首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of velocity and density profiles were used to describe the tidal and mean flow structure across and along a sill in Refugio Channel, a fjord-like inlet in Southern Chile (43.9°S). These are the first oceanographic measurements of any kind effected in Refugio Channel. Current profiles were obtained with a 307.2-kHz acoustic Doppler current profiler during two semidiurnal cycles along a repeated triangular circuit. Two along-channel transects formed the sides of the triangle that crossed the sill and were identified as the western and eastern transects. One cross-channel transect, the base of the triangle, was located on the seaward side of the sill. Density profiles were obtained at the corners of the triangle. The longitudinal mean flow in the western transect showed a two-layer exchange structure over the landward side of the sill. The structure of net seaward flow at the surface and landward flow at depth was disrupted by the sill in such a way that over the seaward side of the sill, only seaward flow was observed throughout the water column. This likely resulted from the blocking of landward net flow by the sill. In the eastern transect, two-layer exchange dominated over most of the transect and was consistent with the observed density profiles. Over the seaward side of the sill, a surface layer, ∼10m deep, flowed landward as a third layer. This feature should have been caused by river input further seaward (to the north) and produced a surface convergence region over the sill. In terms of tidal flows, the greatest tidal current amplitudes were 40cm s−1 over the sill as the flow accelerated through the reduced cross-sectional area of the channel. Near-surface flow convergences were identified over both along-channel transects.  相似文献   

2.
A numerical modeling study of the influence of the lateral flow on the estuarine exchange flow was conducted in the north passage of the Changjiang estuary. The lateral flows show substantial variabilities within a flood-ebb tidal cycle. The strong lateral flow occurring during flood tide is caused primarily by the unique cross-shoal flow that induces a strong northward (looking upstream) barotropic force near the surface and advects saltier water toward the northern part of the channel, resulting in a southward baroclinic force caused by the lateral density gradient. Thus, a two-layer structure of lateral flows is produced during the flood tide. The lateral flows are vigorous near the flood slack and the magnitude can exceed that of the along-channel tidal flow during that period. The strong vertical shear of the lateral flows and the salinity gradient in lateral direction generate lateral tidal straining, which are out of phase with the along-channel tidal straining. Consequently, stratification is enhanced at the early stage of the ebb tide. In contrast, strong along-channel straining is apparent during the late ebb tide. The vertical mixing disrupts the vertical density gradient, thus suppressing stratification. The impact of lateral straining on stratification during spring tide is more pronounced than that of along-channel straining during late flood and early ebb tides. The momentum balance along the estuary suggests that lateral flow can augment the residual exchange flow. The advection of lateral flows brings low-energy water from the shoal to the deep channel during the flood tide, whereas the energetic water is moved to the shoal via lateral advection during the ebb tide. The impact of lateral flow on estuarine circulation of this multiple-channel estuary is different from single-channel estuary. A model simulation by blocking the cross-shoal flow shows that the magnitudes of lateral flows and tidal straining are reduced. Moreover, the reduced lateral tidal straining results in a decrease in vertical stratification from the late flood to early ebb tides during the spring tide. By contrast, the along-channel tidal straining becomes dominant. The model results illustrate the important dynamic linkage between lateral flows and estuarine dynamics in the Changjiang estuary.  相似文献   

