首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
High-resolution observations of atmospheric phenomena by the Mars Odyssey Thermal Emission Imaging System (THEMIS) during its first mapping year are presented. An atmospheric campaign was implemented on the basis of previous spacecraft imaging. This campaign, however, proved of limited success. This appears to be due to the late local time of the Odyssey orbit (the locations of activity at 4–6 p.m. appear to be different from those at 2 p.m.). Ironically, images targeting the surface were more useful for study of the atmosphere than those images specifically targeting atmospheric features. While many previously recognized features were found, novel THEMIS observations included persistent clouds in the southern polar layered deposits, dust or condensate plumes on the northern polar layered deposits, dust plumes as constituent parts of local dust storms, and mesospheric clouds. The former two features tend to be aligned parallel and normal to polar troughs, respectively, suggesting a wind system directed normal to troughs and radially outward from the center of the polar deposits. This is consistent with katabatic drainage of air off the polar deposits, analogous to flow off Antarctica. The observation of dust lifting plumes at unprecedented resolution associated with local dust storms not only demonstrates the importance of mean wind stresses (as opposed to dust devils) in initiation of dust storms, but is also seen to be morphologically identical to dust lifting in terrestrial dust storms. As Odyssey moves to earlier local times, we suggest that the atmospheric campaign from the first mapping year be repeated.  相似文献   

2.
Michael D. Smith 《Icarus》2009,202(2):444-452
We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, Ls=330°) and December 2008 (MY 29, Ls=183°). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval [Smith, M.D., Bandfield, J.L., Christensen, P.R., Richardson, M.I., 2003. J. Geophys. Res. 108, doi:10.1029/2003JE002114] to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at ∼5:00 PM local time than in the TES retrievals at ∼2:00 PM, suggestive of possible local time variation of clouds.  相似文献   

3.
The time evolution of atmospheric dust at high southern latitudes on Mars has been determined using observations of the south seasonal cap acquired in the near infrared (1-2.65 μm) by OMEGA/Mars Express in 2005. Observations at different solar zenith angles and one EPF sequence demonstrate that the reflectance in the 2.64 μm saturated absorption band of the surface CO2 ice is mainly due to the light scattered by aerosols above most places of the seasonal cap. We have mapped the total optical depth of dust aerosols in the near-IR above the south seasonal cap of Mars from mid-spring to early summer with a time resolution ranging from one day to one week and a spatial resolution of a few kilometers. The optical depth above the south perennial cap is determined on a longer time range covering southern spring and summer. A constant set of optical properties of dust aerosols is consistent with OMEGA observations during the analyzed period. Strong variations of the optical depth are observed over small horizontal and temporal scales, corresponding in part to moving dust clouds. The late summer peak in dust opacity observed by Opportunity in 2005 propagated to the south pole contrarily to that observed in mid spring. This may be linked to evidence for dust scavenging by water ice-rich clouds circulating at high southern latitudes at this season.  相似文献   

4.
Atmospheric water vapor abundances in Mars’ north polar region (NPR, from 60° to 90°N) are mapped as function of latitude and longitude for spring and summer seasons, and their spatial, seasonal, and interannual variability is discussed. Water vapor data are from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Viking Orbiter (VO) Mars Atmospheric Water Detector (MAWD). The data cover three complete northern spring-summer seasons in 1977-1978, 2000-2001 and 2002-2003, and shorter periods of spring-summer seasons during 1975, 1999 and 2004. Long term interannual variability in the averaged NPR abundances may exist, with Viking MAWD observations showing twice as much water vapor during summer as the MGS TES observations more than 10 martian years (MY) later. While the averaged abundances are very similar in TES observations for the same season in different years, the spatial distributions in the early summer season do vary significantly year over year. Spatial and temporal variabilities increase between Ls ∼ 80-140°, which may be related to vapor sublimation from the North Polar Residual Cap (NPRC), or to changes in circulation. Spatial variability is observed on scales of ∼100 km and temporal variability is observed on scales of <10 sols during summer. During late spring the TES water vapor spatial distribution is seen to correlate with the low topography/low albedo region of northern Acidalia Planitia (270-360°E), and with the dust spatial distribution across the NPR during late spring-early summer. Non-uniform vertical distribution of water vapor, a regolith source or atmospheric circulation ‘pooling’ of water vapor from the NPRC into the topographic depression may be behind the correlation with low topography/low albedo. Sublimation winds carrying water vapor off the NPRC and lifting surface dust in the areas surrounding the NPRC may explain the correlation between the water vapor and dust spatial distributions. Correlation between water vapor and dust in MAWD data are only observed over low topography/low albedo area. Maximum water vapor abundances are observed at Ls = 105-115° and outside of the NPRC at 75-80°N; the TES data, however, do not extend over the NPRC and thus, this conclusion may be biased. Some water vapor appears to be released in plumes or ‘outbursts’ in the MAWD and TES datasets during late spring and early summer. We propose that the sublimation rate of ice varies across the NPRC with varying surface winds, giving rise to the observed ‘outbursts’ at some seasons.  相似文献   

