首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dune-forming winds on Titan and the influence of topography   总被引:1,自引:0,他引:1  
Tetsuya Tokano 《Icarus》2008,194(1):243-262
Numerous extended dunes on Saturn's moon Titan detected by the Cassini RADAR constrain the long-term pattern of surface winds. We analyse the statistics of surface wind speed and direction and their spatial and temporal variability predicted by a general circulation model (GCM) in order to constrain surface wind predictions of this GCM by dune observations. The model shows that modern winds are sufficient for saltation and dune formation at low latitudes, in agreement with the presence of dunes there. The best condition for the dune-forming wind occurs with a threshold friction speed of 0.02 m s−1 or slightly less. The equatorial region is conducive to longitudinal dunes because of a combined effect of a high sand drift potential and obtuse bimodal wind pattern oblique to the equator caused by the seasonal reversal of the Hadley circulation. The cross-equatorial wind is steady, and is characterised by a high Weibull shape parameter (k∼4). The wind pattern at higher latitudes is more complex and gusty, and neither longitudinal nor transversal dunes would be able to form. Putative large-scale topography is found to have a profound influence on the near-surface wind pattern. Generally mountains cause a convergence and speeding up on the flank, while basins weaken the wind and cause a divergent flow. Longitudinal dunes can be deflected on the foot of mountains by up to 90°. If Xanadu is a hypothetical large mountain, a wind pattern converging in Xanadu that entirely disagrees with the dune observations is predicted. If instead Xanadu is a large basin, the wind arcs clockwise north of Xanadu and anti-clockwise west and southwest of Xanadu, in agreement with the dune orientations in the vicinity of Xanadu. The albedo pattern has comparatively little influence on the wind field. Isolated mountain chains cause only local-scale change in the wind pattern. However, the persistent surface easterlies in Belet, which are in conflict with the dune orientations, do not disappear by any combination of large-scale topography.  相似文献   

2.
Mary C. Bourke 《Icarus》2010,205(1):183-197
Barchan dune asymmetry refers to the extension of one barchan limb downwind. It is a common dune form on Earth and also occurs on Mars and Titan. A new classification of barchan limbs is presented where three types of limb morphology are identified: linear, kinked and beaded. These, along with other dune-scale morphological signatures, are used to identify three of the causes of barchan asymmetry on Mars: bi-directional winds, dune collision and the influence of inclined topography.The potential for specific dune asymmetric morphologies to indicate aspects of the formative wind regime on planetary surfaces is shown. For example, the placement of dune limbs can indicate the general direction and relative strength of formative oblique winds; an extreme barchan limb length may indicate a long duration oblique wind; a kinked limb may be evidence of the passage of a storm; beaded limbs may represent surface-wave instabilities caused by an increase in wind energy parallel to the dune. A preliminary application of these signatures finds evidence for bi-modal winds on Mars. However, these and other morphological signatures of wind direction and relative strength should be applied to planetary landforms with caution as more than one process (e.g., bi-modal winds and collision) may be operating together or sequentially on the dunefield. In addition, analysis should be undertaken at the dunefield scale and not on individual dunes. Finally, morphological data should be acquired from similar-scale dunes within a dunefield.In addition to bi-modal wind regimes on Mars, the frequent parallel alignment of the extended barchan limb to the dune suggests that dune collision is also an important cause of asymmetry on Mars. Some of the more complex dunefield patterns result from a combination of dune collision, limb extension and merging with downwind dunes.Dune asymmetric form does not inhibit dune migration in the Namib Desert or on Mars. Data from the Namib suggest that dune migration rates are similar for symmetric and asymmetric dunes. Further modeling and field studies are needed to refine our understanding of the potential range of limb and dune morphologies that can result from specific asymmetry causes.  相似文献   

