首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the discovery of the evaporitic environment on the Martian surface, there is a reasonable possibility that evaporites served (or still serve) as habitats for microbial life if ever present on Mars. At the very least, if no signatures of extant life exist within these rocks, it may sustain molecular remnants as evidence for living organisms in the past. β-Carotene, among other carotenoids, could be such a suitable biomarker. In this study, Raman micro-spectroscopy was tested as a nondestructive method of determining the presence of β-carotene in experimentally prepared evaporitic matrices. Samples prepared by mixing β-carotene with powdered gypsum (CaSO4·2H2O), halite (NaCl) and epsomite (MgSO4·7H2O) were analyzed using a 785 nm excitation source. Various concentrations of β-carotene in the matrices were investigated to determine the lowest β-carotene content detectable by Raman micro-spectroscopy. Mixtures were also measured with a laser beam permeating the crystals of gypsum and epsomite in order to evaluate the possibility of identifying β-carotene inside the mineral matrix.We were able to obtain a clear β-carotene signal at the 10 mg kg−1 concentration level—the number of registered β-carotene Raman bands differed depending on the particular mineral matrix. Spectral signatures of β-carotene were detected even when analyzing samples containing 1 mg kg−1 of this molecule. The 10-100 mg kg−1 of β-carotene in mineral matrices (halite, epsomite) was detected when analyzed through the monocrystal of gypsum and epsomite, respectively. These results will aid both in-situ analyses on Mars and sample analyses on Earth.  相似文献   

2.
Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite–marcasite‐bearing vug at the ~23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65–1.1 μm) and samples in the laboratory (0.4–2.5 μm), point spectroscopy (0.35–2.5 μm), major element chemistry, and X‐ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat‐lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite‐rich host rock formed gypsum‐bearing red coatings. These results have implications for understanding water–rock interactions and habitabilities at this site and on Mars.  相似文献   

3.
The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP3 currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements.  相似文献   

4.
Within Gusev Crater and Meridiani Planum on Mars, the Mars exploration rovers have found Br concentrations in soils and rocks in the hundreds of ppm range. Relative to Earth compositions, these are high Br concentrations. Because of low Br concentrations on Earth, Br largely precipitates from seawater as a minor constituent in halite crystals rather than as a separate phase mineral. This is also likely to be the case for Mars. But given that the surface chemistries on Mars are significantly different than on Earth, minerals other than halite could serve as sinks for Br. The specific objectives of this paper were to (1) incorporate Br solution phase chemistries into the FREZCHEM model, (2) integrate the Siemann–Schramm Br/Cl mineral model into FREZCHEM, and (3) apply this mineral model to Br/Cl partitioning in Burns formation rocks as an indicator of past environments in the Meridiani Planum region of Mars. We showed that: (1) a molar-based model for Br substitution into halite and bischofite provided a better fit to experimental data than the standard mass-based model; (2) the concentrations of all of the soluble salts (mainly of Na, Mg, Ca, Cl, Br, and SO4) in the Burns formation, except for Ca, were significantly related to stratigraphic depth; (3) the likely precipitation of Ca as gypsum on Mars precluded Ca precipitating as a CaCl2 salt and thus impacts the possible minimum eutectic brine temperatures relevant to the Burns formation; (4) bischofite (MgCl2⋅6H2O) was a much more important sink for Br than halite; (5) Br/Cl patterns in the Burns formation, and within the three formation layers, argued in support of salt upwelling through groundwater evaporation; and (6) the high concentrations of Br in the surface layers of the Burns formation suggested that there was little water leaching and removal of soluble phases from the upper part of the stratigraphic succession.  相似文献   