5.
The Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft has produced an extensive atmospheric data set, beginning during aerobraking and continuing throughout the extended scientific mapping phase. Temperature profiles for the atmosphere below about 40 km, surface temperatures and total dust and water ice opacities, can be retrieved from infrared spectra in nadir viewing mode. This paper describes assimilation of nadir retrievals from the spacecraft aerobraking period, LS=190°–260°, northern hemisphere autumn to winter, into a Mars general circulation model. The assimilation scheme is able to combine information from temperature and dust optical depth retrievals, making use of a model forecast containing information from the assimilation of earlier observations, to obtain a global, time-dependent analysis. Given sufficient temperature retrievals, the assimilation procedure indicates errors in the a priori dust distribution assumptions even when lacking dust observations; in this case there are relatively cold regions above the poles compared to a model which assumes a horizontally-uniform dust distribution. One major reason for using assimilation techniques is in order to investigate the transient wave behavior on Mars. Whilst the data from the 2-h spacecraft mapping orbit phase is much more suitable for assimilation, even the longer (45–24 h) period aerobraking orbit data contain useful information about the three-dimensional synoptic-scale martian circulation which the assimilation procedure can reconstruct in a consistent way. Assimilations from the period of the Noachis regional dust storm demonstrate that the combined assimilation of temperature and dust retrievals has a beneficial impact on the atmospheric analysis.  相似文献   

6.
Takeshi Imamura  Yuko Ito 《Icarus》2011,211(1):498-503
A Hovmöller diagram analysis of the dust optical depth measured by the Mars Global Surveyor Thermal Emission Spectrometer shows the occurrence of quasi-periodic westwardly-propagating disturbances with timescales of 10-20 sols during summer in the south polar region of Mars. Dust clouds emerge repeatedly around the region with a latitude of around 70-80°S and a longitude of 240-300°E, move westward at speeds of 3-6 m s−1, reach the region with a longitude of 60-120°E, and finally disappear. This longitude range coincides with elevated terrains in the south polar region, and in this region an increase of dust optical depth encircling the south pole is also observed. This implies that the quasi-periodic dust events will contribute to the enhancement of the atmospheric dust loading in this region. These dust events might be related to baroclinic instability caused by the thermal contrast across the CO2 cap edge, or the horizontal advection or vertical convection with radiative-dynamical feedback. The westward movement of the dust clouds suggests steady westward winds blowing in the near-surface layer, where the quasi-periodic dust lifting is expected to occur. Such a westward cap-edge flow will be created by the Coriolis force acting on the flow from the ice side to the regolith side.  相似文献   

7.
Mars General Circulation Model (GCM) simulations are presented to illustrate the importance of the ice emissivity of the seasonal CO2 polar caps in regulating the effects of airborne dust on the martian CO2 cycle. Simulated results show that atmospheric dust suppresses CO2 condensation when the CO2 ice emissivity is high but enhances it when the CO2 ice emissivity is low. This raises the possibility that the reason for the repeatable nature of the CO2 cycle in the presence of a highly variable dust cycle is that the CO2 ice emissivity is “neutral” - the value that leads to no change in CO2 condensation with changing atmospheric dust. For this GCM, the “neutral” emissivity is approximately 0.55, which is low compared to observed cap emissivities. This inconsistency poses a problem for this hypothesis. However, it is clear that the CO2 ice emissivity is a critical physical parameter in determining how atmospheric dust affects the CO2 cycle on Mars.  相似文献   

8.
Following the work of Kieffer and Titus (2001, Icarus 154, 162-180), we present results of thermal IR observations of Korolev crater, located at ∼73° latitude in the martian northern polar region. Similar to techniques employed by Titus et al. (2003, Science 299, 1048-1050), we use infrared images from the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey to identify several regions within the crater basin with distinct thermal properties that correlate with topography. The THEMIS results show these regions exhibit temperature variations, spatially within the crater and throughout the martian year. In addition to the variations identified in the THEMIS observations, Mars Global Surveyor Thermal Emission Spectrometer (TES) observations show differences in albedo and temperature of these regions on both daily and seasonal cycles. Modeling annual temperature variations of the surface, we use TES observations to examine the thermal properties of these regions. This analysis reveals the crater interior deposits are likely thick layers (several meters) of high thermal inertia material (water ice, or extremely ice-rich regolith). Spatial variations of the physical properties of these regions are likely due to topography and possibly variations in the subsurface material itself. The nature of these deposits may help constrain polar processes, as well as provide context for the polar lander mission, Phoenix.  相似文献   

