hubert, A., Lellouch, E., Mondellini, J., Taylor, F.W., Vinatier, S., 2007. Icarus 189, 35-62). From the analysis of limb data we infer D/H values of (at 54° S), (at 15° S), (at 54° N) and (at 80° N), which average to a mean value of 1.63±0.27×10−4.  相似文献   

4.
We report the detection of 13CH3D in Titan's stratosphere from Cassini/CIRS infrared spectra near 8.7 μm. Fitting simultaneously the ν6 bands of both 13CH3D and 12CH3D and the ν4 band of CH4, we derive a D/H ratio equal to and a 12C/13C ratio in deuterated methane of , consistent with that measured in normal methane.  相似文献   

5.
We report photochemical studies of thin cryogenic ice films composed of N2, CH4 and CO in ratios analogous to those on the surfaces of Neptune’s largest satellite, Triton, and on Pluto. Experiments were performed using a hydrogen discharge lamp, which provides an intense source of ultraviolet light to simulate the sunlight-induced photochemistry on these icy bodies. Characterization via infrared spectroscopy showed that C2H6 and C2H2, and HCO are formed by the dissociation of CH4 into H, CH2 and CH3 and the subsequent reaction of these radicals within the ice. Other radical species, such as C2, , CN, and CNN, are observed in the visible and ultraviolet regions of the spectrum. These species imply a rich chemistry based on formation of radicals from methane and their subsequent reaction with the N2 matrix. We discuss the implications of the formation of these radicals for the chemical evolution of Triton and Pluto. Ultimately, this work suggests that , CN, HCO, and CNN may be found in significant quantities on the surfaces of Triton and Pluto and that new observations of these objects in the appropriate wavelength regions are warranted.  相似文献   

6.
7.
The contribution of exothermic ion and neutral chemistry to Titan's corona is studied. The production rates for fast neutrals N2, CH4, H, H2, 3CH2, CH3, C2H4, C2H5, C2H6, N(4S), NH, and HCN are determined using a coupled ion and neutral model of Titan's upper atmosphere. After production, the formation of the suprathermal particles is modeled using a two-stream simulation, as they travel simultaneously through a thermal mixture of N2, CH4, and H2. The resulting suprathermal fluxes, hot density profiles, and energy distributions are compared to the N2 and CH4 INMS exospheric data presented in [De La Haye, V., Waite Jr., J.H., Johnson, R.E., Yelle, R.V., Cravens, T.E., Luhmann, J.G., Kasprzak, W.T., Gell, D.A., Magee, B., Leblanc, F., Michael, M., Jurac, S., Robertson, I.P., 2007. J. Geophys. Res., doi:10.1029/2006JA012222, in press], and are found insufficient for producing the suprathermal populations measured. Global losses of nitrogen atoms and carbon atoms in all forms due to exothermic chemistry are estimated to be and .  相似文献   

8.
Darrell F. Strobel 《Icarus》2009,202(2):632-641
In Strobel [Strobel, D.F., 2008. Icarus, 193, 588-594] a mass loss rate from Titan's upper atmosphere, , was calculated for a single constituent, N2 atmosphere by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating due to CH4 absorption. It was estimated, but not proven, that the hydrodynamic mass loss is essentially CH4 and H2 escape. Here the individual conservation of momentum equations for the three major components of the upper atmosphere (N2, CH4, H2) are solved in the low Mach number limit and compared with Cassini Ion Neutral Mass Spectrometer (INMS) measurements to demonstrate that light gases (CH4, H2) preferentially escape over the heavy gas (N2). The lightest gas (H2) escapes with a flux 99% of its limiting flux, whereas CH4 is restricted to ?75% of its limiting flux because there is insufficient solar power to support escape at the limiting rate. The respective calculated H2 and CH4 escape rates are 9.2×1027 and 1.7×1027 s−1, for a total of . From the calculated densities, mean free paths of N2, CH4, H2, and macroscopic length scales, an extended region above the classic exobase is inferred where frequent collisions are still occurring and thermal heat conduction can deliver power to lift the escaping gas out of the gravitational potential well. In this region rapid acceleration of CH4 outflow occurs. With the thermal structure of Titan's thermosphere inferred from INMS data by Müller-Wodarg et al. [Müller-Wodarg, I.C.F., Yelle, R.V., Cui, J., Waite Jr., J.H., 2008. J. Geophys. Res. 113, doi:10.1029/2007JE003033. E10005], in combination with calculated temperature profiles that include sputter induced plasma heating at the exobase, it is concluded that on average that the integrated, globally average, orbit-averaged, plasma heating rate during the Cassini epoch does not exceed ().  相似文献   