5.
Near Eagle Plains, northern Yukon, Canada, acidic Ca-Fe-Mg sulfate waters are discharging year-long from disturbed permafrosted sandstone bedrock overlying pyritiferous black shales. These acidic waters are precipitating gypsum with minor amounts of jarosite-K (Na), schwertmannite and hematite. This mineral assemblage is similar to that observed at Meridiani Planum (and other location on Mars), making this site a valuable analogue for low-temperature sulfate geochemistry and mineral formation on Mars. Stable O-S isotope analysis of the acidic waters near Eagle Plains revealed that the oxygen in the dissolved sulfate is mostly derived from water (ca. 70%), suggesting that the sulfide oxidation process could be in part biomediated (i.e., accelerated by acidophilic Fe-oxidizing bacteria). However, unlike the dissolved sulfate in the waters, the formation of the Ca-Fe-SO4 minerals appears to be purely abiotic. The stable O-S isotope composition of the sulfate minerals is well within the predicted equilibrium range at low temperature, suggesting that they formed through physico-chemical processes (i.e., evaporation or freezing). Low-temperature geochemical modeling with FREZCHEM and PHREEQC suggests that the mineral assemblage at Eagle Plains precipitated mainly through the freezing of Ca-Fe-Mg-SO4 acidic waters, rather than through evaporation during the dry summer season, although the latter is still possible. This suggests that the sulfate mineral assemblage observed on Mars could have also formed under a periglacial-type climate. Considering that the active layer in the zone affected by acid drainage does not freeze-over during winter, the residual talik offers a localized niche environment to support acidophilic microorganisms. Overall, the fact that acid drainage is presently active near Eagle Plains allows the direct observation of the low-temperature geochemical processes responsible for generating acid drainage conditions and precipitation of gypsum, schwertmannite, jarosite-K, jarosite-Na, goethite and hematite.  相似文献   

6.
The in situ search for life on Mars requires an understanding of the possible habitats available and the types of microbes that inhabit such environments on Earth. Rock varnish is ubiquitous in terrestrial deserts and has been suggested to exist on Mars. Data reported here show that there are very high numbers of bacteria (107-108 g−1 dry wt) associated with rock varnish collected in the hot desert of the Whipple Mountains, south of Death Valley, CA, USA. Some of the bacteria identified in the rock varnish from the Whipple Mountains are resistant to UV-C exposure. This suggests that habitats like rock varnish, if they occur in the martian polar regions where liquid water may be available, may provide niches for radiation-resistant life forms such as the bacteria observed in the Whipple Mountains varnish ecosystem. The UV-resistant microbes isolated represent a diverse group of genera, but all are from the order Actinomycetales (the genera Arthrobacter, Curtobacterium, Geodermatophilus, and Cellulomonas). They are metabolically versatile heterotrophs capable of growing on a variety of simple sugars, amino acids, organic acids and aromatic acids as sole carbon and energy sources.  相似文献   

7.
Gossan samples collected during a reconnaissance expedition to High Lake in Nunavut, Canada, were analyzed to determine their mineral components and to define parameters for the geochemical environment in which they formed. The gossan represents a natural acid drainage site in an arctic environment that serves as an analogue to the conditions under which sulfate and Fe-oxide possibly formed on Mars. Rock and soil samples were taken from three different outcrops and analyzed using XRD, SEM/EDS and Mössbauer. Two main mineral assemblages were observed. The first assemblage, which was found primarily in samples from the first outcrop, contained chlorite, Fe-phosphates, Fe-oxide and quartz. The second assemblage, which was found at the second and third outcrops, was primarily quartz, mica and jarosite. One sample (G41), containing Fe-oxide, jarosite and gypsum, appears to be transitional between a Fe-oxide dominant assemblage to a jarosite dominant assemblage. Thermodynamic equilibria predicts that the gossan pore water should range from mildly acidic, relatively sulfate-poor (pH 3-6; SO4 <1000 mg l−1) to highly acidic and relatively sulfate-rich (pH 0.5-3; SO4 >3000 mg l−1) for the first and second mineral assemblages, respectively. Kinetic reaction models indicate that the second assemblage replaces the first during evaporation or freezing of water. Compared to acid mine drainage (AMD) sites located in temperate regions, the arctic High Lake gossan lacks diversity in sulfate species and has smaller diagenetic crystal sizes. The smaller crystal size may reflect the slower reaction rates at colder temperatures and the seasonal water saturation. These initial results indicate that the High Lake gossan deposit does record mechanisms for which minerals like hematite, goethite, gypsum and jarosite, which are found on Mars, can form in an environment that involves seasonal water occurrence in a cold climate.  相似文献   

