首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spectroscopic studies of Mars analog materials combining multiple spectral ranges and techniques are necessary in order to obtain ground truth information for interpretation of rocks and soils on Mars. Two hydrothermal rocks from Yellowstone National Park, Wyoming, were characterized here because they contain minerals requiring water for formation and they provide a possible niche for some of the earliest organisms on Earth. If related rocks formed in hydrothermal sites on Mars, identification of these would be important for understanding the geology of the planet and potential habitability for life. XRD, thermal properties, VNIR, mid-IR, and Raman spectroscopy were employed to identify the mineralogy of the samples in this study. The rocks studied here include a travertine from Mammoth Formation that contains primarily calcite with some aragonite and gypsum and a siliceous sinter from Octopus Spring that contains a variety of poorly crystalline to amorphous silicate minerals. Calcite was detected readily in the travertine rock using any one of the techniques studied. The small amount of gypsum was uniquely identified using XRD, VNIR, and mid-IR, while the aragonite was uniquely identified using XRD and Raman. The siliceous sinter sample was more difficult to characterize using each of these techniques and a combination of all techniques was more useful than any single technique. Although XRD is the historical standard for mineral identification, it presents some challenges for remote investigations. Thermal properties are most useful for minerals with discrete thermal transitions. Raman spectroscopy is most effective for detecting polarized species such as CO3, OH, and CH, and exhibits sharp bands for most highly crystalline minerals when abundant. Mid-IR spectroscopy is most useful in characterizing Si-O (and metal-O) bonds and also has the advantage that remote information about sample texture (e.g., particle size) can be determined. Mid-IR spectroscopy is also sensitive to structural OH, CO3, and SO4 bonds when abundant. VNIR spectroscopy is best for characterizing metal excitational bands and water, and is also a good technique for identification of structural OH, CO3, SO4, or CH bonds. Combining multiple techniques provides the most comprehensive information about mineralogy because of the different selection rules and particle size sensitivities, in addition to maximum coverage of excitational and vibrational bands at all wavelengths. This study of hydrothermal rocks from Yellowstone provides insights on how to combine information from multiple instruments to identify mineralogy and hence evidence of water on Mars.  相似文献   

2.
Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100 °C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<−70 to 25 °C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100 °C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355 K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353 K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model.  相似文献   

3.
We present the Messinian evaporite suite (Mediterranean region) and the Solfatara hydrothermal system (Phlegraean Fields volcanic province, Italy), discuss their implications for understanding the origin of sulfates on Mars and show preliminary sets of VNIR laboratory and in situ reflectance spectra of rocks from these geologic systems. The choice was based on a number of evidence relative to Mars: (1) the chemistry of the Martian sulfates, suggesting fluid interactions with possibly alkali-basaltic rocks and/or regolith; (2) close range evidence of sulfates within sedimentary formations on Mars; (3) sulfate spectral signatures associated to large-scale layered patterns interpreted as thick depositional systems on Mars. The Messinian evaporites comprise three units: primary shallow-water sulfates (primary lower gypsum: PLG), shallow- to deep-water mixed sulfates and clastic terrigenous deposits (resedimented lower gypsum: RLG), and shallow-water associations of primary sulfates and clastic fluvio-deltaic deposits (upper evaporites: UE). The onset of the Messinian evaporites records the transition to negative hydrologic budget conditions associated with the Messinian Salinity Crisis, which affected the entire Mediterranean basin and lasted about 640 kyr. The Solfatara is a still evolving hydrothermal system that provides epithermal deposits precipitated from the interaction of fluids and trachybasaltic to phonolitic rocks. Thermal waters include alkali-chloride, alkali-carbonate and alkali-sulfate endmembers.The wide spectrum of sedimentary gypsum facies within the Messinian formation includes some of the depositional environments hitherto identified on Mars and others not found on Mars. The PLG unit includes facies associations correlated over long distances, that could be a possible analog of the stratified rock units exposed from Arabia Terra at least as far as Valles Marineris. The facies cycles within the UE unit can be compared to the sequences of strata observed in craters such as Holden and Eberswalden. The UE unit records paleoenvironmental changes which are ultimately controlled by terrestrial climatic variations. They can be considered as a reliable climatic proxy and may be useful for the reconstruction of climatic events on Mars. The intermediate Messinian RLG unit has not, at present, a well-defined depositional counterpart on Mars, although there are some similarities with the northern lowlands and Vastitas Borealis Formation. The dramatic variation of hydrologic budget conditions at the onset of the Messinian evaporites may provide criteria for the interpretation of similar variations on Mars.The volcanic rocks at the Solfatara bear some similarities with the “alkaline magmatic province” observed at the Gusev crater on Mars, and the assemblages of hydrothermal phases resulting from the Solfatara's parent rocks could be analogues for processes involving Gusev-type rocks.The Messinian sulfates have a prevalent Ca-sulfatic composition and wide textural variability. Preliminary laboratory reflectance spectra of rock samples in the VNIR region reveal the signature of sulfates and mixtures of several Fe-bearing phases. At the Solfatara, in situ reflectance measurements of epithermal minerals close to active fumaroles showed the presence of Fe-bearing sulfates, hematite, Al- and K-sulfates and abundant amorphous fraction. XRD analysis supported this interpretation.The range of depositional facies observed in the Messinian units and the variety of minerals detected in the Solfatara will be useful for the interpretation of close range data of Mars. The spectral characterization at various scales of the Messinian sedimentary facies and the Solfatara hydrothermal minerals will both help in the exploration of Mars from orbit and with close range inspection.  相似文献   