9.
In this paper we present an in-depth study of the distributions of various neutral species in Titan's upper atmosphere, between 950 and 1500 km for abundant species (N2, CH4, H2) and between 950 and 1200 km for other minor species. Our analysis is based on a large sample of Cassini/INMS (Ion Neutral Mass Spectrometer) measurements in the CSN (Closed Source Neutral) mode, obtained during 15 close flybys of Titan. To untangle the overlapping cracking patterns, we adopt Singular Value Decomposition (SVD) to determine simultaneously the densities of different species. Except for N2, CH4, H2 and 40Ar (as well as their isotopes), all species present density enhancements measured during the outbound legs. This can be interpreted as a result of wall effects, which could be either adsorption/desorption of these molecules or heterogeneous surface chemistry of the associated radicals on the chamber walls. In this paper, we provide both direct inbound measurements assuming ram pressure enhancement only and abundances corrected for wall adsorption/desorption based on a simple model to reproduce the observed time behavior. Among all minor species of photochemical interest, we have firm detections of C2H2, C2H4, C2H6, CH3C2H, C4H2, C6H6, CH3CN, HC3N, C2N2 and NH3 in Titan's upper atmosphere. Upper limits are given for other minor species.The globally averaged distributions of N2, CH4 and H2 are each modeled with the diffusion approximation. The N2 profile suggests an average thermospheric temperature of 151 K. The CH4 and H2 profiles constrain their fluxes to be and , referred to Titan's surface. Both fluxes are significantly higher than the Jeans escape values. The INMS data also suggest horizontal/diurnal variations of temperature and neutral gas distribution in Titan's thermosphere. The equatorial region, the ramside, as well as the nightside hemisphere of Titan appear to be warmer and present some evidence for the depletion of light species such as CH4. Meridional variations of some heavy species are also observed, with a trend of depletion toward the north pole. Though some of the above variations might be interpreted by either the solar-driven models or auroral-driven models, a physical scenario that reconciles all the observed horizontal/diurnal variations in a consistent way is still missing. With a careful evaluation of the effect of restricted sampling, some of the features shown in the INMS data are more likely to be observational biases.  相似文献   

10.
Darrell F. Strobel 《Icarus》2008,193(2):588-594
The upper atmosphere of Titan is currently losing mass at a rate , by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating by CH4 absorption. The hydrodynamic mass loss is essentially CH4 and H2 escape. Their combined escape rates are restricted by power limitations from attaining their limiting rates (and limiting fluxes). Hence they must exhibit gravitational diffusive separation in the upper atmosphere with increasing mixing ratios to eventually become major constituents in the exosphere. A theoretical model with solar EUV heating by N2 absorption balanced by HCN rotational line cooling in the upper thermosphere yields densities and temperatures consistent with the Huygens Atmospheric Science Investigation (HASI) data [Fulchignoni, M., and 42 colleagues, 2005. Nature 438, 785-791], with a peak temperature of ∼185-190 K between 3500-3550 km. This model implies hydrodynamic escape rates of and , or some other combination with a higher H2 escape flux, much closer to its limiting value, at the expense of a slightly lower CH4 escape rate. Nonthermal escape processes are not required to account for the loss rates of CH4 and H2, inferred by the Cassini Ion Neutral Mass Spectrometer (INMS) measurements [Yelle, R.V., Borggren, N., de la Haye, V., Kasprzak, W.T., Niemann, H.B., Müller-Wodarg, I., Waite Jr., J.H., 2006. Icarus 182, 567-576].  相似文献   