8.
Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.  相似文献   

9.
The interest towards Mars is nowadays renewed as various satellites, already launched or foreseen for the future, will visit this planet, providing a new wealth of data. In particular, infrared spectroscopic observations need a parallel modelling effort for a proper interpretation of observations. The goal of our modelling is to evaluate the influence of a non negligible fraction of dust particles on intensity and profile of atmospheric Martian spectra. The joint effects of the atmosphere and the surface materials have been also accounted for. For the modelling, a version of the MODTRAN code, expressly modified for application to the Mars environment, has been used. As an example of the materials forming dust dispersed in the atmosphere and on the surface, we have considered andesite. Indices of refraction (n and k) of this material have been derived from laboratory measurements. The obtained results can have an important impact on the interpretation of infrared spectra that instruments such as TES (Thermal Emission Spectrometer), on board the Mars Global Surveyor, and PFS, in the Mars Express mission, will provide.  相似文献   

10.
Lipids can be present within gypsum as intracrystalline inclusions if they become incorporated within the mineral as is it precipitates. The lipids that comprise these inclusions are protected against alteration or destruction by an external oxidising chemical environment because a protective mineral matrix surrounds them. Sulfate minerals are abundant on the surface of Mars and were present in the samples that were analysed by the Viking landers. The quantities of secondary intracrystalline fossil-lipids that are present in samples of gypsum and gypsum-rich soils from the Haughton Impact Structure, Devon Island, Canadian High Arctic are sufficient to suggest that if a similar concentration of fossil lipids was present in the sulfate-rich samples analysed by the Viking Landers then they could have been detected. Possible reasons why a secondary fossil-lipid signature was not detected include a poor rate of conversion during pyrolysis, exposure of intracrystalline lipids during periods of weathering to oxidative martian diagenesis, a low level of biological productivity or an absence of a source for lipids on the surface of Mars. Polycyclic aromatic hydrocarbons of meteoritic origin, and terpane biomarkers such as hopanes and steranes, are not present in the Haughton gypsum in sufficient quantities to have been readily detected.  相似文献   

11.
Mars appears to have experienced little compositional differentiation of primitive lithosphere, and thus much of the surface of Mars is covered by mafic lavas. On Earth, mafic and ultramafic rocks present in ophiolites, oceanic crust and upper mantle that have been obducted onto land, are therefore good analogs for Mars. The characteristic mineralogy, aqueous geochemistry, and microbial communities of cold-water alkaline springs associated with these mafic and ultramafic rocks represent a particularly compelling analog for potential life-bearing systems. Serpentinization, the reaction of water with mafic minerals such as olivine and pyroxene, yields fluids with unusual chemistry (Mg–OH and Ca–OH waters with pH values up to ~12), as well as heat and hydrogen gas that can sustain subsurface, chemosynthetic ecosystems. The recent observation of seeps from pole-facing crater and canyon walls in the higher Martian latitudes supports the hypothesis that even present conditions might allow for a rock-hosted chemosynthetic biosphere in near-surface regions of the Martian crust. The generation of methane within a zone of active serpentinization, through either abiogenic or biogenic processes, could account for the presence of methane detected in the Martian atmosphere. For all of these reasons, studies of terrestrial alkaline springs associated with mafic and ultramafic rocks are particularly timely. This study focuses on the alkaline Adobe Springs, emanating from mafic and ultramafic rocks of the California Coast Range, where a community of novel bacteria is associated with the precipitation of Mg–Ca carbonate cements. The carbonates may serve as a biosignature that could be used in the search for evidence of life on Mars.  相似文献   

