首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report new radar observations of E-class Asteroid 64 Angelina and M-class Asteroid 69 Hesperia obtained with the Arecibo Observatory S-band radar (2480 MHz, 12.6 cm). Our measurements of Angelina’s radar bandwidth are consistent with reported diameters and poles. We find Angelina’s circular polarization ratio to be 0.8 ± 0.1, tied with 434 Hungaria for the highest value observed for main-belt asteroids and consistent with the high values observed for all E-class asteroids (Benner, L.A.M., Ostro, S.J., Magri, C., Nolan, M.C., Howell, E.S., Giorgini, J.D., Jurgens, R.F., Margot, J.L., Taylor, P.A., Busch, M.W., Shepard, M.K. [2008]. Icarus 198, 294-304; Shepard, M.K., Kressler, K.M., Clark, B.E., Ockert-Bell, M.E., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J. [2008b]. Icarus 195, 220-225). Our radar observations of 69 Hesperia, combined with lightcurve-based shape models, lead to a diameter estimate, Deff = 110 ± 15 km, approximately 20% smaller than the reported IRAS value. We estimate Hesperia to have a radar albedo of , consistent with a high-metal content. We therefore add 69 Hesperia to the Mm-class (high metal M) (Shepard, M.K., Clark, B.E., Ockert-Bell, M., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J., Harris, A.W., Warner, B.D., Stephens, R.D., Mueller, M. [2010]. Icarus 208, 221-237), bringing the total number of Mm-class objects to eight; this is 40% of all M-class asteroids observed by radar to date.  相似文献   

2.
We observed near-Earth asteroid (NEA) 2100 Ra-Shalom over a six-year period, obtaining rotationally resolved spectra in the visible, near-infrared, thermal-infrared, and radar wavelengths. We find that Ra-Shalom has an effective diameter of Deff=2.3±0.2 km, rotation period P=19.793±0.001 h, visual albedo pv=0.13±0.03, radar albedo , and polarization ratio μc=0.25±0.04. We used our radar observations to generate a three-dimensional shape model which shows several structural features of interest. Based on our thermal observations, Ra-Shalom has a high thermal inertia of ∼103 J m−2 s−0.5 K−1, consistent with a coarse or rocky surface and the inferences of others [Harris, A.W., Davies, J.K., Green, S.F., 1998. Icarus 135, 441-450; Delbo, M., Harris, A.W., Binzel, R.P., Pravec, P., Davies, J.K., 2003. Icarus 166, 116-130]. Our spectral data indicate that Ra-Shalom is a K-class asteroid and we find excellent agreement between our spectra and laboratory spectra of the CV3 meteorite Grosnaja. Our spectra show rotation-dependent variations consistent with global variations in grain size. Our radar observations show rotation-dependent variations in radar albedo consistent with global variations in the thickness of a relatively thin regolith.  相似文献   

3.
We report Arecibo observations of 55 main-belt asteroids (MBAs) during 1999-2003. Most of our targets had not been detected previously with radar, so these observations more than double the number of radar-detected MBAs. Our bandwidth estimates constrain our targets' pole directions in a manner that is geometrically distinct from optically derived constraints. We present detailed statistical analyses of the disk-integrated properties (radar albedo and circular polarization ratio) of the 84 MBAs observed with radar through March 2003; all of these observations are summarized in the online supplementary information. Certain conclusions reached in previous studies are strengthened: M asteroids have higher mean radar albedos and a wider range of albedos than do other MBAs, suggesting that both metal-rich and metal-poor M-class objects exist; and C- and S-class MBAs have indistinguishable radar albedo distributions, suggesting that most S-class objects are chondritic. Also in accord with earlier results, there is evidence that primitive asteroids from outside the C taxon (F, G, P, and D) are not as radar-bright as C and S objects, but a convincing statistical test must await larger sample sizes. In contrast with earlier work, we find S-class MBAs to have higher circular polarization ratios than other MBAs, indicating greater near-surface structural complexity at decimeter scales, due to different mineralogy (material strength or loss tangent), a different impactor population, or both.  相似文献   