3.
Fine-resolution (500 m/pixel) Cassini Visual and Infrared Mapping Spectrometer (VIMS) T20 observations of Titan resolve that moon's sand dunes. The spectral variability in some dune regions shows that there are sand-free interdune areas, wherein VIMS spectra reveal the exposed dune substrate. The interdunes from T20 are, variously, materials that correspond to the equatorial bright, 5-μm-bright, and dark blue spectral units. Our observations show that an enigmatic “dark red” spectral unit seen in T5 in fact represents a macroscopic mixture with 5-μm-bright material and dunes as its spectral endmembers. Looking more broadly, similar mixtures of varying amounts of dune and interdune units of varying composition can explain the spectral and albedo variability within the dark brown dune global spectral unit that is associated with dunes. The presence of interdunes indicates that Titan's dunefields are both mature and recently active. The spectrum of the dune endmember reveals the sand to be composed of less water ice than the rest of Titan; various organics are consistent with the dunes' measured reflectivity. We measure a mean dune spacing of 2.1 km, and find that the dunes are oriented on the average in an east-west direction, but angling up to 10° from parallel to the equator in specific cases. Where no interdunes are present, we determine the height of one set of dunes photoclinometrically to be between 30 and 70 m. These results pave the way for future exploration and interpretation of Titan's sand dunes.  相似文献   

4.
Large expanses of linear dunes cover Titan’s equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini’s radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan’s geology and climate. We estimate that dune fields cover ∼12.5% of Titan’s surface, which corresponds to an area of ∼10 million km2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ∼11°, dune fields tend to become less emissive and brighter as one moves northward. Above ∼11° this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ∼14°. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (∼5° latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan’s asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan’s northern tropics.  相似文献   

5.
Dune fields dominate ~13% of Titan’s surface and represent an important sink of carbon in the methane cycle. Herein, we discuss correlations in dune morphometry with altitude and latitude. These correlations, which have important implications in terms of geological processes and climate on Titan, are investigated through the microwave electromagnetic signatures of dune fields using Cassini radar and radiometry observations. The backscatter and emissivity from Titan’s dune terrains are primarily controlled by the amount of interdune area within the radar footprint and are also expected to vary with the degree of the interdunal sand cover. Using SAR-derived topography, we find that Titan’s main dune fields (Shangri-La, Fensal, Belet and Aztlan) tend to occupy the lowest elevation areas in Equatorial regions occurring at mean elevations between ~?400 and ~0 m (relative to the geoid). In elevated dune terrains, we show a definite trend towards a smaller dune to interdune ratio and possibly a thinner sand cover in the interdune areas. A similar correlation is observed with latitude, suggesting that the quantity of windblown sand in the dune fields tends to decrease as one moves farther north. The altitudinal trend among Titan’s sand seas is consistent with the idea that sediment source zones most probably occur in lowlands, which would reduce the sand supply toward elevated regions. The latitudinal preference could result from a gradual increase in dampness with latitude due to the asymmetric seasonal forcing associated with Titan’s current orbital configuration unless it is indicative of a latitudinal preference in the sand source distribution or wind transport capacity.  相似文献   

6.
Radarclinometry is a powerful technique for estimating heights of landforms in synthetic aperture radar (SAR) images of planetary surfaces. In particular, it has been used to estimate heights of dunes in the sand seas of Saturn’s moon Titan (Lorenz, R.D., and 39 colleagues [2006]. Science 312, 724-727). In this work, we verify the technique by comparing dune heights derived from radarclinometry to known topography of dune fields in the Namib sand sea of western Africa. We compared results from three different image grid spacings, and found that 350 m/pixel (the same spacing at which the Cassini RADAR data was processed) is sufficient to determine dune height for dunes of similar morphometry to those of the Namib sand sea. At this grid spacing, height estimates derived from radarclinometry are largely representative of, though may underestimate by as much as 30%, or overestimate by as much as 40%, true dune height. Applying the technique to three regions on Titan, we estimate dune heights of 45-180 m, and dune spacings of 2.3-3.3 km. Obtaining accurate heights of Titan’s dunes will help to constrain the total organic inventory on Titan.  相似文献   