12.
The Phoenix Lander landed on Mars on 25 May 2008. It has instruments on board to explore the geology and climate of subpolar Mars and to explore if life ever arose on Mars. Although the Phoenix mission is not a life detection mission per se, it will look for the presence of organic compounds and other evidence to support or discredit the notion of past or present life.The possibility of extant life on Mars has been raised by a reinterpretation of the Viking biology experiments [Houtkooper, J. M., Schulze-Makuch, D., 2007. A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. International Journal of Astrobiology 6, 147-152]. The results of these experiments are in accordance with life based on a mixture of water and hydrogen peroxide instead of water. The near-surface conditions on Mars would give an evolutionary advantage to organisms employing a mixture of H2O2 and H2O in their intracellular fluid: the mixture has a low freezing point, is hygroscopic and provides a source of oxygen. The H2O2-H2O hypothesis also explains the Viking results in a logically consistent way. With regard to its compatibility with cellular contents, H2O2 is used for a variety of purposes in terran biochemistry. The ability of the anticipated organisms to withstand low temperatures and the relatively high water vapor content of the atmosphere in the Martian arctic, means that Phoenix will land in an area not inimical to H2O2-H2O-based life. Phoenix has a suite of instruments which may be able to detect the signatures of such putative organisms.  相似文献   

13.
Lava tubes and basaltic caves are common features in volcanic terrains on Earth. Lava tubes and cave-like features have also been identified on Mars based on orbital imagery and remote-sensing data. Caves are unique environments where both secondary mineral precipitation and microbial growth are enhanced by stable physico-chemical conditions. Thus, they represent excellent locations where traces of microbial life, or biosignatures, are formed and preserved in minerals. By analogy with terrestrial caves, caves on Mars may contain a record of secondary mineralization that would inform us on past aqueous activity. They may also represent the best locations to search for biosignatures. The study of caves on Earth can be used to test hypotheses and better understand biogeochemical processes, and the signatures that these processes leave in mineral deposits. Caves may also serve as test beds for the development of exploration strategies and novel technologies for future missions to Mars. Here we review recent evidence for the presence of caves or lava tubes on Mars, as well as the geomicrobiology of lava tubes and basaltic caves on Earth. We also propose future lines of investigation, including exploration strategies and relevant technologies.  相似文献   

14.
Within the context of present and future in situ missions to Mars to investigate its habitability and to search for traces of life, we studied the habitability and traces of past life in ∼3.5 Ga-old volcanic sands deposited in littoral environments an analogue to Noachian environments on Mars. The environmental conditions on Noachian Mars (4.1-3.7 Ga) and the Early Archaean (4.0-3.3 Ga) Earth were, in many respects, similar: presence of liquid water, dense CO2 atmosphere, availability of carbon and bio-essential elements, and availability of energy. For this reason, information contained in Early Archaean terrestrial rocks concerning habitable conditions (on a microbial scale) and traces of past life are of relevance in defining strategies to be used to identify past habitats and past life on Mars.One such example is the 3.446 Ga-old Kitty’s Gap Chert in the Pilbara Craton, NW. Australia. This formation consists of volcanic sediments deposited in a coastal mudflat environment and is thus a relevant analogue for sediments deposited in shallow water environments on Noachian Mars. Two main types of habitat are represented, a volcanic (lithic) habitat and planar stabilized sediment surfaces in sunlit shallow waters. The sediments hosted small (<1 μm in size) microorganisms that formed colonies on volcanic particle surfaces and in pore waters within the volcanic sediments, as well as biofilms on stabilised sediment surfaces. The microorganisms included coccoids, filaments and rare rod-shaped organisms associated with microbial polymer (EPS). The preserved microbial community was apparently dominated by chemotrophic organisms but some locally transported filaments and filamentous mat fragments indicate that possibly photosynthetic mats formed nearby. Both microorganisms and sediments were silicified during very early diagenesis.There are no macroscopic traces of fossilised life in these volcanic sediments and sophisticated instrumentation and specialized sample preparation techniques are required to establish the biogenicity and syngenicity of the traces of past life. The fact that the traces of life are cryptic, and the necessity of using sophisticated instrumentation, reinforces the challenges and difficulties of in situ robotic missions to identify past life on Mars. We therefore recommend the return of samples from Mars to Earth for a definitive search for traces of life.  相似文献   