11.
The reaction kinetics of the butadinyl radical, C4H, with various hydrocarbons detected in the atmosphere of Titan (methane, ethane, propane, acetylene, ethene and methylacetylene) are studied over the temperature range of 39-298 K using the Rennes CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) apparatus. Kinetic measurements were made using the pulsed laser photolysis—laser induced fluorescence technique. The rate coefficients, except for the reaction with methane, all show a negative temperature dependence and can be fitted with the following expressions over the temperature range of this study: ; ; , , . These expressions are not intended to be physically meaningful but rather to provide an easy way to introduce experimental results in photochemical models. They are only valid over the temperature range of the experiments. Possible channels of these reactions are discussed as well as possible consequences of these results for the production of large molecules and hazes in the atmosphere of Titan. These results should also be considered for the photochemistry of Giant Planets.  相似文献   

12.
13.
We have analyzed data recorded by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft during the Titan flybys T0-T10 (July 2004-January 2006). The spectra characterize various regions on Titan from 70° S to 70° N with a variety of emission angles. We study the molecular signatures observed in the mid-infrared CIRS detector arrays (FP3 and FP4, covering roughly the 600-1500 cm−1 spectral range with apodized resolutions of 2.54 or 0.53 cm−1). The composite spectrum shows several molecular signatures: hydrocarbons, nitriles and CO2. A firm detection of benzene (C6H6) is provided by CIRS at levels of about 3.5×10−9 around 70° N. We have used temperature profiles retrieved from the inversion of the emission observed in the methane ν4 band at 1304 cm−1 and a line-by-line radiative transfer code to infer the abundances of the trace constituents and some of their isotopes in Titan's stratosphere. No longitudinal variations were found for these gases. Little or no change is observed generally in their abundances from the south to the equator. On the other hand, meridional variations retrieved for these trace constituents from the equator to the North ranged from almost zero (no or very little meridional variations) for C2H2, C2H6, C3H8, C2H4 and CO2 to a significant enhancement at high northern (early winter) latitudes for HCN, HC3N, C4H2, C3H4 and C6H6. For the more important increases in the northern latitudes, the transition occurs roughly between 30 and 50 degrees north latitude, depending on the molecule. Note however that the very high-northern latitude results from tours TB-T10 bear large uncertainties due to few available data and problems with latitude smearing effects. The observed variations are consistent with some, but not all, of the predictions from dynamical-photochemical models. Constraints are set on the vertical distribution of C2H2, found to be compatible with 2-D equatorial predictions by global circulation models. The D/H ratio in the methane on Titan has been determined from the CH3D band at 1156 cm−1 and found to be . Implications of this deuterium enrichment, with respect to the protosolar abundance on the origin of Titan, are discussed. We compare our results with values retrieved by Voyager IRIS observations taken in 1980, as well as with more recent (1997) disk-averaged Infrared Space Observatory (ISO) results and with the latest Cassini-Huygens inferences from other instruments in an attempt to better comprehend the physical phenomena on Titan.  相似文献   