7.
Dunes have similar morphologies on the Earth and Mars. The main differences between Martian and terrestrial dunes are their size, which is larger on Mars, and their duration of formation, which is longer on Mars. As the characteristic time of Martian dunes is in the same order as that of the Martian climatic oscillations, Martian dunes could be recorders of past winds regimes and past climates. In order to test this hypothesis, we performed a morphological study of 550 dune fields with high resolution images and we inferred the directions of the dune formative winds from the orientation of the dune slip faces. Our study shows that 310 dune fields record one to four distinct wind directions with some geometric patterns that do not exist on the Earth such as barchans built by opposite wind directions coexisting in the same dune field. Our study demonstrates that the inferred formative wind directions are only partially in agreement with the current wind-patterns predicted by General Circulation Models (GCM). Several possible causes for the misalignment between dunes and GCM outputs are discussed: these include the local variation of the global circulation due to local topographic effects or the possibility that these dunes could be in a transient geometry or fossil. Such bedforms are considered indeed to be not in equilibrium with the present-day atmospheric conditions. This latter hypothesis is supported by the presence, in some ergs, of closely spaced dunes showing nearly opposite slip face orientations. Therefore, we propose that Martian dune fields are constituted, in some cases, by active and fossil dunes and therefore have the potential to preserve information on paleoclimates over extensive periods.  相似文献   

8.
The influence of Saturn's gravitational tide on the atmosphere of Titan is investigated by means of a three-dimensional general circulation model. Titan's orbital eccentricity of 0.0292 gives rise to time-dependent radial and librational tide whose potential circles eastward on Titan. Unlike atmospheric tides on terrestrial planets, Saturn's tide on Titan has a large impact on the dynamic meteorology down to the surface. The surface pressure oscillates by up to 1.5 hPa through the orbit. Near the surface the tidal wind dominates the atmospheric flow and exhibits strong temporal and spatial variation. The superposition of the annually present, thermally forced latitudinal pressure gradient and tidally caused pressure variation produces a unique wind pattern near the surface characterized by equatorward flow and high-latitude whirls. At higher levels the tidal wind manifests itself as eastward traveling planetary-scale wave of wavenumber 2 superposed on the background wind. In general tidal winds are more significant in the troposphere, where other forcing mechanisms are weak. Meridional tidal winds become as fast as 5 m s−1 in the troposphere and change direction periodically through the orbit and along the parallel of latitude. Except in the lower troposphere, zonal winds always remain prograde because the tidal wind amplitude is usually smaller than the mean zonal wind. The tide also has a large impact on the mean zonal circulation in the stratosphere. A meridional drift of the descending Huygens Probe in the troposphere would be the easiest way to verify the tidal wind on Titan, but more complete observations of tropospheric wind and surface pressure by a future mission would be required to unveil the complete details of the tidal wind.  相似文献   

9.
Some 20% of Titan’s surface is covered in large linear dunes that resemble in morphology, size and spacing (1-3 km) those seen on Earth. Although gravity, atmospheric density and sand composition are very different on these two worlds, this coincident size scale suggests that the controlling parameter limiting the growth of giant dunes, namely the boundary layer thickness (Andreotti et al., 2009). Nature, 457, 1120-1123], is similar. We show that a ∼3 km boundary layer thickness is supported by Huygens descent data and is consistent with results from Global Circulation Models taking the distinctive thermal inertia and albedo of the dune sands into account. While the boundary layer thickness on Earth controlling dunes can vary by an order of magnitude depending on the proximity of oceans, which have very different thermal properties from dry land, the relative invariance of dune spacing on Titan is consistent with relatively uniform thermal properties near the dunes and no prominent variation with latitude is seen.  相似文献   