15.
The presence of methane on Mars is of great interest, since one possibility for its origin is that it derives from living microbes. However, CH4 in the martian atmosphere also could be attributable to geologic emissions released through pathways similar to those occurring on Earth. Using recent data on methane degassing of the Earth, we have estimated the relative terrestrial contributions of fossil geologic methane vs. modern methane from living methanogens, and have examined the significance that various geologic sources might have for Mars.Geologic degassing includes microbial methane (produced by ancient methanogens), thermogenic methane (from maturation of sedimentary organic matter), and subordinately geothermal and volcanic methane (mainly produced abiogenically). Our analysis suggests that ~80% of the “natural” emission to the terrestrial atmosphere originates from modern microbial activity and ~20% originates from geologic degassing, for a total CH4 emission of ~28.0×107 tonnes year?1.Estimates of methane emission on Mars range from 12.6×101 to 57.0×104 tonnes year?1 and are 3–6 orders of magnitude lower than that estimated for Earth. Nevertheless, the recently detected martian, Northern-Summer-2003 CH4 plume could be compared with methane expulsion from large mud volcanoes or from the integrated emission of a few hundred gas seeps, such as many of those located in Europe, USA, Mid-East or Asia. Methane could also be released by diffuse microseepage from martian soil, even if macro-seeps or mud volcanoes were lacking or inactive. We calculated that a weak microseepage spread over a few tens of km2, as frequently occurs on Earth, may be sufficient to generate the lower estimate of methane emission in the martian atmosphere.At least 65% of Earth’s degassing is provided by kerogen thermogenesis. A similar process may exist on Mars, where kerogen might include abiogenic organics (delivered by meteorites and comets) and remnants of possible, past martian life. The remainder of terrestrial degassed methane is attributed to fossil microbial gas (~25%) and geothermal-volcanic emissions (~10%). Global abiogenic emissions from serpentinization are negligible on Earth, but, on Mars, individual seeps from serpentinization could be significant. Gas discharge from clathrate-permafrost destabilization should also be considered.Finally, we have shown examples of potential degassing pathways on Mars, including mud volcano-like structures, fault and fracture systems, and major volcanic edifices. All these types of structures could provide avenues for extensive gas expulsion, as on Earth. Future investigations of martian methane should be focused on such potential pathways.  相似文献   

16.
Spectroscopic studies of Mars analog materials combining multiple spectral ranges and techniques are necessary in order to obtain ground truth information for interpretation of rocks and soils on Mars. Two hydrothermal rocks from Yellowstone National Park, Wyoming, were characterized here because they contain minerals requiring water for formation and they provide a possible niche for some of the earliest organisms on Earth. If related rocks formed in hydrothermal sites on Mars, identification of these would be important for understanding the geology of the planet and potential habitability for life. XRD, thermal properties, VNIR, mid-IR, and Raman spectroscopy were employed to identify the mineralogy of the samples in this study. The rocks studied here include a travertine from Mammoth Formation that contains primarily calcite with some aragonite and gypsum and a siliceous sinter from Octopus Spring that contains a variety of poorly crystalline to amorphous silicate minerals. Calcite was detected readily in the travertine rock using any one of the techniques studied. The small amount of gypsum was uniquely identified using XRD, VNIR, and mid-IR, while the aragonite was uniquely identified using XRD and Raman. The siliceous sinter sample was more difficult to characterize using each of these techniques and a combination of all techniques was more useful than any single technique. Although XRD is the historical standard for mineral identification, it presents some challenges for remote investigations. Thermal properties are most useful for minerals with discrete thermal transitions. Raman spectroscopy is most effective for detecting polarized species such as CO3, OH, and CH, and exhibits sharp bands for most highly crystalline minerals when abundant. Mid-IR spectroscopy is most useful in characterizing Si-O (and metal-O) bonds and also has the advantage that remote information about sample texture (e.g., particle size) can be determined. Mid-IR spectroscopy is also sensitive to structural OH, CO3, and SO4 bonds when abundant. VNIR spectroscopy is best for characterizing metal excitational bands and water, and is also a good technique for identification of structural OH, CO3, SO4, or CH bonds. Combining multiple techniques provides the most comprehensive information about mineralogy because of the different selection rules and particle size sensitivities, in addition to maximum coverage of excitational and vibrational bands at all wavelengths. This study of hydrothermal rocks from Yellowstone provides insights on how to combine information from multiple instruments to identify mineralogy and hence evidence of water on Mars.  相似文献   