4.
Investigations of Mars as a potential location for life often make the assumption that where there are habitats, they will contain organisms. However, the observation of the ubiquitous distribution of life in habitable environments on the Earth does not imply the presence of life in martian habitats. Although uninhabited habitats are extremely rare on the Earth, a lack of a productive photosynthetic biosphere on Mars to generate organic carbon and oxygen, thus providing a rapidly available redox couple for energy acquisition by life and/or a lack of connectivity between habitats potentially increases the scope and abundance of uninhabited habitats for much of the geological history of the planet. Uninhabited habitats could have existed on Mars from the Noachian to the present-day in impact hydrothermal systems, megaflood systems, lacustrine environments, transient melted permafrost, gullies and local regions of volcanic activity; and there may be evidence for them in martian meteorites. Uninhabited habitats would provide control habitats to investigate the role of biology in planetary-scale geochemical processes on the Earth and they would provide new constraints on the habitability of Mars. Future robotic craft and samples returned from Mars will be able to directly show if uninhabited habitats exist or existed on Mars.  相似文献   

5.
Abstract– The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene‐rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X‐ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars.  相似文献   

6.
7.
The atmospheric entry heating of micrometeorites (MMs) can significantly alter their pre‐existing mineralogy, texture, and organic material. The degree of heating depends predominantly on the gravity and atmospheric density of the planet on which they fall. For particles falling on Earth, the alteration can be significant, leading to the destruction of much of the pre‐entry organics; however, the weaker gravity and thinner atmosphere of Mars enhance the survival of MMs and increase the fraction of particles that preserve organic material. This paper investigates the entry heating of MMs on the Earth and Mars in order to examine the MM population on each planet and give insights into the survival of extraterrestrial organic material. The results show that particles reaching the surface of Mars experience a lower peak temperature compared to Earth and, therefore, experience less evaporative mass loss. Of the particles which reach the surface, 68.2% remain unmelted on Mars compared to only 22.8% on Earth. Due to evaporative mass loss, unmelted particles that reach the surface of Earth are restricted to sizes <70 μm whereas particles >475 μm survive unmelted on Mars. Approximately 10% of particles experience temperatures below ~800 K, that is, the sublimation temperature of refractory organics found in MMs. On Earth, this fraction is significantly lower with less than 1% expected to remain below this temperature. Lower peak temperatures coupled with the larger sizes of particles surviving without significant heating on Mars suggest a much higher fraction of organic material surviving to the Martian surface.  相似文献   

