首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report on observations of the dust trail of Comet 67P/Churyumov-Gerasimenko (CG) in visible light with the Wide Field Imager at the ESO/MPG 2.2 m telescope at 4.7 AU before aphelion, and at with the MIPS instrument on board the Spitzer Space Telescope at 5.7 AU both before and after aphelion. The comet did not appear to be active during our observations. Our images probe large dust grains emitted from the comet that have a radiation pressure parameter β<0.01. We compare our observations with simulated images generated with a dynamical model of the cometary dust environment and constrain the emission speeds, size distribution, production rate and geometric albedo of the dust. We achieve the best fit to our data with a differential size distribution exponent of −4.1, and emission speeds for a β=0.01 particle of 25 m/s at perihelion and 2 m/s at 3 AU. The dust production rate in our model is on the order of 1000 kg/s at perihelion and 1 kg/s at 3 AU, and we require a dust geometric albedo between 0.022 and 0.044. The production rates of large (>) particles required to reproduce the brightness of the trail are sufficient to also account for the coma brightness observed while the comet was inside 3 AU, and we infer that the cross-section in the coma of CG may be dominated by grains of the order of .  相似文献   

2.
We present observations of the extended dust structures near the orbits of three short-period comets: 2P/Encke, 22P/Kopff, and 65P/Gunn. The dust trails were originally discovered by the Infrared Astronomical Satellite (IRAS). Our observations were made using wide-field optical CCD cameras on the University of Hawaii 2.24-m telescope, the Canada-France-Hawaii 3.6-m telescope, and the Kiso 1.05-m Schmidt telescope. We compared the observed images with models and found that the extended structures seen around 2P/Encke and 22P/Kopff before perihelion passage were most likely “dust trails,” whereas images taken after perihelion passage show a high contamination by recently released particles (i.e., particles in Neck-Line structures are visible). We could not confirm the existence of a dust trail from 65P/Gunn within the field of view of the camera used. The effective sizes of the particles responsible for the scattered light were estimated at 1-100 mm (2P/Encke), 1-10 mm (22P/Kopff), and 100 μm-1 mm (65P/Gunn), respectively, which is consistent with previous studies of dust trails made with infrared space telescopes and optical telescopes. We evaluated the mass loss rates of these comets, averaged over their orbits, as reaching (2P/Encke), (22P/Kopff), and (65P/Gunn). These values are consistent with previous work. Therefore, the total amount of material ejected from these three comets is , which would contribute a considerable fraction of the lost within 1 AU that needs to be replaced if the zodiacal cloud is to be maintained in a steady state. We also found that the particles in the dust structures are significantly redder than the Sun and the zodiacal light, and might be redder than the average short-period comet nuclei. Specifically, the reflectivity gradients of 2P/Encke, 22P/Kopff, and 65P/Gunn are 13±7 (% 103 Å−1), 20±5 (% 103 Å−1), and 15±4 (% 103 Å−1), respectively. We examined the change in color with distance from the nucleus. No clear correlation was detected for 2P/Encke or 22P/Kopff to an accuracy of 3-11%, while the 65P/Gunn tail did show color variation, becoming redder with increasing distance from the nucleus. This dark red material, consisting of particles of sand-cobble size, has marginally escaped from the nuclei and will evolve into finer-grained interplanetary dust particles after subsequent collisions.  相似文献   