4.
We describe Arecibo (2380 MHz, 12.6 cm) Doppler-only radar detections of near-Earth Asteroids 1915 Quetzalcoatl, 3199 Nefertiti, 3757 (1982 XB), and 4034 (1986 PA) obtained between 1981 and 1989. Estimates of the echo spectral bandwidths, radar cross-sections, and circular polarization ratios of these objects constrain their sizes, radar albedos, surface roughnesses, taxonomic classes, rotation periods, and pole directions. Our radar constraints on the diameters of Quetzalcoatl and Nefertiti are most consistent with sizes determined using thermal-radiometry and the Fast Rotation Model (FRM); this consistency may indicate that these asteroids have surfaces of high thermal inertia (i.e., little or no regolith). Constraints on Quetzalcoatl's radar albedo rule out a “metallic M” classification. The radar constraints for Nefertiti are inconsistent with a rotation pole published by Kaasalainen et al. (2004, Icarus 167, 178). Our estimates of 1982 XB's size are consistent with previously published estimates. The radar bandwidth of 1986 PA places an upper bound of about 24 h on its rotation period.  相似文献   

5.
A. Carbognani 《Icarus》2011,211(1):519-527
A rotating frequency analysis in a previous paper, showed that two samples of C and S-type asteroids belonging to the Main Belt, but not to any families, present two different values for the transition diameter to a Maxwellian distribution of the rotation frequency, respectively 48 and 33 km. In this paper, after a more detailed statistical analysis, aiming to verify that the result is physically relevant, we found a better estimate for the transition diameter, respectively DC = 44 ± 2 km and DS = 30 ± 1 km. The ratio between these estimated transition diameters, DC/DS = 1.5 ± 0.1, can be supported with the help of the YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect, although other physical causes cannot be completely ruled out.In this paper we have derived a simple scaling law for YORP which, taking into account the different average heliocentric distance, the bulk density, the albedo and the asteroid “asymmetry surface factor”, has enabled us to reasonably justify the ratio between the diameters transition of C-type and S-type asteroids. The same scaling law can be used to estimate a new ratio between the bulk densities of S and C asteroids samples (giving ρS/ρC ≈ 2.9 ± 0.3), and can explain why the asteroids near the transition diameter have about the same absolute magnitude. For C-type asteroids, using the found density ratio and other estimates of S-type density, it is also possible to estimate an average bulk density equal to 0.9 ± 0.1 g cm−3, a value compatible with icy composition. The suggested explanation for the difference of the transition diameters is a plausible hypothesis, consistent with the data, but it needs to be studied more in depth with further observations.  相似文献   

6.
The main belt is believed to have originally contained an Earth mass or more of material, enough to allow the asteroids to accrete on relatively short timescales. The present-day main belt, however, only contains ∼5×10−4 Earth masses. Numerical simulations suggest that this mass loss can be explained by the dynamical depletion of main belt material via gravitational perturbations from planetary embryos and a newly-formed Jupiter. To explore this scenario, we combined dynamical results from Petit et al. [Petit, J. Morbidelli, A., Chambers, J., 2001. The primordial excitation and clearing of the asteroid belt. Icarus 153, 338-347] with a collisional evolution code capable of tracking how the main belt undergoes comminution and dynamical depletion over 4.6 Gyr [Bottke, W.F., Durda, D., Nesvorny, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H., 2005. The fossilized size distribution of the main asteroid belt. Icarus 175, 111-140]. Our results were constrained by the main belt's size-frequency distribution, the number of asteroid families produced by disruption events from diameter D>100 km parent bodies over the last 3-4 Gyr, the presence of a single large impact crater on Vesta's intact basaltic crust, and the relatively constant lunar and terrestrial impactor flux over the last 3 Gyr. We used our model to set limits on the initial size of the main belt as well as Jupiter's formation time. We find the most likely formation time for Jupiter was 3.3±2.6 Myr after the onset of fragmentation in the main belt. These results are consistent with the estimated mean disk lifetime of 3 Myr predicted by Haisch et al. [Haisch, K.E., Lada, E.A., Lada, C.J., 2001. Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153-L156]. The post-accretion main belt population, in the form of diameter D?1000 km planetesimals, was likely to have been 160±40 times the current main belt's mass. This corresponds to 0.06-0.1 Earth masses, only a small fraction of the total mass thought to have existed in the main belt zone during planet formation. The remaining mass was most likely taken up by planetary embryos formed in the same region. Our results suggest that numerous D>200 km planetesimals disrupted early in Solar System history, but only a small fraction of their fragments survived the dynamical depletion event described above. We believe this may explain the limited presence of iron-rich M-type, olivine-rich A-type, and non-Vesta V-type asteroids in the main belt today. The collisional lifetimes determined for main belt asteroids agree with the cosmic ray exposure ages of stony meteorites and are consistent with the limited collisional evolution detected among large Koronis family members. Using the same model, we investigated the near-Earth object (NEO) population. We show the shape of the NEO size distribution is a reflection of the main belt population, with main belt asteroids driven to resonances by Yarkovsky thermal forces. We used our model of the NEO population over the last 3 Gyr, which is consistent with the current population determined by telescopic and satellite data, to explore whether the majority of small craters (D<0.1-1 km) formed on Mercury, the Moon, and Mars were produced by primary impacts or by secondary impacts generated by ejecta from large craters. Our results suggest that most small craters formed on these worlds were a by-product of secondary rather than primary impacts.  相似文献   