14.
The Alice ultraviolet spectrograph onboard the New Horizons spacecraft observed two occultations of the bright star χ Ophiucus by Jupiter’s atmosphere on February 22 and 23, 2007 during the approach phase of the Jupiter flyby. The ingress occultation probed the atmosphere at 32°N latitude near the dawn terminator, while egress probed 18°N latitude near the dusk terminator. A detailed analysis of both the ingress and egress occultations, including the effects of molecular hydrogen, methane, acetylene, ethylene, and ethane absorptions in the far ultraviolet (FUV), constrains the eddy diffusion coefficient at the homopause level to be  cm2 s−1, consistent with Voyager measurements and other analyses (Festou, M.C., Atreya, S.K., Donahue, T.M., Sandel, B.R., Shemansky, D.E., Broadfoot, A.L. [1981]. J. Geophys. Res. 86, 5717-5725; Vervack Jr., R.J., Sandel, B.R., Gladstone, G.R., McConnell, J.C., Parkinson, C.D. [1995]. Icarus 114, 163-173; Yelle, R.V., Young, L.A., Vervack Jr., R.J., Young, R., Pfister, L., Sandel, B.R. [1996]. J. Geophys. Res. 101 (E1), 2149-2162). However, the actual derived pressure level of the methane homopause for both occultations differs from that derived by [Festou et al., 1981] and [Yelle et al., 1996] from the Voyager ultraviolet occultations, suggesting possible changes in the strength of atmospheric mixing with time. We find that at 32°N latitude, the methane concentration is  cm−3 at 70,397 km, the methane concentration is  cm−3 at 70,383 km, the acetylene concentration is  cm−3 at 70,364 km, and the ethane concentration is  cm−3 at 70,360 km. At 18°N latitude, the methane concentration is  cm−3 at 71,345 km, the methane concentration is  cm−3 at 71,332 km, the acetylene concentration is cm−3 at 71,318 km, and the ethane concentration is  cm−3 at 71,315 km. We also find that the H2 occultation light curve is best reproduced if the atmosphere remains cold in the microbar region such that the base of the thermosphere is located at a lower pressure level than that determined by in situ instruments aboard the Galileo probe (Seiff, A., Kirk, D.B., Knight, T.C.D., Young, R.E., Mihalov, J.D., Young, L.A., Milos, F.S., Schubert, G., Blanchard, R.C., Atkinson, D. [1998]. J. Geophys. Res. 103 (E10), 22857-22889) - the Sieff et al. temperature profile leads to too much absorption from H2 at high altitudes. However, this result is highly model dependent and non-unique. The observations and analysis help constrain photochemical models of Jupiter’s atmosphere.  相似文献   

15.
Sang J. Kim  T.R. Geballe  J.H. Kim 《Icarus》2009,202(1):354-357
Jupiter exhibits bright H+3 auroral arcs at 3-4 microns that cool the hot (>1000 K) ionosphere above the ∼10−7 bar level through the infrared bands of this trace constituent. Below the 10−7 bar level significant cooling proceeds through infrared active bands of CH4, C2H2, and C2H6. We report the discovery of 3-micron line emission from these hydrocarbon species in spectra of the jovian south polar region obtained on April 18 and 20, 2006 (UT) with CGS4 on the United Kingdom Infrared Telescope. Estimated cooling rates through these molecules are 7.5×10−3, 1.4×10−3, and , respectively, for a total nearly half that of H+3. We derive a temperature of 450 ± 50 K in the 10−7-10−5 bar region from the C2H2 lines.  相似文献   

16.
Measurements of the vertical and latitudinal variations of temperature and C2H2 and C2H6 abundances in the stratosphere of Saturn can be used as stringent constraints on seasonal climate models, photochemical models, and dynamics. The summertime photochemical loss timescale for C2H6 in Saturn's middle and lower stratosphere (∼40-10,000 years, depending on altitude and latitude) is much greater than the atmospheric transport timescale; ethane observations may therefore be used to trace stratospheric dynamics. The shorter chemical lifetime for C2H2 (∼1-7 years depending on altitude and latitude) makes the acetylene abundance less sensitive to transport effects and more sensitive to insolation and seasonal effects. To obtain information on the temperature and hydrocarbon abundance distributions in Saturn's stratosphere, high-resolution spectral observations were obtained on September 13-14, 2002 UT at NASA's IRTF using the mid-infrared TEXES grating spectrograph. At the time of the observations, Saturn was at a LS≈270°, corresponding to Saturn's southern summer solstice. The observed spectra exhibit a strong increase in the strength of methane emission at 1230 cm−1 with increasing southern latitude. Line-by-line radiative transfer calculations indicate that a temperature increase in the stratosphere of ≈10 K from the equator to the south pole between 10 and 0.01 mbar is implied. Similar observations of acetylene and ethane were also recorded. We find the 1.16 mbar mixing ratio of C2H2 at −1° and −83° planetocentric latitude to be and , respectively. The C2H2 mixing ratio at 0.12 mbar is found to be at −1° planetocentric latitude and at −83° planetocentric latitude. The 2.3 mbar mixing ratio of C2H6 inferred from the data is and at −1° and −83° planetocentric latitude, respectively. Further observations, creating a time baseline, will be required to completely resolve the question of how much the latitudinal variations of C2H2 and C2H6 are affected by seasonal forcing and/or stratospheric circulation.  相似文献   