3.
David G. Schleicher 《Icarus》2006,181(2):442-457
We present compositional and physical results of Comet 67P/Churyumov-Gerasimenko, the new target of ESA's Rosetta mission. A total of 16 nights of narrowband photometry were obtained at Lowell Observatory during the 1982/83 and 1995/96 apparitions, along with one night of imaging near perihelion in 1996. These data encompass an interval of −61 to +118 days from perihelion, corresponding to a range of heliocentric distances before perihelion from 1.48 to 1.34 AU, and an outbound range from 1.30 to 1.86 AU. Production rates were determined for OH, NH, CN, C3, and C2, along with A(θ)fρ, a proxy of the dust production. Water production, based on OH, has a steep () power-law rH-dependence post-perihelion and the minor species are somewhat less steep ( to −4), while the dust is quite shallow (), possibly due to a lingering population of large, slow-moving grains. All species exhibit larger production rates after perihelion, with water having a ∼2×pre/post-perihelion asymmetry, while minor species and dust have larger asymmetries. These asymmetries imply a strong seasonal effect and probable high obliquity of the rotational axis, along with one or more isolated source regions coming into sunlight near perihelion. Peak water production (which occurred about 1 month after perihelion) was and, when combined with a standard water vaporization model, implies an effective active area on the surface of the nucleus of ∼1.5-2.2 km2 or an active fraction of only about 3-4%. Abundances of carbon-chain molecules yield a classification of slightly “depleted” in the A'Hearn et al. [A'Hearn, M.F., Millis, R.L., Schleicher, D.G., Osip, D.J., Birch, P.V., 1995. Icarus 118, 223-270] database. The peak dust production (as measured by A(θ)fρ, and uncorrected for phase angle) was ∼450 cm, while the color of the dust is moderately reddened, and the mean radial profile has a power-law slope of −1.3. Large night-to-night variability is also present, presumably due to the source region(s) rotating in and out of sunlight along with effects due to the use of differently sized apertures. A strong sunward radial feature was detected in images obtained near perihelion, along with a significant asymmetry between the two perpendicular directions from the Sun/tail line. These features may be the result of a mid-latitude source region sweeping out a cone with each rotation, which we are viewing from the side and where the sunward radial feature is one edge of the cone seen in projection. When combined with other constraints on the pole orientation, a possible pole solution is found having an obliquity of about 134° at an RA of about 223° and a Dec of −65°, with a source region located near +50° and in overall agreement with the photometric results. In comparison to the original Rosetta target Comet 46P/Wirtanen, Comet Churyumov-Gerasimenko has essentially the same peak water production but a peak dust production about 3 times greater than does Wirtanen based on A(θ)fρ (i.e., if one assumes that the properties of the dust grains are similar) (cf. Farnham and Schleicher [1998. Astron. Astrophys. 335, L50-L55]).  相似文献   

4.
Perihelion motion, i.e. a secular change of longitude of perihelion, of interplanetary dust particles is investigated under the action of solar gravity and solar electromagnetic radiation. As for spherical particle [Kla?ka, J., 2004. Electromagnetic radiation and motion of a particle. Cel. Mech. Dynam. Astron. 89, 1-61]: (i) perihelion motion is of the order ( is heliocentric velocity of the meteoroid and c is the speed of light in vacuum), if a component of electromagnetic radiation acceleration is considered as a part of central acceleration; (ii) perihelion motion is of the first order in if the total electromagnetic radiation force is considered as a disturbing force. The new facts presented in this paper concern irregular dust particles. Detailed numerical calculations were performed for the grains ejected at aphelion of comet Encke. Perihelion motion for irregular interplanetary dust particles exists already in the first order in for both cases of central accelerations. Moreover, perihelion motion of irregular particles exhibits both positive and negative directions during the particle orbital motion. Irregularity of the grains causes not only perihelion motion, but also dispersion of the dust in various directions, also normal to the orbital plane of the parent body.  相似文献   

5.
The Ulysses spacecraft orbits the Sun on a highly inclined orbit, and the impact ionization dust detector on board continuously measures interstellar dust grains with masses up to , penetrating deep into the Solar System. The flow direction is close to the mean apex of the Sun's motion through the local interstellar cloud (LIC), and the grains act as tracers of the physical conditions in the LIC. Previous analysis gave a velocity dispersion of up to 40° for the interstellar grains. We partially re-analyzed the Ulysses interstellar dust data set, taking into account the detector's inner side walls. As the side walls have a sensitivity for dust impact detection almost identical to that of the instrument's target area, wall impactors must be taken into account for estimating the intrinsic velocity dispersion of the interstellar impactors and the interstellar dust flux value. Neglect of the sensor side walls overestimates the interstellar dust stream velocity dispersion by about 30% and the interstellar dust flux by about 20%.  相似文献   

6.
Hale-Bopp (C/1995 O1) was the most productive recent comet observed in terms of gas and dust output. Since its discovery in 1995 at a distance of 7.14 AU from the Sun, the comet has been well observed, revealing the dynamics of a rare and large comet. Hale-Bopp showed strong emissions of the principle cometary gases CN, C3, and C2, as well as an abundance of dust. The production rates of these gases were found to be 1.45×1028, 1.71×1028, and , respectively, with dust production, in terms of Afρ, , as measured in the green continuum (5260 Å). The observations for this paper are presented in two groups spanning 10 days each, one group centered near 32 days prior to and the other 21 days after perihelion. The averages of dust and gas production rates show a slightly higher value for each prior to perihelion than after perihelion, consistent with a possible peak in production a few weeks prior to perihelion passage.  相似文献   