8.
Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite–marcasite‐bearing vug at the ~23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65–1.1 μm) and samples in the laboratory (0.4–2.5 μm), point spectroscopy (0.35–2.5 μm), major element chemistry, and X‐ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat‐lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite‐rich host rock formed gypsum‐bearing red coatings. These results have implications for understanding water–rock interactions and habitabilities at this site and on Mars.  相似文献   

9.
A large number of candidate open-basin lakes (low-lying regions with both inlet valleys and an outlet valley) have been identified and mapped on Mars and are fed by valley network systems that were active near the Noachian–Hesperian boundary. The nature of processes that modified the open-basin lake interiors subsequent to lacustrine activity, and how frequently sedimentary deposits related to lacustrine activity remain exposed, has not been extensively examined. An analysis of 226 open-basin lakes was undertaken to identify evidence for: (1) exposed deposits of possible lacustrine origin and (2) post-lacustrine-activity processes that may have modified or resurfaced open-basin lakes. Spectroscopic data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument were analyzed over identified exposed open-basin lake deposits to assess the mineralogy of these deposits. Particular attention was paid to the possible detection of any component of aqueous alteration minerals (e.g. phyllosilicates, hydrated silica, zeolites) or evaporites (e.g. carbonates, sulfates, chlorides) associated with these exposed deposits. The aim of this paper is to act as a broad survey and cataloguing of the types of lacustrine and post-lacustrine deposits that are present within these 226 paleolake basins. Results of the morphologic classification indicate that 79 open-basin lakes (~35% of the population) contain exposed deposits of possible lacustrine origin, identified on the basis of fan/delta deposits, layered deposits and/or exposed floor material of apparent lacustrine origin. Additionally, all 226 open-basin lakes examined appear to have been at least partially resurfaced subsequent to their formation by several processes, including volcanism, glacial and periglacial activity, impact cratering and aeolian activity. Results from the analysis of CRISM data show that only 10 (~29% of the 34 deposits with CRISM coverage) of the exposed open-basin lake deposits contain positively identified aqueous alteration minerals, with one deposit also containing evaporites. The identified hydrated and evaporite minerals include Fe/Mg-smectite, kaolinite, hydrated silica and carbonate, with Fe/Mg-smectite the most commonly identified mineral. These results indicate that hydrated and evaporite minerals are not as commonly associated with lacustrine deposits on Mars as they are on Earth. This suggests in situ alteration and mineral precipitation, a common source of such minerals in terrestrial lakes, was not a major process occurring in these paleo-lacustrine systems, and that the observed minerals are likely to be present as transported material within the lacustrine deposits. The lack of widespread in situ alteration also suggests that either the water chemistry in these paleolake systems was not conducive to aqueous alteration and mineral precipitation, or that the open-basin lake systems were relatively short-lived.  相似文献   

10.
Mars appears to have experienced little compositional differentiation of primitive lithosphere, and thus much of the surface of Mars is covered by mafic lavas. On Earth, mafic and ultramafic rocks present in ophiolites, oceanic crust and upper mantle that have been obducted onto land, are therefore good analogs for Mars. The characteristic mineralogy, aqueous geochemistry, and microbial communities of cold-water alkaline springs associated with these mafic and ultramafic rocks represent a particularly compelling analog for potential life-bearing systems. Serpentinization, the reaction of water with mafic minerals such as olivine and pyroxene, yields fluids with unusual chemistry (Mg–OH and Ca–OH waters with pH values up to ~12), as well as heat and hydrogen gas that can sustain subsurface, chemosynthetic ecosystems. The recent observation of seeps from pole-facing crater and canyon walls in the higher Martian latitudes supports the hypothesis that even present conditions might allow for a rock-hosted chemosynthetic biosphere in near-surface regions of the Martian crust. The generation of methane within a zone of active serpentinization, through either abiogenic or biogenic processes, could account for the presence of methane detected in the Martian atmosphere. For all of these reasons, studies of terrestrial alkaline springs associated with mafic and ultramafic rocks are particularly timely. This study focuses on the alkaline Adobe Springs, emanating from mafic and ultramafic rocks of the California Coast Range, where a community of novel bacteria is associated with the precipitation of Mg–Ca carbonate cements. The carbonates may serve as a biosignature that could be used in the search for evidence of life on Mars.  相似文献   