7.
We have conducted a radar-driven observational campaign of 22 main-belt asteroids (MBAs) focused on Bus–DeMeo Xc- and Xk-type objects (Tholen X and M class asteroids) using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). Sixteen of our targets were near-simultaneously observed with radar and those observations are described in a companion paper (Shepard, M.K., and 19 colleagues [2010]. Icarus, in press). We find that most of the highest metal-content asteroids, as suggested by radar, tend to exhibit silicate absorption features at both 0.9 and 1.9 μm, and the lowest metal-content asteroids tend to exhibit either no bands or only the 0.9 μm band. Eleven of the asteroids were observed at several rotational longitudes in the near-infrared and significant variations in continuum slope were found for nine in the spectral regions 1.1–1.45 μm and 1.6–2.3 μm. We utilized visible wavelength data (Bus, S.J., Binzel, R.P. [2002b]. Icarus 158, 146–177; Fornasier, S., Clark, B.E., Dotto, E., Migliorini, A., Ockert-Bell, M., Barucci, M.A. [2010]. Icarus 210, 655–673.) for a more complete compositional analysis of our targets. Compositional evidence is derived from our target asteroid spectra using two different methods: (1) a χ2 search for spectral matches in the RELAB database, and (2) parametric comparisons with meteorites. This paper synthesizes the results of the RELAB search and the parametric comparisons with compositional suggestions based on radar observations. We find that for six of the seven asteroids with the highest iron abundances, our spectral results are consistent with the radar evidence (16 Psyche, 216 Kleopatra, 347 Pariana, 758 Mancunia, 779 Nina, and 785 Zwetana). Three of the seven asteroids with the lowest metal abundances, our spectral results are consistent with the radar evidence (21 Lutetia, 135 Hertha, 497 Iva). The remaining seven asteroids (22 Kalliope, 97 Klotho, 110 Lydia, 129 Antigone, 224 Oceana, 678 Fredegundis, and 771 Libera) have ambiguous compositional interpretations when comparing the spectral analogs to the radar analogs. The number of objects with ambiguous results from this multi-wavelength survey using visible, near-infrared, and radar wavelengths indicates that perhaps a third diagnostic wavelength region (such as the mid-infrared around 2–4 μm, the mid-infrared around 10–15 μm, and/or the ultraviolet around 0.2–0.4 μm) should be explored to resolve the discrepancies.  相似文献   