7.
The new target of the Rosetta mission is comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G). In order to support the planning of the mission, in particular the strategy during the mapping and landing phases, we have performed numerical simulations of the rotational evolution of a comet in the orbit of 67P/C-G. In these simulations, the currently known observational constraints have been taken into account and a large set of initial conditions were considered. For most of the simulations, we observe that the sublimation-induced torques produce significant changes in the rotational parameters of a 67P/C-G-like comet. Typical rates of change for the spin period from the rendezvous up to the end of the nominal mission range from 0.001 to depending on different circumstances as described in the text. At perihelion, rates of change of the orientation of the angular momentum vector amount to about 0.01-. These simulations suggest that a specific strategy should be defined in order to monitor likely variations of the rotational parameters. As an example we show a possible optimized schedule for observations with the OSIRIS instrument to determine the rotational parameters of comet 67P/C-G and their possible evolution.  相似文献   

8.
Impact-generated dust clouds around airless bodies have been observed or suggested to be present throughout the solar system, including around the Martian, Galilean and Saturnian satellites. Simulations have assessed Pluto and Charon as sources of a possible dust cloud or torus and found that such a cloud would be dominated by Charon-produced ejecta and would have an optical depth of τ≈10−11. These simulations were conducted before the discovery of two additional, small satellites of Pluto, Nix and Hydra. These small moons may yield impact-generated dust in excess of their larger counterparts due to their lower escape velocities, despite their smaller cross sections. In this paper, we extend a previous model of the Pluto–Charon dust cloud to include Nix and Hydra, both as sinks for Pluto- and Charon-generated dust and as sources of impact-generated dust. We find that Nix- and Hydra-generated dust grains outlive Pluto and Charon dust grains significantly and are the dominant contributors of dust in the Pluto–Charon system. Furthermore, we estimate the net geometric optical depth of grains between 0.1 and to be on the order of 10−7.  相似文献   

9.
We report on the results of the Cosmic Dust Experiment (CDE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, collected during eight months of operation between May 2007 and February 2008. CDE is an impact detector designed to measure the variability of the cosmic dust influx of grains with radius, . CDE consists of 14 permanently polarized polyvinylidene fluoride (PVDF) channels that produce an electrical signal when impacted with hyper-velocity dust particles. The instrument has a total surface area of 0.11 m2 and a time resolution of 1 s. CDE experienced higher noise levels than expected on-orbit, triggering the need for new laboratory experiments, as well as the development of new data reduction approaches. We present the first eight months of reduced CDE data, highlighting the observed spatial and temporal variability of the cosmic dust influx.  相似文献   

10.
Saturn's diffuse E ring is the largest ring of the Solar System and extends from about (Saturn radius RS=60,330 km) to at least encompassing the icy moons Mimas, Enceladus, Tethys, Dione, and Rhea. After Cassini's insertion into her saturnian orbit in July 2004, the spacecraft performed a number of equatorial as well as steep traversals through the E ring inside the orbit of the icy moon Dione. Here, we report about dust impact data we obtained during 2 shallow and 6 steep crossings of the orbit of the dominant ring source—the ice moon Enceladus. Based on impact data of grains exceeding 0.9 μm we conclude that Enceladus feeds a torus populated by grains of at least this size along its orbit. The vertical ring structure at agrees well with a Gaussian with a full-width-half-maximum (FWHM) of ∼4200 km. We show that the FWHM at is due to three-body interactions of dust grains ejected by Enceladus' recently discovered ice volcanoes with the moon during their first orbit. We find that particles with initial speeds between 225 and 235 m s−1 relative to the moon's surface dominate the vertical distribution of dust. Particles with initial velocities exceeding the moon's escape speed of 207 m s−1 but slower than 225 m s−1 re-collide with Enceladus and do not contribute to the ring particle population. We find the peak number density to range between 16×10−2 m−3 and 21×10−2 m−3 for grains larger 0.9 μm, and 2.1×10−2 m−3 and 7.6×10−2 m−3 for grains larger than 1.6 μm. Our data imply that the densest point is displaced outwards by at least with respect of the Enceladus orbit. This finding provides direct evidence for plume particles dragged outwards by the ambient plasma. The differential size distribution for grains >0.9 μm is described best by a power law with slopes between 4 and 5. We also obtained dust data during ring plane crossings in the vicinity of the orbits of Mimas and Tethys. The vertical distribution of grains >0.8 μm at Mimas orbit is also well described by Gaussian with a FWHM of ∼5400 km and displaced southwards by ∼1200 km with respect to the geometrical equator. The vertical distribution of ring particles in the vicinity of Tethys, however, does not match a Gaussian. We use the FWHM values obtained from the vertical crossings to establish a 2-dimensional model for the ring particle distribution which matches our observations during vertical and equatorial traversals through the E ring.  相似文献   