3.
Tidal circulation and energy dissipation in a shallow, sinuous estuary   总被引:2,自引:0,他引:2  
The tidal dynamics in a pristine, mesotidal (>2 m range), marsh-dominated estuary are examined using moored and moving vessel field observations. Analysis focuses on the structure of the M 2 tide that accounts for approximately 80% of the observed tidal energy, and indicates a transition in character from a near standing wave on the continental shelf to a more progressive wave within the estuary. A slight maximum in water level (WL) occurs in the estuary 10–20 km from the mouth. M 2 WL amplitude decreases at 0.015 m/km landward of this point, implying head of tide approximately 75 km from the mouth. In contrast, tidal currents in the main channel 25 km inland are twice those at the estuary mouth. Analysis suggests the tidal character is consistent with a strongly convergent estuarine geometry controlling the tidal response in the estuary. First harmonic (M 4) current amplitude follows the M 2 WL distribution, peaking at mid-estuary, whereas M 4 WL is greatest farther inland. The major axis current amplitude is strongly influenced by local bathymetry and topography. On most bends a momentum core shifts from the inside to outside of the bend moving seaward, similar to that seen in unidirectional river flow but with point bars shifted seaward of the bends. Dissipation rate estimates, based on changes in energy flux, are 0.18–1.65 W m−2 or 40–175 μW kg–1. A strong (0.1 m/s), depth-averaged residual flow is produced at the bends, which resembles flow around headlands, forming counter-rotating eddies that meet at the apex of the bends. A large sub-basin in the estuary exhibits remarkably different tidal characteristics and may be resonant at a harmonic of the M 2 tide.  相似文献   

4.
A three‐dimensional, time‐dependent hydrodynamic and salinity model was applied to the Danshuei River estuarine system and adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundary and freshwater flows from the main stem and tributaries in the Danshuei River system. The bottom roughness height was calibrated and verified with model simulation of barotropic flow, and the turbulent diffusivities were calibrated through comparison of time‐series of salinity distributions. The overall model verification was achieved with comparisons of residual current and salinity distribution. The model simulation results are in qualitative agreement with the available field data. The model was then used to investigate the tidal current, residual current, and salinity patterns under the low freshwater flow condition in the modelling domain. The results reveal that the extensive intrusion of saline water imposes a significant baroclinic forcing and induces a strong residual circulation in the estuary. The downriver net velocity in the upper layer increases seaward despite the enlargement of the river cross‐section in that direction. Strong residual circulation can be found near the Kuan‐Du station. This may be the result of the deep bathymetric features there. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The increase of salt intrusion in recent years in the Modaomen Estuary, one of the estuaries of the Pearl River Delta in China, has threatened the freshwater supply in the surrounding regions, especially the cities of Zhongshan, Zhuhai in Guangdong Province and Macau. A numerical modeling system using nested grids was developed to investigate the salt transport mechanisms and the response of salt intrusion to changes in river discharge and tidal mixing. The steady shear transport induced by estuarine circulation reaches maximum and minimum, respectively, during neap and spring tides, while the tidal oscillatory transport shows an opposite pattern. The net transport is landward during neap tides and seaward during spring tides. The salt intrusion length responding to constant river discharges generally follows a power law of ?0.49. The dependence of salt intrusion on tidal velocity is less than that predicted by theoretical models for exchange flow dominated estuaries. The response of salt intrusion to change in tidal velocity depends largely on river discharge. When river flow increases, the impact of tidal velocity increases and the phase lag of response time decreases. The asymmetries of salt intrusion responding to increasing and decreasing river discharge (tidal velocity) are observed in the estuary.  相似文献   

6.
An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine cross-sections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak along-channel density gradient. It is also examined under what conditions the fast, two-dimensional analytical flow model yields results that agree with those obtained with the more complex three-dimensional numerical model. The analytical model reproduces and explains the main velocity and sediment characteristics in large parts of the parameter space considered (average tidal velocity amplitude, 0.1–1 m s − 1 and maximum water depth, 10–60 m). Its skills are lower for along-channel residual flows if nonlinearities are moderate to high (strong tides in deep estuaries) and for transverse flows and residual sediment concentrations if the Ekman number is small (weak tides in deep estuaries). An important new aspect of the analytical model is the incorporation of tidal variations in the across-channel density gradient, causing a double circulation pattern in the transverse flow during slack tides. The gradient also leads to a new tidally rectified residual flow component via net advection of along-channel tidal momentum by the density-induced transverse tidal flow. The component features landward currents in the channel and seaward currents over the slopes and is particularly effective in deeper water. It acts jointly with components induced by horizontal density differences, Coriolis-induced tidal rectification and Stokes discharge, resulting in different along-channel residual flow regimes. The residual across-channel density gradient is crucial for the residual transverse circulation and for the residual sediment concentration. The clockwise density-induced circulation traps sediment in the fresher water over the left slope (looking up-estuary in the northern hemisphere). Model results are largely consistent with available field data of well-mixed estuaries.  相似文献   