8.
We report Arecibo (2380-MHz, 13-cm) observations of Asteroid 1580 Betulia in May-June 2002. We combine these continuous-wave Doppler spectra and delay-Doppler images with optical lightcurves from the 1976 and 1989 apparitions in order to estimate Betulia's shape and spin vector. We confirm the spin vector solution of Kaasalainen et al. [Kaasalainen, M., and 21 colleagues, 2004. Icarus 167, 178-196], with sidereal period P=6.13836 h and ecliptic pole direction (λ,β)=(136°,+22°), and obtain a model that resembles the Kaasalainen et al. convex-definite shape reconstruction but is dominated by a prominent concavity in the southern hemisphere. We find that Betulia has a maximum breadth of 6.59±0.66 km and an effective diameter of 5.39±0.54 km. These dimensions are in accord with reanalyzed polarimetric and radar data from the 1970s. Our effective diameter is 15% larger than the best radiometric estimate of Harris et al. [Harris, A.W., Mueller, M., Delbó, M., Bus, S.J., 2005. Icarus 179, 95-108], but this difference is much smaller than the size differences between past models. Considering orbits of test particles around Betulia, we find that this asteroid's unusual shape results in six equilibrium points close to its equatorial plane rather than the usual four points; two of these six points represent stable synchronous orbits while four are unstable. Betulia's close planetary encounters can be predicted for over four thousand years into the future.  相似文献   

9.
We consider the largest impact craters observed on small satellites and asteroids and the impact disruption of such bodies. Observational data are considered from 21 impact-like structures on 13 satellites and 8 asteroids (target body radii in the range 0.7-265 km). If the radius of the target body is R and the diameter of the largest crater observed on this body D, the ratio D/R is then the main observational parameter of interest. This is found on the observed bodies and compared to data obtained in the laboratory. Taking the largest observed value for D/R as a proxy for the ratio Dc/R (where Dc is the diameter of the largest crater that can be formed on a body without shattering it) it was found that for the observed icy satellites Dc,icy≈1.2R and for the asteroids and the rocky satellites Dc,rocky≈1.6R. In laboratory experiments with ice targets at impactor speeds of 1 to 3 km s−1 we obtained Dc,icy≈1.64R.  相似文献   

10.
We observed near-Earth Asteroid (NEA) 2002 CE26 in August and September 2004 using the Arecibo S-band (2380-MHz, 12.6-cm) radar and NASA's Infrared Telescope Facility (IRTF). Shape models obtained based on inversion of our delay-Doppler images show the asteroid to be 3.5±0.4 km in diameter and spheroidal; our corresponding nominal estimates of its visual and radar albedos are 0.07 and 0.24, respectively. Our IRTF spectrum shows the asteroid to be C-class with no evidence of hydration. Thermal models from the IRTF data provide a size and visual albedo consistent with the radar-derived estimate. We estimate the spin-pole to be within a few tens of degrees of λ=317°, β=−20°. Our radar observations reveal a secondary approximately 0.3 km in diameter, giving this binary one of the largest size differentials of any known NEA. The secondary is in a near-circular orbit with period 15.6±0.1 h and a semi-major axis of 4.7±0.2 km. Estimates of the binary orbital pole and secondary rotation rate are consistent with the secondary being in a spin-locked equatorial orbit. The orbit corresponds to a primary mass of M=1.95±0.25×1013 kg, leading to a primary bulk density of , one of the lowest values yet measured for a main-belt or near-Earth asteroid.  相似文献   

11.
F. Roig  D. Nesvorný  R. Gil-Hutton 《Icarus》2008,194(1):125-136
V-type asteroids are bodies whose surfaces are constituted of basalt. In the Main Asteroid Belt, most of these asteroids are assumed to come from the basaltic crust of Asteroid (4) Vesta. This idea is mainly supported by (i) the fact that almost all the known V-type asteroids are in the same region of the belt as (4) Vesta, i.e., the inner belt (semi-major axis 2.1<a<2.5 AU), (ii) the existence of a dynamical asteroid family associated to (4) Vesta, and (iii) the observational evidence of at least one large craterization event on Vesta's surface. One V-type asteroid that is difficult to fit in this scenario is (1459) Magnya, located in the outer asteroid belt, i.e., too far away from (4) Vesta as to have a real possibility of coming from it. The recent discovery of the first V-type asteroid in the middle belt (2.5<a<2.8 AU), (21238) 1995WV7 [Binzel, R.P., Masi, G., Foglia, S., 2006. Bull. Am. Astron. Soc. 38, 627; Hammergren, M., Gyuk, G., Puckett, A., 2006. ArXiv e-print, astro-ph/0609420], located at ∼2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ∼2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by a semi-major axis drift due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining N-body numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability that an asteroid of a given diameter D evolves from the Vesta family and crosses over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability (∼1%) of having evolved through this mechanism due to its large size (D∼5 km), because the Yarkovsky effect is not sufficiently efficient for such large asteroids. However, the mechanism might explain the orbits of smaller bodies like (40521) 1999RL95 (D∼3 km) with ∼70-100% probability, provided that we assume that the Vesta family formed ?3.5 Gy ago. We estimate the debiased population of V-type asteroids that might exist in the same region as (21238) and (40521) (2.5<a?2.62 AU) and conclude that about 10 to 30% of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 70-90% must have a different origin.  相似文献   