11.
12.
13.
14.
During its cruise phase, prior to encountering Jupiter, the Cosmic Dust Analyser (CDA) onboard the Cassini spacecraft returned time of flight mass spectra (TOF MS) of two interplanetary dust particles. Both particles were found to be iron-rich, with possible traces of hydrogen, carbon, nickel, chromium, manganese, titanium, vanadium and minor silicates. Carbon, hydrogen, oxygen and potassium are also present as possible contaminants of the impact target of CDA. Silicates and magnesium do not feature predominantly in the spectra; this is surprising considering the expected dominance of silicate-rich minerals in interplanetary dust particles. The particle masses are and . The corresponding radii ranges for the particles, assuming densities from 7874-2500 kg m−3 are 0.7-4 μm and 2.6-6.8 μm, respectively. With the same density assumptions the β values (ratio of radiation pressure to gravitational force) are estimated as 0.027-0.21 and 0.016-0.06 respectively, allowing possible orbits to be calculated. The resulting orbits are bound and prograde with semi-major axes, eccentricities and inclinations in the region of 0.3-1.26 AU, 0.4-1.0 and 0-60° for the first particle and 0.8-2.5 AU, 0.2-0.9 and 0-30° for the second. The more probable orbits within these ranges indicate that the first particle is in an Aten-like orbit, whilst the second particle is in an Apollo-like orbit, despite both grains having very similar, predominantly metallic compositions. Other possible orbital solutions for both particles encompass orbits which more closely resemble those of Jupiter-family comets.  相似文献   

15.
Ion waves excited by charged dust beams streaming across or along the geomagnetic field in the ionosphere may be generated by plasma instabilities during aerosol release experiments. The injection speed of the dust and gas is comparable to or larger than the ion thermal speed in the background plasma. The dust grains can get charged by plasma collection from the ambient ionosphere, and can thus act as a charged beam that excites instabilities in the background plasma. The theory is applied to relatively early time scales of the order of in the dust-gas cloud expansion, with wave frequencies that are larger than the ion gyrofrequency, and collisions with neutrals are included.  相似文献   

16.
The capture of arbitrarily shaped interstellar dust in the Solar System is investigated. Electromagnetic radiation and gravitational forces of the Sun and Lorentz force generated by interplanetary magnetic field are considered. The capture conditions appear to be very sensitive to the particle shape. Non-spherical particles as well as their spherical equivalents are captured only when they are moving initially in the vicinity of ecliptic plane. Capture of non-charged non-spherical dust typically occurs in the region , where RSun is solar radius and impact parameter b is defined as the smallest distance between the particle and the Sun if no forces existed. In contrast, charged particles are typically captured at b>150 RSun. The total amount of captured non-spherical sub-micron particles differs significantly from the corresponding amount of spherical dust grains. However, both amounts are comparable in the micron-sized range. It is shown that a certain mass of captured non-spherical particles may survive in the Solar System, while captured spherical ones hit the Sun or sublimate in its vicinity. Only a negligible amount of spherical particles can survive. Consideration of solar wind within around of yields that 20% of the captured non-spherical particles of the effective radius survive; the corresponding percentage for particles of the radius is 7%. The total mass of the surviving charged particles is about two orders of magnitude larger than the mass of the surviving non-charged particles. As a result, the sub-micron-sized particles are candidates to contribute to the density increase of the circumsolar dust cloud.  相似文献   

17.
The results of the 9P/Tempel 1 CARA (Cometary Archive for Amateur Astronomers) observing campaign is presented. The main goal was to perform an extended survey of the comet as a support to the Deep Impact (DI) Mission. CCD R, I and narrowband aperture photometries were used to monitor the Afρ quantity. The observed behavior showed a peak of 310 cm 83 days before perihelion, but we argue that it can be distorted by the phase effect, too. The phase effect is roughly estimated around 0.0275 mag/degree, but we had no chance for direct determination because of the very similar geometry of the observed apparitions. The log-slope of Afρ was around −0.5 between about 180-100 days before the impact but evolved near the steady-state like 0 value by the impact time. The DI module impact caused about a 60% increase in the value of Afρ and a cloud feature in the coma profile which was observed just after the event. The expansion of the ejecta cloud was consistent with a fountain model with initial projected velocity of 0.2 km/s and β=0.73. Referring to a 25,000 km radius area centered on the nucleus, the total cross section of the ejected dust was 0.06 days after the impact, and 1.93 days after the impact (A is the dust albedo). Five days after the event no signs of the impact were detected, nor deviations from the expected activity referring both to the average pre-impact behavior and to the previous apparitions.  相似文献   