9.
Michael D Smith 《Icarus》2004,167(1):148-165
We use infrared spectra returned by the Mars Global Surveyor Thermal Emission Spectrometer (TES) to retrieve atmospheric and surface temperature, dust and water ice aerosol optical depth, and water vapor column abundance. The data presented here span more than two martian years (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 26, Ls=180°, 4 May 2003). We present an overview of the seasonal (Ls), latitudinal, and longitudinal dependence of atmospheric quantities during this period, as well as an initial assessment of the interannual variability in the current martian climate. We find that the perihelion season (Ls=180°-360°) is relatively warm, dusty, free of water ice clouds, and shows a relatively high degree of interannual variability in dust optical depth and atmospheric temperature. On the other hand, the aphelion season (Ls=0°-180°) is relatively cool, cloudy, free of dust, and shows a low degree of interannual variability. Water vapor abundance shows a moderate amount of interannual variability at all seasons, but the most in the perihelion season. Much of the small amount of interannual variability that is observed in the aphelion season appears to be caused by perihelion-season planet-encircling dust storms. These dust storms increase albedo through deposition of bright dust on the surface causing cooler daytime surface and atmospheric temperatures well after dust optical depth returns to prestorm values.  相似文献   

10.
The residual south polar cap of Mars (RSPC) is distinct from the residual north polar cap both in composition and in morphology. CO2 frost in the RSPC is stabilized by its high albedo during southern spring and summer despite the relatively large insolation during that period. The morphology of the RSPC in summer displays a bewildering variety of depressions that are formed in relatively thin layers of CO2. The increase of the size of these depressions between each of the first three years of Mars Global Surveyor (MGS) observations may possibly signal some sort of climate change on the planet. For example, the erosion of the bright plateaus might reduce the RSPC albedo and affect the energy balance. The Mars Orbiter Cameras (MOC) on MGS observed Mars for four consecutive martian years before contact with the spacecraft was lost in late 2006. During this period coverage of the polar regions was particularly dense because MGS flew over them on every orbit. In this paper we report on the four-year behavior of the morphological features in the RSPC and on the large-scale variability in RSPC albedo over the period. The changes in the size of the surface features in the RSPC due to backwasting that were first observed between Mars years (MY) 24 and 25 and subsequently between MY25 and M26 was observed to continue at the same rate through MY 27. The results indicate that on average thicker layers in the RSPC retreat faster than thinner ones, roughly in proportion to their thickness. We argue that a simple difference in porosity between the A and B layers can explain this difference although other factors could be involved. The large-scale albedo of the RSPC decreases as the depressions are uncovered by sublimation of seasonal CO2. However, any interannual differences in albedo due to the backwasting process are masked by interannual differences in the summer dust opacity in the RSPC region.  相似文献   

11.
We present the seasonal and geographical variations of the martian water vapor monitored from the Planetary Fourier Spectrometer Long Wavelength Channel aboard the Mars Express spacecraft. Our dataset covers one martian year (end of Mars Year 26, Mars Year 27), but the seasonal coverage is far from complete. The seasonal and latitudinal behavior of the water vapor is globally consistent with previous datasets, Viking Orbiter Mars Atmospheric Water Detectors (MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES), and with simultaneous results obtained from other Mars Express instruments, OMEGA and SPICAM. However, our absolute water columns are lower and higher by a factor of 1.5 than the values obtained by TES and SPICAM, respectively. In particular, we retrieve a Northern midsummer maximum of 60 pr-μm, lower than the 100-pr-μm observed by TES. The geographical distribution of water exhibits two local maxima at low latitudes, located over Tharsis and Arabia. Global Climate Model (GCM) simulations suggest that these local enhancements are controlled by atmospheric dynamics. During Northern spring, we observe a bulge of water vapor over the seasonal polar cap edge, consistent with the northward transport of water from the retreating seasonal cap to the permanent polar cap. In terms of vertical distribution, we find that the water volume mixing ratio over the large volcanos remains constant with the surface altitude within a factor of two. However, on the whole dataset we find that the water column, normalized to a fixed pressure, is anti-correlated with the surface pressure, indicating a vertical distribution intermediate between control by atmospheric saturation and confinement to a surface layer. This anti-correlation is not reproduced by GCM simulations of the water cycle, which do not include exchange between atmospheric and subsurface water. This situation suggests a possible role for regolith-atmosphere exchange in the martian water cycle.  相似文献   