12.
Radar echoes from Earth co-orbital Asteroid 2002 AA29 yield a total-power radar cross section of 2.9×10−5 km2 ±25%, a circular polarization ratio of SC/OC=0.26±0.07, and an echo bandwidth of at least 1.5 Hz. Combining these results with the estimate of its visual absolute magnitude, HV=25.23±0.24, from reported Spacewatch photometry indicates an effective diameter of 25±5 m, a rotation period no longer than 33 min, and an average surface bulk density no larger than 2.0 g cm−3; the asteroid is radar dark and optically bright, and its statistically most likely spectral class is S. The HV estimate from LINEAR photometry (23.58±0.38) is not compatible with either Spacewatch's HV or our radar results. If a bias this large were generally present in LINEAR's estimates of HV for asteroids it has discovered or observed, then estimates of the current completeness of the Spaceguard Survey would have to be revised downward.  相似文献   

13.
D. Polishook  N. Brosch 《Icarus》2009,199(2):319-332
Photometry results of 32 asteroids are reported from only seven observing nights on only seven fields, consisting of 34.11 cumulative hours of observations. The data were obtained with a wide-field CCD (40.5×27.3) mounted on a small, 46-cm telescope at the Wise Observatory. The fields are located within ±1.5° from the ecliptic plane and include a region within the main asteroid belt. The observed fields show a projected density of ∼23.7 asteroids per square degree to the limit of our observations. 13 of the lightcurves were successfully analyzed to derive the asteroids' spin periods. These range from 2.37 up to 20.2 h with a median value of 3.7 h. 11 of these objects have diameters in order of two kilometers and less, a size range that until recently has not been photometrically studied. The results obtained during this short observing run emphasize the efficiency of wide-field CCD photometry of asteroids, which is necessary to improve spin statistics and understand spin evolution processes. We added our derived spin periods to data from the literature and compared the spin rate distributions of small main belt asteroids (5>D>0.15 km) with that of bigger asteroids and of similar-sized NEAs. We found that the small MBAs do not show the clear Maxwellian-shaped distribution as large asteroids do; rather they have a spin rate distribution similar to that of NEAs. This implies that non-Maxwellian spin rate distribution is controlled by the asteroids' sizes rather than their locations.  相似文献   

14.
There are approximately 5000 known asteroids in the Hungaria orbital space, a region defined by orbits with high inclination (16° < i < 34°), low eccentricities (e < 0.18), and semi-major axes 1.78 < a < 2.0 AU. We argue that this region is populated by a large number of asteroids formed after a catastrophic collision involving (434) Hungaria, the presumptive largest fragment of the Hungaria collisional family. The remaining objects form a background population that share orbital characteristics with the family members. Due to the general dynamic stability of the region, it is likely that most asteroids in Hungaria space (the Hungaria “group”) have been in this region since the formation of the Solar System or at least since the planets assumed their current orbital configuration. Our examination of the Hungaria group included comparing rotation rates, taxonomic classification, and orbital dynamics to determine the characteristics of the family and background populations. We first found there is an excess of slow rotators among the group but, otherwise, the distribution of spin frequencies is essentially uniform, i.e., that a plot of the cumulative number of objects over the range of 1 d−1 < f < 9 d−1 is nearly a straight line or, put another way, if the distribution over the range is binned by equal intervals of f (1-2 d−1, 2-3 d−1, etc.), the number of objects in each bin is statistically the same.There is a distinct family within the Hungaria group, centered at a semi-major axis of 1.940 AU, with a dispersion range that increases with decreasing size of members, as expected of an evolved collisional family. The larger members with well-determined taxonomic class, including (434) Hungaria itself, have flat spectra, mostly likely type E or similar. The degree of spreading versus size of family members is consistent with that expected from Yarkovsky thermal drift in roughly 0.5 Gyr, suggesting that age for the family. The Asteroid (434) Hungaria is displaced in semi-major axis by 0.004 AU from the center of the Hungaria family. The collision event that produced the family should not have left the largest body displaced by more than 0.001 AU from the original orbit, thus we infer that the displacement of (434) Hungaria is mainly due to Yarkovsky drift, and is consistent with the expected drift for that size body in ∼0.5 Gyr. Below ∼1.93 AU heliocentric distance the Hungaria family is perturbed by at least two secular resonances, 2g − g5 − g6 and one of the family of 4th or 6th order secular resonances near s ∼ −22.25 ″/year. Their combined effect results in larger inclination dispersion of the family members.  相似文献   