7.
Current velocity and hydrographic profiles obtained for the first time in a Chilean glacial fjord were combined with under-way surface temperature and salinity measurements to describe the formation of tidal intrusion fronts and plume-like fronts. These fronts formed within several hundred meters from each other in the vicinity of a shallow sill, maximum depth of approximately 3 m, in a glacial fjord off the Strait of Magellan in the Chilean Patagonia. Measurements were obtained in mid-December of 2003 and 2004, during late austral spring, under active glacier melting and calving. The glacial fjord is approximately 18 km long from the face of the glacier to the connection with the Strait of Magellan and typically less than 1 km wide throughout the system. Between the glacier face and the 3-m sill, depths are typically less than 100 m, and seaward of the sill, depths increase to more than 200 m. Velocity and salinity data obtained during flood periods revealed that water with oceanic salinity was aspirated to near-surface levels from depths of approximately 30 m as flood flows accelerated from approximately 10 cm s−1, seaward of the sill, to approximately 60 cm s−1 at the sill crest. The upwelled water was then slightly diluted by mixing at the sill crest before plunging down to the basin between the glacier and the sill. The plunging of salty water over the sill created dramatic tidal intrusion fronts only a few tens of meters from the sill crest and pumping of salt with every flood period. During ebb periods, the low salinity waters derived from the glacier and a small river near the glacier converged at the sill crest. After some mixing, the buoyant waters were released within a thin layer (∼3 m deep) lead by a plume-like front that remained coherent for a few hundred meters seaward of the sill. The main findings of this study were that tidal intrusion and plume fronts were observed within 2 km from each other, and that tidal pumping was the predominant mechanism for salt fluxes into the system.  相似文献   

8.
Density-driven exchange flows between estuaries and harbour docks are influenced by the length of the dock. As a result, increasing dock size through its lengthening, not necessarily results in an increase in sedimentation rates. The propagation of a low-salinity surface patch into the dock is blocked at the head of a relatively short dock, resulting in a reversal of density-driven flows, and a reduction of the hydrostatic pressure gradients in the entrance of the dock. A reduced hydrostatic pressure in the dock, in turn, promotes near-bed inflow. When this increased near-bed inflow coincides with a high sediment supply on the adjacent river, the sediment transport into the dock increases. This has been tested with an extensively validated high-resolution numerical model developed for the Deurganckdok in the Port of Antwerp. In the Deurganckdok, siltation rates are expected to decrease when the dock is fully excavated compared to the present half-opened dock.Whether exchange flows between estuaries and harbour docks are influenced by the length of the dock, depends on the tidal variation in salinity. For small tidal density variations (around 0.5 kg/m3), the dock length is expected to influence exchange flows in a short dock (approximately 1 km), whereas the dock should be much longer (4 km) when the tidal density variation is higher (around 5 kg/m3). Whether these changing exchange flow result in a lowering or increase of sediment import, depends on the phase difference between sediment concentration peaks on the adjacent river/estuary and the salinity variation, and on the vertical distribution of sediment.  相似文献   

9.
We present an analytical model to decompose complex along-channel and transverse residual flows into components induced by individual mechanisms. The model describes the transverse distribution of residual flows in tidally dominated estuaries. Scaling and perturbation techniques are used to obtain analytical solutions for residual flows over arbitrary across-channel bed profiles. The flows are induced by horizontal density gradients, tidal rectification processes, river discharge, wind, channel curvature and the earth's rotation. These rectification processes induce residual flows that are up-estuary to the right and down-estuary to the left of an estuarine channel (looking up-estuary in the northern hemisphere). The tidal rectification processes fundamentally change the transverse structure of along-channel residual flows in many tidal estuaries, as these processes cause the flows to be internally asymmetric about the mid-axis of the channel for relatively large tidal velocities, steep channels or narrow estuaries. In addition, velocity scales are derived from the analytical solutions to estimate the relative importance of the various residual flow mechanisms from estuarine parameters. A case study of a transect across the Upper Chesapeake Bay showed that important features of the residual flow observed in that transect are reproduced and explained by the analytical model. The velocity scales were able to identify the relevant residual flow mechanisms as well. The tidal rectification processes considered here result from advection of along-channel tidal momentum by Coriolis-induced transverse tidal currents.  相似文献   