11.
With widespread evidence of both heat sources and water (either liquid or solid), hydrothermal systems are likely to have existed on Mars. We model hydrothermal systems in two sizes of fresh impact craters, one simple and one complex, and find that a hydrothermal system forms on the crater floor. In the larger complex craters with a substantial melt sheet, a lake can form, even under current martian atmospheric conditions. By comparing these hydrothermal systems to those that exist and have been studied extensively on the Earth, we make predictions as to the types of minerals that could be precipitated and the potential habitability of such systems by primitive organisms.  相似文献   

12.
Abstract— Spectroscopic measurement and analysis of Martian meteorites provide important information about the mineralogy of Mars, as well as necessary ground-truths for deconvolving remote sensing spectra of the Martian surface rocks. The spectroscopic properties of particulate ALH 84001 from 0.3 to 25 μm correctly identify low-Ca pyroxene as the dominant mineralogy. Absorption bands due to electronic transitions of ferrous iron are observed at 0.94 and 1.97 μm that are typical for low-Ca pyroxene. A strong, broad water band is observed near 3 μm that is characteristic of the water band typically associated with pyroxenes. Weaker features near 4.8, 5.2 and 6.2 μm are characteristic of particulate low-Ca pyroxene and can be distinguished readily from the features due to high-Ca pyroxene and other silicate minerals. The reflectance minimum occurs near 8.6 μm for the ALH 84001 powder, which is more consistent with high-Ca pyroxene and augite than low-Ca pyroxene. The dominant mid-infrared (IR) spectral features for the ALH 84001 powder are observed near 9 and 19.5 μm; however, there are multiple features in this region. These mid-IR features are generally characteristic of low-Ca pyroxene but cannot be explained by low-Ca pyroxene alone. Spectral features from 2.5–5 μm are typically associated with water, organics and carbonates and have been studied in spectra of the ALH 84001, split 92 powder and ALH 84001, splits 92 and 271 chip surfaces. Weak features have been identified near 3.5 and 4 μm that are assigned to organic material and carbonates. Another feature is observed at 4.27 μm in many surface spots and in the powder but has not yet been uniquely identified. Spectroscopic identification of minor organic and carbonate components in this probable piece of Mars suggests that detection of small amounts of organics and carbonates in the Martian surface regolith would also be possible using visible-infrared hyperspectral analyses. Laboratory spectroscopic analysis of Martian meteorites provides a unique opportunity to identify the spectral features of minerals and other components while they are embedded in their natural medium.  相似文献   

13.
Abstract— We report the spectral reflectance of Martian meteorites from 0.3‐2.6 microns for the purpose of cataloguing spectra and the association of their spectral properties with mineralogy and petrology. We fit the spectra to a series of overlapping, modified Gaussian absorptions using least squares fitting. The results are validated against established relationships between photon interactions with mineral chemistry and the band parameters. These resultant band parameters can be used to constrain interpretations of Martian reflectance spectra in the search for the source region of meteorites from Mars. The limitations of the fitting method are discussed.  相似文献   