17.
High spectral resolution observations from the Cassini Composite Infrared Spectrometer [Flasar, F.M., and 44 colleagues, 2004. Space Sci. Rev. 115, 169-297] are analysed to derive new estimates for the mole fractions of CH4, CH3D and 13CH4 of (4.7±0.2)×10−3, (3.0±0.2)×10−7 and (5.1±0.2)×10−5 respectively. The mole fractions show no hemispherical asymmetries or latitudinal variability. The analysis combines data from the far-IR methane rotational lines and the mid-IR features of methane and its isotopologues, using both the correlated-k retrieval algorithm of Irwin et al. [Irwin, P., and 9 colleagues, 2008. J. Quant. Spectrosc. Radiat. Trans. 109, 1136-1150] and a line-by-line approach to evaluate the reliability of the retrieved quantities. C/H was found to be enhanced by 10.9±0.5 times the solar composition of Grevesse et al. [Grevesse, N., Asplund, M., Sauval, A., 2007. Space Sci. Rev. 130 (1), 105-114], 2.25±0.55 times larger than the enrichment on Jupiter, and supporting the increasing fractional core mass with distance from the Sun predicted by the core accretion model of planetary formation. A comparison of the jovian and saturnian C/N, C/S and C/P ratios suggests different reservoirs of the trapped volatiles in a primordial solar nebula whose composition varies with distance from the Sun. This is supported by our derived D/H ratio in methane of (1.6±0.2)×10−5, which appears to be smaller than the jovian value of Lellouch et al. [Lellouch, E., Bézard, B., Fouchet, T., Feuchtgruber, H., Encrenaz, T., de Graauw, T., 2001. Astron. Astrophys. 370, 610-622]. Mid-IR emission features provided an estimate of , which is consistent with both the terrestrial ratio and jovian ratio, suggesting that carbon was accreted from a shared reservoir for all of the planets.  相似文献   

18.
Data acquired by the Ion Neutral Mass Spectrometer (INMS) on the Cassini spacecraft during its close encounter with Titan on 26 October 2004 reveal the structure of its upper atmosphere. Altitude profiles of N2, CH4, and H2, inferred from INMS measurements, determine the temperature, vertical mixing rate, and escape flux from the upper atmosphere. The mean atmospheric temperature in the region sampled by the INMS is 149±3 K, where the variance is a consequence of local time variations in temperature. The CH4 mole fraction at 1174 km is 2.71±0.1%. The effects of diffusive separation are clearly seen in the data that we interpret as an eddy diffusion coefficient of , that, along with the measured CH4 mole fraction, implies a mole fraction in the stratosphere of 2.2±0.2%. The H2 distribution is affected primarily by upward flow and atmospheric escape. The H2 mole fraction at 1200 km is 4±1×10−3 and analysis of the altitude profile indicates an upward flux of , referred to the surface. If horizontal variations in temperature and H2 density are small, this upward flux also represents the escape flux from the atmosphere. The CH4 density exhibits significant horizontal variations that are likely an indication of dynamical processes in the upper atmosphere.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号