10.
A three-dimensional, hydrostatic, primitive equation numerical model with modern turbulence closures is used to explore lateral circulation and the associated transport of sediments in idealized, moderately to highly stratified estuaries. The model results suggest that boundary mixing on a sloping bottom can drive a significant amount of lateral circulation. This mechanism has received little attention to date in the estuarine literature. Good agreement with an analytical solution and similar vertical structures of lateral flows to observations from the Hudson River estuary support the importance of the boundary mixing mechanism. Boundary mixing is at least as important as differential advection for the modeled scenarios, when the two mechanisms are evaluated using the salt balance equation for model runs without rotation. Linearly superposing analytical solutions for lagged boundary mixing lateral flow and Ekman-forced lateral flow yields a good representation of the near-bottom lateral flow from the model with rotation. The 2 h lag required for the boundary mixing solution is roughly equal to the vertical diffusion time scale, indicating that lateral flow adjustment depends on development of a bottom mixed layer. Sediment dynamics at cross sections seaward and landward of the salt intrusion are very different. Seaward of the salt intrusion, sediments are eroded in the channel and preferentially deposited on the right slope (looking seaward), mainly due to the combination of high sediment concentration in the channel during flood with strong up-slope transport on that side (tidal pumping). Lateral sediment re-distribution landward of the salt intrusion is negligible due to weak residual lateral circulation.  相似文献   

11.
Underway current velocity profiles were combined with hydrographic profiles at the entrance to Tongoy Bay, an equatorward facing bay in north-central Chile, with the objective of determining its exchange hydrodynamics. To the west, Tongoy Bay is bounded by Lengua de Vaca Point, a ~6 km-long northward protruding peninsula. Observations were obtained during three surveys (April 2005, December 2005, May 2009) along cross-bay transects for at least one full day. During the surveys, winds were upwelling-favorable and displayed diurnal variations. Non-tidal (tidally averaged) flows showed a consistent clockwise or southern hemisphere cyclonic, recirculation during the three surveys. This recirculation was likely part of a cyclonic gyre (10–20 km in diameter), not entirely resolved by the surveys, and formed by flow separation off Lengua de Vaca Point. Estimates of the baroclinic pressure gradient, combined with analytical solutions of density-driven and wind-driven flows, indicated that the recirculation in Tongoy Bay was nearly in geostrophic balance. An ageostrophic contribution to the dynamics was related to frictional effects derived from local upwelling-favorable winds. A linear superposition of the analytically derived density-driven and wind-driven exchange resulted in a flow pattern that resembled the observed net exchange flows at the bay mouth.  相似文献   

12.
Observations of the flow field over an elongated hollow (bathymetric depression) in the lower Chesapeake Bay showed tidally asymmetric distributions. Current speed increased over the landward side of the hole during flood tides and decreased in the deepest part of the hollow during ebb tides. A simple conceptual analysis indicated that the presence of a horizontal density gradient can generate the asymmetric spatial variations of flow structure depending on the sign of the horizontal density gradient. When water density decreases downstream, the velocity increases over the downstream edge of the hollow. Conversely when water density increases downstream, the flow decreases over the hollow more than a case without a horizontal density gradient. The conceptual analysis is confirmed by numerical experiments of simplified hollows in steady open channel flows and of an idealized tidal estuary. These hollows also alter the local current field of tidally averaged estuarine exchange flows. The residual depth-averaged currents over a hollow show a two-cell circulation when Coriolis forcing is neglected and an asymmetric two-cell circulation, with a stronger cyclonic eddy, when Coriolis forcing is included.  相似文献   