14.
The presence of sulfate salts and limited subsurface water (ice) on Mars suggests that any liquid water on Mars today will occur as (magnesium) sulfate-rich brines in regions containing sources of magnesium and sulfur. The Basque Lakes of British Columbia, Canada, represent a hypersaline terrestrial analogue site, which possesses chemical and physical properties similar to those observed on Mars. The Basque Lakes also contain diverse halophilic organisms representing all three Kingdoms of life, growing in surface and near-subsurface environments. Of interest from an astrobiological perspective, crushed magnesium sulfate samples that were analyzed using a modified Lowry protein assay contained biomass in every crystal inspected, with biomass values from 0.078 to 4.21 mgbiomass/gsalt; average=0.74±0.7 mgbiomass/gsalt. Bacteria and Archaea cells were easily observed even in low-biomass samples using light microscopy, and bacteria trapped within magnesium sulfate crystals were observed using confocal microscopy. Regions within the salt also contained bacterial pigments, e.g., carotenoids, which were separate from the cells, indicating that cell lysis might have occurred during entrapment within the salt matrix. These biosignatures, cells, and any ‘soluble’ organic constituents were primarily found trapped within fluid inclusions or fluid-filled void spaces between intergrown crystals. Diffuse reflectance infrared Fourier transform spectroscopy (reflectance IR) analysis of enrichment cultures, containing cyanobacteria, Archaea, or dissimilatory sulfate-reducing bacteria, highlighted molecular biosignature features between 550-1650 and 2400-3000 cm−1. Spectra from natural salts demonstrated that we can detect biomass within salt crystals using the most sensitive biosignatures, which are the 1530-1570 cm−1, C-N, N-H, -COOH absorptions and the 1030-1050 cm−1 C-OH, C-N, PO43− bond features. The lowest detection limit for a biosignature absorption feature using reflectance IR was with a natural sample that possessed 0.78 mgbiomass/gsalt. In a model cell, i.e., a 0.5 by 1 μm bacillus, this biomass value corresponds to approximately 7.8×108 cells/gsalt. Based on its ability to detect biomass entrapped within natural sulfate salts, reflectance IR may make an effective remote-sensing tool for finding enrichments of organic carbon within outcrops and surficial sedimentary deposits on Mars.  相似文献   

15.
Little is known about the Hadean and the Archean impact record on Earth. In the CT3 drill core from the Fig Tree Group of the northern Barberton Greenstone Belt, 17 spherule layer intersections occur, which, provide an outstanding new opportunity to gain insights into meteorite bombardment of the early Earth. CT3 spherules, as primary features, mostly exhibit textural patterns similar to those of the other Barberton spherule layers, but locally mineralogical and chemical compositional differences are observed, likely as a result of various degrees of alteration. The observed mineralogy of the spherule layers is of secondary origin and comprises K‐feldspar, phyllosilicates, carbonates, sulfides, and oxides, with the exception of secondary Ni‐Cr spinel that is of primary origin. Our petrographic investigations suggest alteration by K‐metasomatism, sericitization, silicification, and carbonatization. Siderophile element contents of bulk samples show significant enrichments in Ni (up to 2 wt%) and Ir (up to ~3 ppm), similar to previously studied Archean spherule layers. These values are indicative of the presence of a meteoritic component. On the other hand, lithophile and chalcophile element abundances indicate hydrothermal overprint on the CT3 samples; this may also have influenced the redistribution of the meteoritic component(s). Last, we group the CT3 spherule layers, which occur in three intervals (A, B, and C), according to their petrographic and geochemical features, which indicate evidence for at least three distinct impact events before tectonic overprint that affected the original deposits.  相似文献   