10.
Transverse Aeolian Ridges (TARs), 10 m scale, ripple-like aeolian bedforms with simple morphology, are widespread on Mars but it is unknown what role they play in Mars’ wider sediment cycle. We present the results of a survey of all Mars Global Surveyor Narrow angle images in a pole-to-pole study area, 45° longitude wide.Following on from the classification scheme and preliminary surveys of Balme et al. (Balme, M.R., Berman, D.C., Bourke, M.C., Zimbelman, J.R. [2008a]. Geomorphology 101, 703-720) and Wilson and Zimbelman (Wilson, S.A., Zimbelman, J.R. [2004]. J. Geophys. Res. 109 (E10). doi:10.1029/2004JE002247) we searched more than 10,000 images, and found that over 2000 reveal at least 5% areal cover by TARs. The mean TAR areal cover in the study area is about 7% (3% in the northern hemisphere and 11% in the southern hemisphere) but TARs are not homogenously distributed - they are concentrated in the mid-low latitudes and almost absent poleward of 35°N and 55°S. We found no clear correlation between TAR distribution and any of thermal inertia, kilometer-scale roughness, or elevation. We did find that TARs are less common at extremes of elevation.We found that TARs are most common near the equator (especially in the vicinity of Meridiani Planum, in which area they have a distinctive “barchan-like” morphology) and in large southern-hemisphere impact craters. TARs in the equatorial band are usually associated with outcrops of layered terrain or steep slopes, hence their relative absence in the northern hemisphere. TARs in the southern hemisphere are most commonly associated with low albedo, intercrater dune fields. We speculate that the mid-latitude mantling terrain (e.g., Mustard, J.F., Cooper, C.D., Rifkin, M.K. [2001]. Nature 412, 411-414; Kreslavsky, M.A., Head, J.W. [2002]. J. Geophys. Res. 29 (15). doi:10.1029/2002GL015392) could also play a role in covering TARs or inhibiting saltation.We compared TAR distribution with general circulation model (GCM) climate data for both surface wind shear stress and wind direction. We performed GCM runs at various obliquity values to simulate the effects of changing obliquity on recent Mars climate. We found good general agreement between TAR orientation and GCM wind directions from present day obliquity conditions in many cases, but found no good correlation between wind shear stress and TAR distribution.We performed preliminary high resolution crater count studies of TARs in both equatorial and southern intracrater dunefield settings and compared these to superposition relationships between TARs and large dark dunes. Our results show that TARs near dunefield appear to be younger than TARs in the equatorial regions. We infer that active saltation from the large dunes keeps TARs active, but that TARs are not active under present day condition when distal to large dunes - perhaps supporting the interpretation that TARs are granule ripples.We conclude that local geology, rather than wind strength, controls TAR distribution, but that their orientation matches present-day regional wind patterns in most cases. We suggest that TARs are likely most (perhaps only) active today when they are proximal to large dark dune fields.  相似文献   

11.
Motivated by radar and near-infrared data indicating that Titan’s polar lakes are extremely smooth, we consider the conditions under which a lake surface will be ruffled by wind to form capillary waves. We evaluate laboratory data on wind generation and derive, without scaling for surface tension effects, a threshold for pure methane/ethane of ∼0.5-1 m/s. However, we compute the physical properties of predicted Titan lake compositions using the National Institute for Standards Technology (NIST) code and note that dissolved amounts of C3 and C4 compounds are likely to make Titan lakes much more viscous than pure ethane or methane, even without allowing for suspended particulates which would increase the viscosity further. Wind tunnel experiments show a strong dependence of capillary wave growth on liquid viscosity, and this effect may explain the apparent absence so far of waves, contrary to prior expectations that generation of gravity waves by wind should be easy on Titan. On the other hand, we note that winds over Titan lakes predicted with the TitanWRF Global Circulation Model indicate radar observations so far have in any case been when winds have been low (∼0.5-0.7 m/s), possibly below the wave generation threshold, while peak winds during summer may reach 1-2 m/s. Thus observations of Titan’s northern lakes during the coming years by the Cassini Solstice mission offer the highest probability of observing wind-roughening of lake surfaces, while observations of Ontario Lacus in the south will likely continue to show it to be flat and smooth.  相似文献   