13.
Residual currents in eastern Long Island Sound (LIS) are investigated using direct velocity measurements from an acoustic Doppler current profiler mounted on a ferry. Circulation at the site has major influence on exchange of water and water-borne materials between LIS and the coastal ocean. Ferry sampling enables sufficient averaging to isolate the residual motion from stronger tidal currents, and captures its spatial structure. Mean along-estuary currents based on about 2 years of sampling reveal a vigorous estuarine exchange circulation (peak 25–30 cm s−1 at depth), with flow eastward out of the estuary in the upper water column of the southern half and inward westward movement strengthening with depth over the central and north section. Application of volume conservation implies there is a strong eastward current out of the estuary in the shallowest 7 m where no measurements were made, as expected for estuarine exchange flow. Water from the Connecticut River, entering LIS on the north shore nearby to the west, does not appear to exit the estuary directly eastward along the north shore unless this occurs wholly in the shallow layer not sampled. Transverse currents have complex structure with generally northward (southward) flow where shallow outward (deep inward) motion occurs. An idealized semi-analytic solution for transverse-vertical structure of along- and across-estuary flow has limited success accounting for observed currents, despite inclusion of bathymetric, frictional, and rotational influences; this suggests the importance in LIS of dynamics it omits, in particular stratification, or does not represent with sufficient realism, such as complex bathymetry. Estimated annual-mean exchange volume transport, based on the better-sampled deep inward component, is 22,700±5000 m3 s−1. This is comparable to previous estimates from some salt budget and hydrographic analyses, and implies advection contributes substantially to the total salt transport, contrary to results of a recent box-model analysis of hydrographic measurements. At seasonal timescales, changes to the transverse-vertical velocity structure are modest, but amplitude variations cause exchange volume transport increases (decreases) to 30,000 m3 s−1 (18,000 m3 s−1) in the summer (winter) months; a power-law dependence of exchange on river flow, as seen in other estuaries, is not supported. Strengthened summer transport is associated with enhanced stratification, suggesting that mixing effects modulate the exchange. To the extent that advection by residual flow contributes to total exchange between LIS and coastal waters, the flushing of materials from LIS should occur substantially faster in summer than in winter.  相似文献   

14.
The Bras d’Or Lakes (BdOL) are a large, complex and virtually land-locked estuary in central Cape Breton Island of Nova Scotia and one of Canada’s charismatic ecosystems, sustaining ecological and cultural communities unique in many aspects. The BdOL comprise two major basins, many deep and shallow bays, several narrow channels and straits and a large, geologically complex watershed. Predictive knowledge of the water movement within the estuary is a key requirement for effective management and sustainable development of the BdOL ecosystem. A three-dimensional (3D) primitive-equation ocean circulation model is used to examine the estuary’s response to tides, winds and buoyancy forcing associated with freshwater runoff in a series of numerical experiments validated with empirical data. The model results generate intense, jet-like tidal flows of about 1 m s?1 in the channels between the basins and connecting them to the ocean and relatively weak tidal currents in other regions, which agrees well with previous observations and numerical results. Wind forcing and buoyancy forcing associated with river runoff play important roles in generating the significant sub-tidal circulations in the estuary, including narrow channels, deep basins and shallow bays. The circulation model is also used to reconstruct the 3D circulation and temperature-salinity distributions in the summer months of 1974, when current and hydrographic measurements were made at several locations. The sub-tidal circulation in the estuary produced by the model is characterised by wind and barometric set-up and set-down in different sections of the system, and a classic two-layer estuarine circulation in which brackish, near-surface waters flow seaward from the estuary into the Atlantic Ocean, and deep salty waters flow landward through the major channel. The model results reproduce reasonably well the overall features of observed circulation and temperature-salinity fields made in the BdOL in 1974 but generally underestimate the observed currents and density stratification. The model discrepancies reflect the use of spatially mean wind forcing and spatially and monthly mean surface heat flux and the inability of the coarse model horizontal resolution (~500 m) to resolve narrow channels and straits.  相似文献   