15.
We have conducted a radar-driven observational campaign of main-belt asteroids (MBAs) focused on X/M class asteroids using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). M-type asteroids have been identified as metallic, enstatite chondrites and/or heavily altered carbonaceous chondrites [Bell, J.F., Davis, D., Hartmann, W.K., Gaffey, M.J., 1989. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (Eds.), Asteroids II. Univ. of Arizona Press, Tucson, pp. 921-948; Gaffey, M.J., McCord, T.B., 1979. In: Gehrels, T., Matthews, M.S. (Eds.), Asteroids. Univ. of Arizona Press, Tucson, pp. 688-723; Vilas, F., 1994. Icarus 111, 456-467]. Radar wavelength observations can determine whether an asteroid is metallic and provide information about the porosity and regolith depth. Near-infrared observations can help determine the grain size, porosity and composition of an object. Concurrent observations with these tools can give us a wealth of information about an object. Our objectives for this observation program were to (a) determine if there are any consistent relationships between spectra in the near-infrared wavelengths and radar signatures and (b) look for rotationally resolved relationships between asteroid radar properties and near-infrared spectral properties. This paper describes preliminary results of an ongoing survey of near-infrared observations of M-type asteroids and is a companion paper to radar observations reported by Shepard [Shepard, M.K., and 19 colleagues, 2008a. Icarus 195, 184-205]. In the analysis of 16 asteroid near-infrared spectra and nine radar measurements, we find a trend indicating a correlation between continuum slope from 1.7 to 2.45 μm and radar albedo—an asteroid with a steep continuum slope also has a bright radar albedo, which suggests a significant metal content. This may provide a means to use near-IR observations to predict the most likely metallic candidates for radar studies.  相似文献   

16.
We present the results of a visible spectroscopic survey of igneous asteroids belonging to the small and intriguing E-class, including 2867 Steins, a target of the Rosetta mission. The survey was carried out at the 3.5 m Telescopio Nazionale Galileo (TNG), and at the 3.5 m New Technology Telescope (NTT) of the European Southern Observatory. We obtained new visible spectra for eighteen E-type asteroids, and near infrared spectra for eight of them. We confirm the presence of three different mineralogies in the small E-type populations. We classify each object in the E[I], E[II] or E[III] subgroups [Gaffey, M.J., Kelley, M.S., 2004. Lunar Planet. Sci. XXXV. Abstract 1812] on the basis of the spectral behavior and of the eventual presence of absorption features attributed to sulfides (such the 0.49 μm band, on E[II]), or to iron bearing silicates (0.9 μm band, on E[III]). We suggest that some asteroids (i.e. 64 Angelina, 317 Roxane, and 434 Hungaria), which show different spectral behavior comparing our data with those available in literature, have an inhomogeneous surface composition. 2867 Steins, a target of the Rosetta mission, shows a spectral behavior typical of the E[II] subgroup, as already suggested by Barucci et al. [Barucci, M.A., Fulchignoni, M., Fornasier, S., Dotto, E., Vernazza, P., Birlan, M., Binzel, R.P., Carvano, J., Merlin, F., Barbieri, C., Belskaya, I., 2005. Astron. Astrophys. 430, 313-317] and Fornasier et al. [Fornasier, S., Marzari, F., Dotto, E., Barucci, M.A., Migliorini, A., 2007. Astron. Astrophys. 474, 29-32]. Litva and 1990 TN1, initially classified as E-types, show a visible and near infrared behavior consistent with the olivine rich A-class asteroids, while 5806 Archieroy, also supposed to belong to the E-class, has a spectral behavior consistent with the S(V) classification following the Gaffey et al. [Gaffey, M.J., Burbine, T.H., Piatek, J.L., Reed, K.L., Chaky, D.A., Bell, J.F., Brown, R.H., 1993. Icarus 106, 573-602] classification scheme. To fully investigate the E-type population, we enlarged our sample including 6 E-type asteroids spectra available in literature, resulting in a total sample of 21 objects. The analysis of the spectral slope for the 3 different E-type subgroups versus the orbital elements show that E[III] members have the lowest mean spectral slope value inside the whole sample, and that they are located between 2.2-2.7 AU in low inclination orbits. E[II] members has the highest spectral slope inside the sample, half of them are located in the Hungaria region, 2 are NEA and 2 (64 Angelina and 2867 Steins), are in the main belt. A similar distribution is found for the 5 featureless E[I] members, located mainly in the Hungaria region (3 members), one in the middle main belt while one is a NEA (2004 VD17). Finally, for the five E-type asteroids observed both in the visible and near infrared range, plus 2867 Steins, we attempt to model their surface composition using linear geographical mixtures of no more than 3 components, selected from aubrite meteorites and correlated minerals. In particular we suggest that the aubrite Peña Blanca might have the E[III] Asteroid 317 Roxane as parent body, and that the aubrite ALH78113 might be related to the E[II] subgroup asteroids.  相似文献   