12.
Titan has been observed with UVES, the UV-Visual Echelle Spectrograph at the Very Large Telescope, with the aim of characterizing the zonal wind flow. We use a retrieval scheme originally developed for absolute stellar accelerometry [Connes, P., 1985. Astrophys. Space Sci., 110, 211-255] to extract the velocity signal by simultaneously taking into account all the lines present in the spectrum. The method allows to measure the Doppler shift induced at a given point by the zonal wind flow, with high precision. The short-wavelength channel (4200-5200 Å) probes one scale height higher than the long-wavelength one (5200-6200 Å), and we observe statistically significant evidence for stronger winds at higher altitudes. The results show a high dispersion. Globally, we detect prograde zonal winds, with lower limits of 62 and 50 m s−1 at the regions centered at 200 and 170 km altitude, but approximately a quarter of the measurements indicates null or retrograde winds.  相似文献   

13.
Senkyo is an equatorial plain on Titan filled with dunes and surrounded by hummocky plateaus. During the Titan targeted flyby T61 on August 25, 2009, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed a circular feature, centered at 5.4° N and 341°W, that superimposes the dune fields and a bright plateau. This circular feature, which has been named Paxsi by the International Astronomical Union, is 120±10 km in diameter (measured from the outer edge of the crater rim) and exhibits a central bright area that can be interpreted as the central peak or pit of an impact crater. Although there are only a handful of certain impact craters on Titan, there are two other craters that are of similar size to this newly discovered feature and that have been studied by VIMS: Sinlap (Le Mouélic et al., 2008) and Selk (Soderblom et al., 2010). Sinlap is associated with a large downwind, fan-like feature that may have been formed from an impact plume that rapidly expanded and deposited icy particles onto the surface. Although much of the surrounding region is covered with dunes, the plume region is devoid of dunes. The formation process of Selk also appears to have removed (or covered up) dunes from parts of the adjacent dune-filled terrain. The circular feature on Senkyo is quite different: there is no evidence of an ejecta blanket and the crater itself appears to be infilled with dune material. The rim of the crater appears to be eroded by fluvial processes; at one point the rim is breached. The rim is unusually narrow, which may be due to mass wasting on its inside and subsequent infill by dunes. Based on these observations, we interpret this newly discovered feature to be a more eroded crater than both Sinlap and Selk. Paxsi may have formed during a period when Titan was warmer and more ductile than it is currently.  相似文献   

14.
A.W. Ward  K.B. Doyle 《Icarus》1983,55(3):420-431
Dunes in the Martian north polar erg show two dominant orientations. When seen at frost cap minimum, dunes north of 80°N record east winds, dunes south of 80°N record west winds. Many of the transverse dunes are considered to be reversing dunes. Dunes in two fields may have reversed at least once during the lifetime of the Viking Orbiters. Poor agreement exists among published predictive models of north polar winds and the interpretations derived from the major published map of the north polar dunes. We propose that the average polar winds are: (1) strong, off-pole northwest winds in fall; (2) moderate west winds in winter; (3) latitude-dependent weak to strong off-pole northeast winds in spring; and (4) weak west winds in summer. Viking images of near-polar clouds confirm much of the hypothesis. Images discussed in other studies can be given alternative interpretations that support this hypothesis also. Over millenia, the combination of reversing west and east winds could produce the binodal distributions of dune orientations observed at the north pole.  相似文献   