18.
In partially ionized dusty space plasmas collisional momentum transfer between neutral and charged components of different inertia yields significant self-induced magnetic fields on remarkable short time scales of several dust Alfven times. Considering the proto-solar accretion disk previous first self-consistent plasma-neutral gas-dust simulations have shown, that this process yields a self-magnetization of 10-5- on time scales of about 100 days. Thus, this mechanism is able to explain the remanent magnetization of chondrite type meteorite matter. New simulations show the quantitative dependence of the self-magnetization on polarity and charge numbers of the dust grains.  相似文献   

19.
We performed impact disruption experiments on pieces from eight different anhydrous chondritic meteorites—four weathered ordinary chondrite finds from North Africa (NWA791, NWA620, NWA869 and MOR001), three almost unweathered ordinary chondrite falls (Mbale, Gao, and Saratov), and an almost unweathered carbonaceous chondrite fall (Allende). In each case the impactor was a small (1/8 or 1/4 in) aluminum sphere fired at the meteorite target at , comparable to the mean collision speed in the main-belt. Some of the ∼5 to debris from each disruption was collected in aerogel capture cells, and the captured particles were analyzed by in situ synchrotron-based X-ray fluorescence. For each meteorite, many of the smallest particles ( up to in size, depending on the meteorite) exhibit very high Ni/Fe ratios compared to the Ni/Fe ratios measured in the larger particles , a composition consistent with the smallest debris being dominated by matrix material while the larger debris is dominated by fragments from olivine chondrules. These results may explain why the interplanetary dust particles (IDPs) collected from the Earth's stratosphere are C-rich and volatile-rich compared to the presumed solar nebula composition. The IDPs may simply sample the matrix of an inhomogeneous parent body, structurally and mineralogically similar to the chondritic meteorites, which are inhomogeneous assemblages of compact, strong, C- and volatile-poor chondrules that are distributed in a more porous, C- and volatile-rich matrix. In addition, these results may explain why the micrometeorites, which are to millimeters in size, recovered from the polar ices are Ni- and S-poor compared to chondritic meteorites, since these polar micrometeorites may preferentially sample fragments from the Ni- and S-poor olivine chondrules. These results indicate that the average composition of the IDPs may be biased towards the composition of the matrix of the parent body while the average composition of the polar micrometeorites may be more heavily weighted towards the composition of the chondrules and clasts. Thus, neither the IDPs nor the polar micrometeorites may sample the bulk composition of their respective parent bodies.We determined the threshold collisional specific energy for these chondritic meteorites to be 1419 J/kg, about twice the value for terrestrial basalt. Comparison of the mass of the largest fragment produced in the disruption of an sample of the porous ordinary chondrite Saratov with the largest fragment produced in the disruption of an sample of the compact ordinary chondrite MOR001 when each was struck by an impactor having approximately the same kinetic energy confirms that it requires significantly more energy to disrupt a porous target than a non-porous target.These results may also have important implications for the design of spacecraft missions intended to sample the composition and mineralogy of the chondritic asteroids and other inhomogeneous bodies. A Stardust-like spacecraft intended to sample asteroids by collecting only the small debris from a man-made impact onto the asteroid may collect particles that over-sample the matrix of the target and do not provide a representative sample of the bulk composition. The impact collection technique to be employed by the Japanese HAYABUSA (formerly MUSES-C) spacecraft to sample the asteroid Itokawa may result in similar mineral segregation.  相似文献   

20.
We have obtained full-disk spatially resolved spectra of the Venus nightside at near-infrared wavelengths during July 2007 using the Anglo-Australian Telescope and Infrared Imager and Spectrograph 2 (IRIS2). The data have been used to map the intensity and rotational temperature of the O2(a1Δg) airglow band at . The temperatures agree with those obtained in earlier IRIS2 observations and are significantly higher than expected from the Venus International Reference Atmosphere (VIRA) profile. We also report the detection of the corresponding ν=0-1O2 airglow band at with a similar spatial distribution to the ν=0-0 band. Observations in the thermal window have been used to image surface topography using two different methods of cloud correction. We have also obtained images that can be used to study cloud motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号