17.
James L. Gooding 《Icarus》1978,33(3):483-513
Chemical weathering on Mars is examined theoretically from the standpoint of heterogeneous equilibrium between solid mineral phases and gaseous O2, H2O, and CO2 in the Martian atmosphere. Thermochemical calculations are performed in order to identify important gas-solid decomposition reactions involving the major mineral constituents of mafic igneous rocks. Where unavailable in the thermochemical literature, Gibbs free energy and enthalpy of formation are estimated for certain minerals and details of these estimation procedures are given. Partial pressure stability diagrams are presented to show pertinent mineral reaction boundaries at 298 and at 240°K. In the present Martian environment, the thermodynamically stable products of gas-solid weathering of individual minerals at 240°K should be Fe2O3, as hematite or maghemite (from fayalite, magnetite, and Fe-bearing pyroxenes), quartz (from all silicates), calcite (from Ca-bearing pyroxenes and plagioclase), magnesite (from forsterite and Mg-bearing pyroxenes), corundum (from all Al-bearing silicates), Ca-beidellite (from anorthite), and szomolnokite, FeSO4 or FeSO4·H2O (from iron sulfides). Albite, microcline, and apatite should be stable with respect to gas-solid decomposition, suggesting that gas-solid weathering products on Mars may be depleted in Na, K, and P (and, possibly, Cl and F). Certain montmorillonite-type clay minerals are thermodynamically favorable intermediate gas-solid decomposition products of Al-bearing pyroxenes and may be metastable intermediate products of special mineral surface reaction mechanisms. However, the predicted high thermodynamic susceptibility of these clay minerals to subsequent gas-solid decomposition implies that they should ultimately decompose in the present Martian surface environment. Kaolinite is apparently the only clay mineral which should be thermodynamically stable over all ranges of temperature and water vapor abundance in the present environment at the Martian surface. Considering thermodynamic criteria, including possible gas-solid decomposition reactions, it is doubtful that significant amounts of goethite and clay minerals can be currently forming on Mars by mechanisms known to operate to Earth. If major amounts of goethite and clay minerals occur on Mars, they probably owe their existence to formation in an environment characterized by the presence of liquid water or by mechanism possibly unique to Mars. In any case, any goethite or montmorillonite-type clay mineral on Mars must ultimately decompose.  相似文献   