15.
Cassini’s Titan flyby on 16 April, 2005 (T5) is the only encounter when the two main ionizing sources of the moon’s atmosphere, solar radiation and corotating plasma, align almost anti-parallel. In this paper a single-fluid multi-species 3D MHD model of the magnetospheric plasma interaction for T5 conditions is analyzed. Model results are compared to observations to investigate the ionospheric dynamics at Titan as well as to understand the deviations from a typical solar wind interaction, such as Venus’ interaction with the solar wind. Model results suggest that for the T5 interaction configuration, corotating plasma is the dominant driver determining the global interaction features at high altitudes. In the lower ionosphere below ~1500 km altitude – where the control of the ionospheric composition transfers from dynamic to chemical processes – magnetic and thermal pressure gradients oppose each other locally, complicating the ionospheric dynamics. Model results also imply that the nightside ionosphere – produced only by the impact ionization in the model – does not provide enough thermal pressure to balance the incident plasma dynamic pressure. As a result, the induced magnetic barrier penetrates into the ionosphere by plasma convection down to ~1000 km altitude and by magnetic diffusion below this altitude. Moreover, strong horizontal drag forces due to ion-neutral collisions and comparable drag forces estimated from possible neutral winds in the lower ionosphere below ~1400 km altitude oppose over local regions, implying that the Titan interaction must be treated as a 3D problem. Ion and electron densities calculated from the model generally agree with the Cassini Ion Neutral Mass Spectrometer and Langmuir probe measurements; however, there are significant differences between the calculated and measured magnetic fields. We discuss possible explanations for the discrepancy in the magnetic field predictions.  相似文献   

16.
As on Earth, Titan’s atmosphere plays a major role in the cooling of heated surfaces. We have assessed the mechanisms by which Titan’s atmosphere, dominantly N2 at a surface pressure of 1.5 × 105 Pa, cools a warm or heated surface. These heated areas can be caused by impacts generating melt sheets and (possibly) by endogenic processes emplacing cryolavas (a low-temperature liquid that freezes on the surface). We find that for a cooling cryolava flow, lava lake, or impact melt body, heat loss is mainly driven by atmospheric convection. Radiative heat loss, a dominant heat loss mechanism with terrestrial silicate lava flows, plays only a minor role on Titan. Long-term cooling and solidification are dependent on melt sheet or flow thickness, and also local climate, because persistent winds will speed cooling. Relatively rapid cooling caused by winds reduces the detectability of these thermal events by instruments measuring surface thermal emission. Because surface temperature drops by ≈50% within ≈1 day of emplacement, fresh flows or impact melt may be difficult to detect via thermal emission unless an active eruption is directly observed. Cooling of flow or impact melt surfaces are orders of magnitude faster on Titan than on airless moons (e.g., Enceladus or Europa).Although upper surfaces cool fast, the internal cooling and solidification process is relatively slow. Cryolava flow lengths are, therefore, more likely to be volume (effusion) limited, rather than cooling-limited. More detailed modeling awaits constraints on the thermophysical properties of the likely cryomagmas and surface materials.  相似文献   

17.
A detailed examination of the location and orientation of sand dunes and other aeolian features within the north polar chasmata indicates that steep scarps strongly influence the direction and intensity of prevailing winds. These steep scarps are present at the heads and along the margins of the north polar chasmata. Topographic profiles of the arcuate head scarps and equator-facing wall of Chasma Boreale reveal unusually steep polar slopes ranging from ∼6°-30°. The relatively steep-sloped (∼8°), sinuous scarp at the head of two smaller chasmata, located west of Chasma Boreale, exhibits an obvious resistant cap-forming unit. Scarp retreat is occurring in places where the cap unit is actively being undercut by descending slope winds. Low-albedo surfaces lacking sand dunes or dust mantles are present at the base of the polar scarps. A ∼100-300 m deep moat, located at the base of the scarps, corresponds with these surfaces and indicates an area of active aeolian scour from descending katabatic winds. Small local dust storms observed along the equator-facing wall of Chasma Boreale imply that slope wind velocities in Chasma Boreale are sufficient to mobilize dust and sand-sized particles in the Polar Layered Deposits (PLD). Two amphitheater forms, located above the cap-forming unit of the sinuous scarp and west of Chasma Boreale, may represent an early stage of polar scarp and chasma formation. These two forms are developing within a younger section of polar layered materials. The unusually steep scarps associated with the polar chasmata have developed where resistant layers are present in the PLD, offering resistance during the headward erosion and poleward retreat of the scarps. Steep slopes that formed under these circumstances enhance the flow of down-scarp katabatic winds. On the basis of these observations, we reject the fluvial outflood hypothesis for the origin of the north polar chasmata and embrace a wind erosion model for their long-term development. In the aeolian model, off-pole katabatic winds progressively remove materials from the steep slopes below chasmata scarps, undermining resistant layers at the tops of scarps and causing retreat by headward erosion. Assuming a minimum age for the onset of formation of Chasma Boreale (105 yr) results in a maximum volumetric erosion rate of . Removal of this volume of material from the equator-facing wall and head scarps of chasma would require a rate for scarp retreat of .  相似文献   