17.
The Karin cluster is one of the youngest known families of main-belt asteroids, dating back to a collisional event only 5.8±0.2 Myr ago. Using the Spitzer Space Telescope we have photometrically sampled the thermal continua (3.5-22 μm) of 17 Karin cluster asteroids of different sizes, down to the smallest members discovered so far, in order to make the first direct measurements of their sizes and albedos and study the physical properties of their surfaces. Our targets are also amongst the smallest main-belt asteroids observed to date in the mid-infrared. The derived diameters range from 17.3 km for 832 Karin to 1.5 km for 75176, with typical uncertainties of 10%. The mean albedo is pv=0.215±0.015, compared to 0.20±0.07 for 832 Karin itself (for H=11.2±0.3), consistent with the view that the Karin asteroids are closely related physically as well as dynamically. The albedo distribution (0.12?pv?0.32) is consistent with the range associated with S-type asteroids but the variation from one object to another appears to be significant. Contrary to the case for near-Earth asteroids, our data show no evidence of an albedo dependence on size. However, the mean albedo is lower than expected for young, fresh “S-type” surfaces, suggesting that space weathering can darken main-belt asteroid surfaces on very short timescales. Our data are also suggestive of a connection between surface roughness and albedo, which may reflect rejuvenation of weathered surfaces by impact gardening. While the available data allow only estimates of lower limits for thermal inertia, we find no evidence for the relatively high values of thermal inertia reported for some similarly sized near-Earth asteroids. Our results constitute the first observational confirmation of the legitimacy of assumptions made in recent modeling of the formation of the Karin cluster via a single catastrophic collision 5.8±0.2 Myr ago.  相似文献   