18.
J.F. Bell III  T.M. Ansty 《Icarus》2007,191(2):581-602
We acquired high spectral and spatial resolution hyperspectral imaging spectrometer observations of Mars from near-UV to near-IR wavelengths (∼300 to 1020 nm) using the STIS instrument on the Hubble Space Telescope during the 1999, 2001, and 2003 oppositions. The data sets have been calibrated to radiance factor (I/F) and map-projected for comparison to each other and to other Mars remote sensing measurements. We searched for and (where detected) mapped a variety of iron-bearing mineral signatures within the data. The strong and smooth increase in I/F from the near-UV to the visible that gives Mars its distinctive reddish color indicates that poorly crystalline ferric oxides dominate the spectral properties of the high albedo regions (as well as many intermediate and low albedo regions), a result consistent with previous remote sensing studies of Mars at these wavelengths. In the near-IR, low albedo regions with a negative spectral slope and/or a distinctive ∼900 nm absorption feature are consistent with, but not unique indicators of, the presence of high-Ca pyroxene or possibly olivine. Mixed ferric-ferrous minerals could also be responsible for the ∼900 nm feature, especially in higher albedo regions with a stronger visible spectral slope. We searched for the presence of several known diagnostic absorption features from the hydrated ferric sulfate mineral jarosite, but did not find any unique evidence for its occurrence at the spatial scale of our observations. We identified a UV contrast reversal in some dark region spectra: at wavelengths shorter than about 340 nm these regions are actually brighter than classical bright regions. This contrast reversal may be indicative of extremely “clean” low albedo surfaces having very little ferric dust contamination. Ratios between the same regions observed during the planet-encircling dust storm of 2001 and during much clearer atmospheric conditions in 2003 provide a good direct estimate of the UV to visible spectral characteristics of airborne dust aerosols. These HST observations can help support the calibration of current and future Mars orbital UV to near-IR spectrometers, and they also provide a dramatic demonstration that even at the highest spatial resolution possible to achieve from the Earth, spectral variations on Mars at these wavelengths are subtle at best.  相似文献   

19.
Thermodynamic data for several clays, zeolites, and MgSO4 salts were combined with calculated yearly mean temperatures and water-vapor pressures on the martian surface to predict mineral hydration states from low to middle latitudes. These predictions were used to evaluate whether the necessary amount and distribution of hydrous minerals were compatible with the Mars Odyssey observations of water-equivalent hydrogen (WEH). Our results indicate that zeolites like chabazite or clay minerals like Ca-montmorillonite would have to be unrealistically abundant in the martian soil (as much as 55 wt%) while Mg-sulfate hydrates at concentrations between 2 and 11 wt% could account for the WEH. However, the geographic distribution of WEH is incompatible with a uniformly distributed mineralogy in equilibrium with the annual mean P-T environment. A heterogeneous distribution of a mixture of different hydrous minerals, reflecting a heterogeneous Mars surface geology, may better explain a significant portion of the observed near-equatorial WEH.  相似文献   

20.
Mesospheric clouds have been previously observed on Mars in a variety of datasets. However, because the clouds are optically thin and most missions have performed surface-focussed nadir sounding, geographic and seasonal coverage is sparse. We present new detections of mesospheric clouds using a limb spectra dataset with global coverage acquired by NASA’s Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter. Mesospheric aerosol layers, which can be CO2 ice, water ice or dust clouds, cause high radiances in limb spectra, either by thermal emission or scattering of sunlight. We employ an object recognition and classification algorithm to identify and map aerosol layers in limb spectra acquired between December 2006 and April 2011, covering more than two Mars years. We use data from MCS band A4, to show thermal signatures of day and nightside features, and A6, which is sensitive to short wave IR and visible daytime features only. This large dataset provides several thousand detections of mesospheric clouds, more than an order of magnitude more than in previous studies.Our results show that aerosol layers tend to occur in two distinct regimes. They form in equatorial regions (30°S–30°N) during the aphelion season/northern hemisphere summer (Ls < 150°), which is in agreement with previous published observations of mesospheric clouds. During perihelion/dust storm season (Ls > 150°) a greater number of features are observed and are distributed in two mid-latitude bands, with a southern hemisphere bias. We observe temporal and longitudinal clustering of cloud occurrence, which we suggest is consistent with a formation mechanism dictated by interaction of broad temperature regimes imposed by global circulation and the propagation to the mesosphere of small-scale dynamics such as gravity waves and thermal tides.Using calculated frost point temperatures and a parameterization based on synthetic spectra we find that aphelion clouds are present in generally cooler conditions and are spectrally more consistent with H2O or CO2 ice. A significant fraction has nearby temperature retrievals that are within a few degrees of the CO2 frost point, indicating a CO2 composition for those clouds. Perihelion season clouds are spectrally most similar to H2O ice and dust aerosols, consistent with temperature retrievals near to the clouds that are 30–80 K above the CO2 frost point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号