18.
The surface of Titan has been revealed by Cassini observations in the infrared and radar wavelength ranges as well as locally by the Huygens lander instruments. Sand seas, recently discovered lakes, distinct landscapes and dendritic erosion patterns indicate dynamic surface processes. This study focus on erosional and depositional features that can be used to constrain the amount of liquids involved in the erosional process as well as on the compositional characteristics of depositional areas. Fluvial erosion channels on Titan as identified at the Huygens landing site and in RADAR and Visible and Infrared Mapping Spectrometer (VIMS) observations have been compared to analogous channel widths on Earth yielding average discharges of up to 1600 m3/s for short recurrence intervals that are sufficient to move centimeter-sized sediment and significantly higher discharges for long intervals. With respect to the associated drainage areas, this roughly translates to 1-150 cm/day runoff production rates with 10 years recurrence intervals and by assuming precipitation this implies 0.6-60 mm/h rainfall rates. Thus the observed surface erosion fits with the methane convective storm models as well as with the rates needed to transport sediment. During Cassini's T20 fly-by, the VIMS observed an extremely eroded area at 30° W, 7° S with resolutions of up to 500 m/pixel that extends over thousands of square kilometers. The spectral characteristics of this area change systematically, reflecting continuous compositional and/or particle size variations indicative of transported sediment settling out while flow capacities cease. To account for the estimated runoff production and widespread alluvial deposits of fine-grained material, release of area-dependent large fluid volumes are required. Only frequent storms with heavy rainfall or cryovolcanic induced melting can explain these erosional features.  相似文献   

19.
Cassini's third and fourth radar flybys, T7 and T8, covered diverse terrains in the high southern and equatorial latitudes, respectively. The T7 synthetic aperture radar (SAR) swath is somewhat more straightforward to understand in terms of a progressive poleward descent from a high, dissected, and partly hilly terrain down to a low flat plain with embayments and deposits suggestive of the past or even current presence of hydrocarbon liquids. The T8 swath is dominated by dunes likely made of organic solids, but also contain somewhat enigmatic, probably tectonic, features that may be partly buried or degraded by erosion or relaxation in a thin crust. The dark areas in T7 show no dune morphology, unlike the dark areas in T8, but are radiometrically warm like the dunes. The Huygens landing site lies on the edge of the T8 swath; correlation of the radar and Huygens DISR images allows accurate determination of its coordinates, and indicates that to the north of the landing site sit two large longitudinal dunes. Indeed, had the Huygens probe trajectory been just 10 km north of where it actually was, images of large sand dunes would have been returned in place of the fluvially dissected terrain actually seen—illustrating the strong diversity of Titan's landscapes even at local scales.  相似文献   

20.
Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ∼800 km north-northwest of the Huygens landing site. The crater rim-crest diameter is ∼90 km; its floor diameter is ∼60 km. A central pit/peak, 20-30 km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15 km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21° and 122° east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk “bench.” Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk’s ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号