12.
Mars Global Surveyor (MGS) visible (solarband bolometer) and thermal infrared (IR) spectral limb observations from the Thermal Emission Spectrometer (TES) support quantitative profile retrievals for dust opacity and particle sizes during the 2001 global dust event on Mars. The current analysis considers the behavior of dust lifted to altitudes above 30 km during the course of this storm; in terms of dust vertical mixing, particle sizes, and global distribution. TES global maps of visible (solarband) limb brightness at 60 km altitude indicate a global-scale, seasonally evolving (over 190-240° solar longitudes, LS) longitudinal corridor of vertically extended dust loading (which may be associated with a retrograde propagating, wavenumber 1 Rossby wave). Spherical radiative transfer analysis of selected limb profiles for TES visible and thermal IR radiances provide quantitative vertical profiles of dust opacity, indicating regional conditions of altitude-increasing dust mixing ratios. Observed infrared spectral dependences and visible-to-infrared opacity ratios of dust scattering over 30-60 km altitudes indicate particle sizes characteristic of lower altitudes (cross-section weighted effective radius, ), during conditions of significant dust transport to these altitudes. Conditions of reduced dust loading at 30-60 km altitudes present smaller dust particle sizes . These observations suggest rapid meridional transport at 30-80 km altitudes, with substantial longitudinal variation, of dust lifted to these altitudes over southern hemisphere atmospheric regions characterized by extraordinary (m/s) vertical advection velocities. By LS=230° dust loading above 50 km altitudes decreased markedly at southern latitudes, with a high altitude (60-80 km) haze of fine (likely) water ice particles appearing over 10°S-40°N latitudes.  相似文献   

13.
As an introduction to this Icarus special issue for the 4th Mars Polar Science and Exploration Conference, we discuss five key questions in Mars polar science, gleaned from plenary discussions and presentations held at the conference. These questions highlight major unknowns in the field. (1) What are the physical characteristics of the polar layered deposits (PLD), and how are the different geologic units within, beneath, and surrounding the PLD related? (2) How old are the PLD? And what are their glacial, fluvial, depositional and erosional histories? (3) What are the mass and energy budgets of the PLD, and what processes control these budgets on seasonal and longer timescales? (4) What chronology, compositional variability, and record of climatic change is expressed in the stratigraphy of the PLD? (5) How have volatiles and dust been exchanged between polar and non-polar reservoirs? And how has this exchange affected the past and present distribution of surface and subsurface ice?  相似文献   

14.
New insight into the seasonal, diurnal and spatial distribution of water vapor on Mars has been obtained from analyzing the spectra of the short-wavelength channel (SW) of the Planetary Fourier Spectrometer (PFS) onboard Mars Express. The processed dataset, recorded between January 2004 and April 2005, covers the seasons from LS=331° of Mars Year 26 to LS=196° of the following year. In this period the mean column density around vernal equinox was 8.2 pr. μm. The maximum values during northern summer were about 65 pr. μm, located around 75° N latitude with a longitudinally inhomogeneous distribution. Regarding the atmospheric transport, the majority of polar water vapor remains in the north polar region while only about a quarter is transported southward. Geographically there are two water vapor maxima visible, over Arabia Terra and the Tharsis plateau, that are most likely caused both by atmosphere-ground interaction and by atmospheric circulation. A comparison with other instruments generally shows a good agreement, only the SPICAM results are systematically lower. Compared to the results from the PFS long-wavelength channel the results of this work are slightly higher. A strong discrepancy is visible northward of about 50° N during the northern summer that is possibly explained by a non-uniform vertical H2O mixing. In particular, a confinement of the water to the lower few kilometers yields a much better agreement between the retrieved column densities of the two PFS channels.  相似文献   

15.
P.B. James  P.C. Thomas 《Icarus》2010,208(1):82-85
We have used Mars Reconnaissance Orbiter data from 2007 and 2009 to compare summer behaviors of the seasonal and residual south polar caps of Mars in those two years. We find that the planet-encircling dust storm that occurred in the first of the two Mars years enhanced the loss of seasonal CO2 deposits relative to the second year but did not have a large effect on the continuing erosion of the pits and mesas within the residual cap materials. This suggests that the increase of bright frost in some regions of the residual cap observed between Mariner 9 and Viking can be accommodated within observed martian weather variability and does not require unknown processes or climate change.  相似文献   

16.
Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m−2 K−1s−1/2 at mid-latitudes (60° S to 60° N) and 600 J m−2 K−1s−1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.  相似文献   