15.
An analysis of observational data suggests salt exchange in a sinuous coastal plain estuary is significantly impacted by counter-rotating residual horizontal eddies formed by channel curvature in meandering channels. The parts of adjacent eddies that advect material downstream follow the deep part of the channel where the flow continually criss-crosses from one side of the channel to the other and follows a relatively unimpeded trajectory to the sea. On the other hand, the parts of adjacent eddies that advect material upstream cross the channel at a different location where it encounters a series of shoals. In this case, the resulting upstream transport of salt is relatively inefficient and retards the rate at which salt can disperse upstream into the estuary. The strength of these circulations is modulated by the spring/neap cycle, allowing for a stronger gravitational mode of exchange to develop near neap tides, but has minimal impact on the length of the salt intrusion. It is suggested that the impeded upstream salt transport accounts for the observation that an impulse of river discharge advects a given isohaline 10 km downstream in 20 days, but that after the impulse, 70 days are required to return the isohaline to a similar position, counter to the notion of a simple dependence of intrusion length on river discharge.  相似文献   

16.
We use a kinematic GPS and laser range finder survey of a 200 m-long section of the Muliwai a Pele lava channel (Mauna Ulu, Kilauea) to examine the construction processes and flow dynamics responsible for the channel–levee structure. The levees comprise three packages. The basal package comprises an 80–150 m wide ′a′a flow in which a ∼2 m deep and ∼11 m wide channel became centred. This is capped by a second package of thin (<45 cm thick) sheets of pahoehoe extending no more than 50 m from the channel. The upper-most package comprises localised ′a′a overflows. The channel itself contains two blockages located 130 m apart and composed of levee chunks veneered with overflow lava. The channel was emplaced over 50 h, spanning 30 May–2 June, 1974, with the flow front arriving at our section (4.4 km from the vent) 8 h after the eruption began. The basal ′a′a flow thickness yields effusion rates of 35 m3 s−1 for the opening phase, with the initial flow advancing across the mapped section at ∼10 m/min. Short-lived overflows of fluid pahoehoe then built the levee cap, increasing the apparent channel depth to 4.8 m. There were at least six pulses at 90–420 m3 s−1, causing overflow of limited extent lasting no more than 5 min. Brim-full flow conditions were thus extremely short-lived. During a dominant period of below-bank flow, flow depth was ∼2 m with an effusion rate of ∼35 m3 s−1, consistent with the mean output rate (obtained from the total flow bulk volume) of 23–54 m3 s−1. During pulses, levee chunks were plucked and floated down channel to form blockages. In a final low effusion rate phase, lava ponded behind the lower blockage to form a syn-channel pond that fed ′a′a overflow. After the end of the eruption the roofed-over pond continued to drain through the lower blockage, causing the roof to founder. Drainage emplaced inflated flows on the channel floor below the lower blockage for a further ∼10 h. The complex processes involved in levee–channel construction of this short-lived case show that care must be taken when using channel dimensions to infer flow dynamics. In our case, the full channel depth is not exposed. Instead the channel floor morphology reflects late stage pond filling and drainage rather than true channel-contained flow. Components of the compound levee relate to different flow regimes operating at different times during the eruption and associated with different effusion rates, flow dynamics and time scales. For example, although high effusion rate, brim-full flow was maintained for a small fraction of the channel lifetime, it emplaced a pile of pahoehoe overflow units that account for 60% of the total levee height. We show how time-varying volume flux is an important parameter in controlling channel construction dynamics. Because the complex history of lava delivery to a channel system is recorded by the final channel morphology, time-varying flow dynamics can be determined from the channel morphology. Developing methods for quantifying detailed flux histories for effusive events from the evidence in outcrop is therefore highly valuable. We here achieve this by using high-resolution spatial data for a channel system at Kilauea. This study not only indicates those physical and dynamic characteristics that are typical for basaltic lava flows on Hawaiian volcanoes, but also a methodology that can be widely applied to effusive basaltic eruptions.  相似文献   