18.
Photometric data on 17 binary near-Earth asteroids (15 of them are certain detections, two are probables) were analysed and characteristic properties of the near-Earth asteroid (NEA) binary population were inferred. We have found that binary systems with a secondary-to-primary mean diameter ratio Ds/Dp?0.18 concentrate among NEAs smaller than 2 km in diameter; the abundance of such binaries decreases significantly among larger NEAs. Secondaries show an upper size limit of Ds=0.5-1 km. Systems with Ds/Dp?0.5 are abundant but larger satellites are significantly less common. Primaries have spheroidal shapes and they rotate rapidly, with periods concentrating between 2.2 to 2.8 h and with a tail of the distribution up to ∼4 h. The fast rotators are close to the critical spin for rubble piles with bulk densities about 2 g/cm3. Orbital periods show an apparent cut-off at Porb∼11 h; closer systems with shorter orbital periods have not been discovered, which is consistent with the Roche limit for strengthless bodies. Secondaries are more elongated on average than primaries. Most, but not all, of their rotations appear to be synchronized with the orbital motion; nonsynchronous secondary rotations may occur especially among wider systems with Porb>20 h. The specific total angular momentum of most of the binary systems is similar to within ±20% and close to the angular momentum of a sphere with the same total mass and density, rotating at the disruption limit; this suggests that the binaries were created by mechanism(s) related to rotation near the critical limit and that they neither gained nor lost significant amounts of angular momentum during or since formation. A comparison with six small asynchronous binaries detected in the main belt of asteroids suggests that the population extends beyond the region of terrestrial planets, but with characteristics shifted to larger sizes and longer periods. The estimated mean proportion of binaries with Ds/Dp?0.18 among NEAs larger than 0.3 km is 15±4%. Among fastest rotating NEAs larger than 0.3 km with periods between 2.2 and 2.8 h, the mean proportion of such binaries is (66+10−12)%.  相似文献   

19.
We present thermal infrared photometry and spectrophotometry of four near-Earth asteroids (NEAs), namely (433) Eros, (66063) 1998 RO1, (137032) 1998 UO1, and (138258) 2000 GD2, using the United Kingdom Infrared Telescope (UKIRT) in 2002. For two objects, i.e. (433) Eros and (137032) 1998 UO1, quasi-simultaneous optical observations were also obtained, using the Jacobus Kapteyn Telescope (JKT). For (127032) 1998 UO1, we obtain a rotation period P=3.0±0.1 h and an absolute visual magnitude HV=16.7±0.4. The Standard Thermal Model (STM), Fast Rotating Model (FRM) and near-Earth asteroid Thermal Model (NEATM) have been fitted to the IR fluxes to determine effective diameters Deff, geometric albedos pv, and beaming parameters η. The derived values are (433) Eros: Deff=23.3±3.5 km (at lightcurve maximum), pv=0.24±0.07, η=0.95±0.19; (66063) 1998 RO1: , ; (137032) 1998 UO1: Deff<1.13 km, pv>0.29; (138258) 2000 GD2: Deff=0.27±0.04 km, , η=0.74±0.15. (66063) 1998 RO1 is a binary asteroid from lightcurve characteristics [Pravec, P., and 56 colleagues, 2006. Icarus 181, 63-93] and we estimate the effective diameter of the primary (Dp) and secondary (Ds) components: and . The diameter and albedo of (138258) 2000 GD2 are consistent with the trend of decreasing diameter for S- and Q-type asteroids found by Delbó et al. [Delbó, M., Harris, A.W., Binzel, R.P., Pravec, P., Davies, J.K., 2003. Icarus 166, 116-130]. A possible trend of increasing beaming parameter with diameter for small (less than about 3 km) S- and Q-type asteroids is found.  相似文献   

20.
The potentially hazardous Asteroid (33342) 1998 WT24 approached the Earth within 0.0125 AU on 2001 December 16 and was the target of a number of optical, infrared, and radar observing campaigns. Interest in 1998 WT24 stems from its having an orbit with an unusually low perihelion distance, which causes it to cross the orbits of the Earth, Venus, and Mercury, and its possibly being a member of the E spectral class, which is rare amongst near-Earth asteroids (NEAs). We present the results of extensive thermal-infrared observations of 1998 WT24 obtained in December 2001 with the 3-m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii and the ESO 3.6-m telescope in Chile. A number of thermal models have been applied to the data, including thermophysical models that give best-fit values of 0.35±0.04 km for the effective diameter, 0.56±0.2 for the geometric albedo, pv, and 100-300 J m−2 s−0.5 K−1 for the thermal inertia. Our values for the diameter and albedo are consistent with results derived from radar and polarimetric observations. The albedo is one of the highest values obtained for any asteroid and, since no other taxonomic type is associated with albedos above 0.5, supports the suggested rare E-type classification for 1998 WT24. The thermal inertia is an order of magnitude higher than values derived for large main-belt asteroids but consistent with the relatively high values found for other near-Earth asteroids. A crude pole solution inferred from a combination of our observations and published radar results is β=−52°, λ=355° (J2000), but we caution that this is uncertain by several tens of degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号