16.
The following problems related to the origin of methane on Mars have been considered. (1) Laboratory simulations of the impact phenomena confirm effective heterogeneous chemistry between the products of the fireball. This chemistry lowers the fireball freezing temperature from 2000 to 750 K for methane and to 1100 K for CO/CO2. Production of methane on Mars by cometary impacts is 0.8% of the total production. A probability that the observed methane on Mars came from impact of a single comet is 0.0011. (2) The PFS observations of variations of methane on Mars require a very effective heterogeneous loss of methane. Heterogeneous effect of dust is half that of the surface rocks. Thermochemical equilibrium requires production, not loss, of methane. Existing kinetic data show a very low efficiency of heterogeneous reactions of methane. Highly reactive superoxide ions generated by the solar UV photons on the martian rocks cannot remove methane. The required efficiency of heterogeneous loss of methane on Mars is higher than that on Earth by a factor of ?1000, although the expected efficiency on Earth is stronger than that on Mars because of the liquid ocean and the abundant oxygen. All these inconsistencies may be removed if variations of the rock reflectivity contribute to the PFS observations of methane on Mars. The PFS data on H2CO, HCl, HF, and HBr also raise doubts. (3) Although geologic sources of methane are possible, the lack of current volcanism, hydrothermal activity, hot spots, and very low seepage of gases from the interior are not favorable for geologic methane. Any proposed geological source of methane on Mars should address these problems. Some weak points in the suggested geologic sources are discussed. (4) Measurements of 13C/12C and D/H in methane would be difficult because of the low methane abundance. These ratios are mostly sensitive to a temperature of methane formation and cannot distinguish between biogenic and low-temperature geologic sources. Their analysis requires the carbon isotope ratio in CO2 on Mars, which is known with the insufficient accuracy, and D/H in water, which is different in the atmosphere, polar caps, regolith and interior. Therefore, the stable isotope ratios may not give a unique answer on the origin of methane. (5) Ethane and propane react with OH much faster than methane. If their production relative to methane is similar to that on Earth, then their expected abundances on Mars are of a few parts per trillion. (6) Loss of SO2 in the reaction with peroxide on ice is smaller than its gas-phase loss by an order of magnitude. The overall results strengthen the biogenic origin of martian methane and its low variability.  相似文献   

17.
H2O and OH are readily detected in hydrated minerals in CM chondrites via reflectance spectroscopy due to their characteristic vibration absorptions at infrared wavelengths. Previous spectroscopic work on bulk powdered CM chondrites has shown that spectral parameters, like the wavelength position of the “3 μm absorption feature,” vary systematically with the extent to which the samples have been aqueously altered. However, it is yet unclear how these spectral features may vary across an intact meteorite chip when measured at spatial scales smaller than that of the individual components of the meteorite. Here, we explore the spatial variability of this spectral feature and others on intact CM2 chips which, unlike powders, retain their petrologic and textural characteristics. We also model the modal mineralogy of the bulk meteorite powders and correlate this with key spectral features, demonstrating that microscope Fourier transform infrared spectroscopic mapping provides a powerful, rapid, and non-destructive technique for assessing compositional diversity and variations in water–rock interactions in chondritic planetary materials. In all CM2 chondrites studied here, we find that variations in the position, shape, and strength of the 3 μm absorption feature reveal a single chondrite can exhibit as much spectral variation as the entire suite of CM2 chondrites. The observed variations in the position and shape of the 3 μm feature within individual CM2 chondrite chips suggest a range of alteration products (e.g., Mg-rich to Fe-rich phyllosilicates) are present and record sub-mm scale variations in the amount and/or chemistry of the altering fluids. The samples having experienced the most progressive aqueous alteration show the least amount of variability in features like the 3 μm absorption band minimum position, whereas the least altered samples exhibit the most variability. We also find that the bulk spectral signatures in the least altered samples appear to be biased toward the spectral signatures of clasts versus matrix. By extension, asteroid reflectance spectra exhibiting 3 μm absorption features consistent with those measured here may be interpreted in a similar framework in which the spectrum of what may appear to be the least altered asteroids represents an average that belies the true diversity of mineralogy and chemistry of the body.  相似文献   