17.
David P. Hinson  Huiqun Wang 《Icarus》2010,206(1):290-1294
We have investigated the near-surface meteorology in the northern hemisphere of Mars through detailed analysis of data obtained with Mars Global Surveyor in January-August 2005. The season in the northern hemisphere ranged from midsummer through winter solstice of Mars Year (MY) 27. We examined composite, wide-angle images from the Mars Orbiter Camera and compiled a catalog of the dust storms that occurred in this interval. As in previous martian years, activity in the northern hemisphere was dominated by regional “flushing” dust storms that sweep southward through the major topographic basins, most frequently in Acidalia Planitia. We also used atmospheric profiles retrieved from radio occultation experiments to characterize eddy activity near the surface at high northern latitudes. There are strong correlations between the two sets of observations, which allowed us to identify three factors that influence the timing and location of the regional dust storms: (1) transitions among baroclinic wave modes, which strongly modulate the intensity of meridional winds near the surface, (2) storms zones, which impose strong zonal variations on the amplitude of some baroclinic eddies, and (3) stationary waves, which further modulate the wind field near the surface. The flushing dust storms ceased abruptly in midautumn, possibly in response to source depletion, CO2 condensation, a shift in the period of the baroclinic eddies, and changes in the tidal wind field near the surface. Our results extend the meteorological record of the northern hemisphere, substantiate the findings of previous investigations, and further illuminate the climatic impact of baroclinic eddies.  相似文献   

18.
The LIDAR instrument operating from the surface of Mars on the Phoenix Mission measured vertical profiles of atmospheric dust and water ice clouds at temperatures around −65 °C. An equivalent lidar system was utilized for measurements in the atmosphere of Earth where dust and cloud conditions are similar to Mars. Coordinated aircraft in situ sampling provided a verification of lidar measurement and analysis methods and also insight for interpretation of lidar derived optical parameters in terms of the dust and cloud microphysical properties. It was found that the vertical distribution of airborne dust above the Australian desert is quite similar to what is observed in the planetary boundary layer above Mars. Comparison with the in situ sampling is used to demonstrate how the lidar derived optical extinction coefficient is related to the dust particle size distribution. The lidar measurement placed a constraint on the model size distribution that has been used for Mars. Airborne lidar measurements were also conducted to study cirrus clouds that form in the Earth’s atmosphere at a similar temperature and humidity as the clouds observed with the lidar on Mars. Comparison with the in situ sampling provides a method to derive the cloud ice water content (IWC) from the Mars lidar measurements.  相似文献   

19.
Alberto G. Fairén 《Icarus》2010,208(1):165-48
Water on Mars has been explained by invoking controversial and mutually exclusive solutions based on warming the atmosphere with greenhouse gases (the “warm and wet” Mars) or on local thermal energy sources acting in a global freezing climate (the “cold and dry” Mars). Both have critical limitations and none has been definitively accepted as a compelling explanation for the presence of liquid water on Mars. Here is considered the hypothesis that cold, saline and acidic liquid solutions have been stable on the sub-zero surface of Mars for relatively extended periods of time, completing a hydrogeological cycle in a water-enriched but cold planet. Computer simulations have been developed to analyze the evaporation processes of a hypothetical martian fluid with a composition resulting from the acid weathering of basalt. This model is based on orbiter- and lander-observed surface mineralogy of Mars, and is consistent with the sequence and time of deposition of the different mineralogical units. The hydrological cycle would have been active only in periods of dense atmosphere, as having a minimum atmospheric pressure is essential for water to flow, and relatively high temperatures (over ∼245 K) are required to trigger evaporation and snowfall; minor episodes of limited liquid water on the surface could have occurred at lower temperatures (over ∼225 K). During times with a thin atmosphere and even lesser temperatures (under ∼225 K), only transient liquid water can potentially exist on most of the martian surface. Assuming that surface temperatures have always been maintained below 273 K, Mars can be considered a “cold and wet” planet for a substantial part of its geological history.  相似文献   

20.
Experimental results are presented of wind induced grain detachment under Mars simulation conditions. A simple force balance equation is applied to quantify the wind shear stress required for removal of glass spheres from a sand bed. The transport of fine grained martian dust is simulated by the detachment of hollow glass spheres which resemble low mass density dust aggregates observed to form during simulations when using Mars analogue material. The results agree well with observations of dust removal and wind speed measurements made by the NASA Viking landers at the martian surface. This work supports the suggestion that dust aggregate fragmentation allows wind induced dust entrainment at substantially lower wind shear than that of solid sand grains and has direct application to the study of global dust transport and martian climatology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号