17.
 The tube-fed pāhoehoe lava flows covering much of the northeast flank of Kīlauea Volcano are named the 'Ailā'au flows. Their eruption age, based on published and six new radiocarbon dates, is approximately AD 1445. The flows have distinctive paleomagnetic directions with steep inclinations (40°–50°) and easterly declinations (0°–10°E). The lava was transported ∼40 km from the vent to the coast in long, large-diameter lava tubes; the longest tube (Kazumura Cave) reaches from near the summit to within several kilometers of the coast near Kaloli Point. The estimated volume of the 'Ailā'au flow field is 5.2±0.8 km3, and the eruption that formed it probably lasted for approximately 50 years. Summit overflows from Kīlauea may have been nearly continuous between approximately AD 1290 and 1470, during which time a series of shields formed at and around the summit. The 'Ailā'au shield was either the youngest or the next to youngest in this series of shields. Site-mean paleomagnetic directions for lava flows underlying the 'Ailā'au flows form only six groups. These older pāhoehoe flows range in age from 2750 to <18,000 BP, and the region was inundated by lava flows only three times in the past 5000 years. The known intervals between eruptive events average ∼1600 years and range from ∼1250 years to >2200 years. Lava flows from most of these summit eruptions also reached the coast, but none appears as extensive as the 'Ailā'au flow field. The chemistry of the melts erupted during each of these summit overflow events is remarkably similar, averaging approximately 6.3 wt.% MgO near the coast and 6.8 wt.% MgO near the summit. The present-day caldera probably formed more recently than the eruption that formed the 'Ailā'au flows (estimated termination ca. AD 1470). The earliest explosive eruptions that formed the Keanakāko'i Ash, which is stratigraphically above the 'Ailā'au flows, cannot be older than this age. Received: 10 October 1998 / Accepted: 12 May 1999  相似文献   

18.
Intermittently open/closed estuaries (IOCE) are a dynamic form of estuary characterised by periodic entrance closure to the ocean. Entrance closure is a function of the relative balance between on and offshore sediment transport with closures occurring during periods of low fluvial discharge whereby the estuary ebb‐tidal prism is reduced. Although the broad scale processes of entrance closure are becoming better understood, there remains limited knowledge on channel morphodynamics during an individual closure event. In this study, the entrance dynamics of three IOCE on the coast of Victoria, Australia, were monitored over a daily timescale following both artificial and natural openings. The influence of changing marine and fluvial conditions on the relative sedimentation rate within the entrance channel was examined. IOCE in Victoria showed two distinct modes of entrance closure: (a) lateral accretion, whereby the estuary gradually closes by longshore drift‐driven spit growth during low river flows; and (b) vertical accretion, where the channel rapidly aggrades under high (> 2 m), near‐normal waves. During storms, when fluvial discharge and wave heights simultaneously increase, large swells will not always close the mouth due to an increase in the ebb‐tidal prism. The estuary water depth and the maximum channel dimensions following opening were not proportional to the opening duration, with this being a function of the wave and fluvial conditions occurring following lagoon drainage. Based on the findings of this work, implementing a successful artificial entrance opening is dependent on reduced onshore sedimentation rates which occur when wave energy is low (< 2 m Hs) relative to river flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Dolgopolova  E. N. 《Water Resources》2000,27(6):611-616
The dimensionless Darcy–Weisbach coefficient of friction is used to evaluate the drag in channel flows. A developed turbulent flow with a quadratic drag law is considered. The dependence of the coefficient of friction on the cross-section shape of the channel flow is examined. A coefficient of the channel shape is introduced, which depends on the wetted perimeter and the flow width and allows the complicated geometry of the river cross-section to be taken into account in calculating the drag. The drag estimates calculated using the suggested technique are compared with other authors' estimates for flumes and rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号