18.
Compositions of basaltic and ultramafic rocks analyzed by Mars rovers and occurring as Martian meteorites allow predictions of metamorphic mineral assemblages that would form under various thermophysical conditions. Key minerals identified by remote sensing roughly constrain temperatures and pressures in the Martian crust. We use a traditional metamorphic approach (phase diagrams) to assess low‐grade/hydrothermal equilibrium assemblages. Basaltic rocks should produce chlorite + actinolite + albite + silica, accompanied by laumontite, pumpellyite, prehnite, or serpentine/talc. Only prehnite‐bearing assemblages have been spectrally identified on Mars, although laumontite and pumpellyite have spectra similar to other uncharacterized zeolites and phyllosilicates. Ultramafic rocks are predicted to produce serpentine, talc, and magnesite, all of which have been detected spectrally on Mars. Mineral assemblages in both basaltic and ultramafic rocks constrain fluid compositions to be H2O‐rich and CO2‐poor. We confirm the hypothesis that low‐grade/hydrothermal metamorphism affected the Noachian crust on Mars, which has been excavated in large craters. We estimate the geothermal gradient (>20 °C km?1) required to produce the observed assemblages. This gradient is higher than that estimated from radiogenic heat‐producing elements in the crust, suggesting extra heating by regional hydrothermal activity.  相似文献   

19.
The presence of methane on Mars is of great interest, since one possibility for its origin is that it derives from living microbes. However, CH4 in the martian atmosphere also could be attributable to geologic emissions released through pathways similar to those occurring on Earth. Using recent data on methane degassing of the Earth, we have estimated the relative terrestrial contributions of fossil geologic methane vs. modern methane from living methanogens, and have examined the significance that various geologic sources might have for Mars.Geologic degassing includes microbial methane (produced by ancient methanogens), thermogenic methane (from maturation of sedimentary organic matter), and subordinately geothermal and volcanic methane (mainly produced abiogenically). Our analysis suggests that ~80% of the “natural” emission to the terrestrial atmosphere originates from modern microbial activity and ~20% originates from geologic degassing, for a total CH4 emission of ~28.0×107 tonnes year?1.Estimates of methane emission on Mars range from 12.6×101 to 57.0×104 tonnes year?1 and are 3–6 orders of magnitude lower than that estimated for Earth. Nevertheless, the recently detected martian, Northern-Summer-2003 CH4 plume could be compared with methane expulsion from large mud volcanoes or from the integrated emission of a few hundred gas seeps, such as many of those located in Europe, USA, Mid-East or Asia. Methane could also be released by diffuse microseepage from martian soil, even if macro-seeps or mud volcanoes were lacking or inactive. We calculated that a weak microseepage spread over a few tens of km2, as frequently occurs on Earth, may be sufficient to generate the lower estimate of methane emission in the martian atmosphere.At least 65% of Earth’s degassing is provided by kerogen thermogenesis. A similar process may exist on Mars, where kerogen might include abiogenic organics (delivered by meteorites and comets) and remnants of possible, past martian life. The remainder of terrestrial degassed methane is attributed to fossil microbial gas (~25%) and geothermal-volcanic emissions (~10%). Global abiogenic emissions from serpentinization are negligible on Earth, but, on Mars, individual seeps from serpentinization could be significant. Gas discharge from clathrate-permafrost destabilization should also be considered.Finally, we have shown examples of potential degassing pathways on Mars, including mud volcano-like structures, fault and fracture systems, and major volcanic edifices. All these types of structures could provide avenues for extensive gas expulsion, as on Earth. Future investigations of martian methane should be focused on such potential pathways.  相似文献   

20.
Lava tubes and basaltic caves are common features in volcanic terrains on Earth. Lava tubes and cave-like features have also been identified on Mars based on orbital imagery and remote-sensing data. Caves are unique environments where both secondary mineral precipitation and microbial growth are enhanced by stable physico-chemical conditions. Thus, they represent excellent locations where traces of microbial life, or biosignatures, are formed and preserved in minerals. By analogy with terrestrial caves, caves on Mars may contain a record of secondary mineralization that would inform us on past aqueous activity. They may also represent the best locations to search for biosignatures. The study of caves on Earth can be used to test hypotheses and better understand biogeochemical processes, and the signatures that these processes leave in mineral deposits. Caves may also serve as test beds for the development of exploration strategies and novel technologies for future missions to Mars. Here we review recent evidence for the presence of caves or lava tubes on Mars, as well as the geomicrobiology of lava tubes and basaltic caves on Earth. We also propose future lines of investigation, including exploration strategies and relevant technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号