首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of a field experiment on studying solar radiation passing in the visible wavelength range are described with the model aerosol media created in the surface atmosphere. High-efficiency thermocondensation generators were used for creating model aerosol media. The index of refraction and an average size of the aerosol particles formed are close to those characteristic of the natural stratospheric aerosol. The composition and technical characteristics of the equipment complex used in the experiments to control aerosol optical and microphysical parameters and meteorological conditions of the experiment are considered. The Gaussian model of impurity dispersion in the boundary layer is used for the analysis and interpretation of measurement results. It is found that with a number concentration of aerosol particles of ~102–103 cm?3 (which corresponds to the aerosol density in the deposited layer of about 1–10 mg/m2 with the layer thickness along the ray path of about 100 m) the solar radiation attenuation with artificial aerosol layers accounts for 1 to 10%. Model estimates are in satisfactory agreement with the measurement results.  相似文献   

2.
石茹琳  银燕  陈倩  王旭  况祥  张昕  王智敏 《大气科学》2021,45(1):107-122
利用带有分档微物理方案的中尺度模式(WRF-SBM)模拟了一次新疆夏季的冰雹天气过程,并通过敏感性试验研究了气溶胶浓度变化对雹云微物理特征、降水过程及冰雹形成机制的影响。结果表明:初始气溶胶浓度越大,对流云发展越旺盛。雹云发展阶段,云中液水含量随气溶胶浓度增加而增多,冰水含量在中度污染时最多。冰雹的含量随气溶胶浓度的增加呈现先增加后减小的趋势,相较而言中度污染条件下,云滴尺度适当,过冷云水含量相对充足,更有利于液相水成物向冰粒子的转化,也更有利于冰雹的生长。冰雹最初几乎全部由冰晶碰冻过冷水生成,随后该过程迅速减弱,液滴冻结过程短暂地成为主要来源,但冰雹一旦形成,自身就会迅速收集过冷水开始生长,成为冰雹生长的主导过程。重度污染条件导致各种成雹过程推迟发生。气溶胶浓度增大导致地面液相累积降水增加,冰相累积降水先增加减少,并且气溶胶浓度适当增大可使降雹量及冰相降水中冰雹的比重增加,过量则会减小。在此基础上,本文提出最适合冰雹生长的“最优气溶胶浓度”,同时也是人工防雹工作中应重点关注的浓度。  相似文献   

3.
The profiles of aerosol extinction coefficients are investigated by micro-pulse lidar(MPL)combined with the meteorological data in the lower troposphere at Meteorological ResearchInstitute(MRI).Japan.Larger extinction values of aerosol are demonstrated in the nocturnalstable air layer with larger Richardson number,and light wind velocities are favorable for aerosolconcentrating in the planetary boundary layer(PBL).But aerosol extinction coefficients showlarger values over the altitudes of 2.0 to 5.0km where correspond to higher relative humidity(RH).The tops of PBL identified by the aerosol extinction profiles almost agree with ones byradiosonde data.The diurnal variations of aerosol extinction profiles are clearly displayed,intensive aerosol layers usually are formed over the period of mid-morning to 1400 Loeal Time(LT).then elapse in the cloudless late afternoon and nighttime.Thermal eonvection or turbulenttransport from the surfaee probably dominates these temporal and spatial changes of aerosoldistribution.  相似文献   

4.
The change of the chemical composition of the near-ground level atmospheric aerosol was studied during two summer episodes by a Lagrangian type of experimental approach. Bulk and single-particle chemical analyses of ions and elements in the particulate phase were deployed. N(-III) and N(V) components were also measured in the gas-phase. The measurements were completed by particle size distributions.Secondary inorganic aerosols (SIA) and fine particles of ≈0.2–0.4 μm size were still elevated 50 km downwind of the city. The direct comparison of transport over the city in contrast to transport over the surrounding areas showed that SIA was formed from emission from the city within less than 3 h. Relative increases, i.e., enrichment during transport were observed for primary and secondary aerosol components. The degree of mixing on the individual particle level increased significantly during transport in the area. In particular, newly emitted carbonaceous particles became internally mixed within hours with pre-existing sulphate particles. Mostly due to secondary aerosol formation the average particle size (mass median diameter) of major constituents of the aerosol was significantly decreased while being transported over 13 h. Given recent insights which link fine particles number and mass concentrations with health risks, the results suggest that rural populations in areas which frequently are located within an urban plume might run an elevated health risk relative to populations in areas not affected by urban plumes.  相似文献   

5.
Organic aerosol formation resulting from the ozonolysis of α-pinene, myrcene and sabinene was investigated in a large aerosol chamber in the presence of aqueous seed aerosols. The chemical composition of the particles was monitored by an aerosol mass spectrometer (Aerodyne Research Inc.) as a function of time and the particle size. Smaller particles were found to contain more organics relative to sulfate than the larger ones. In contrast, the water to sulfate mass ratio was not dependent on the particle size. These experimental findings indicate the formation of organic layers on the particles. With the aid of an aerosol dynamic model we demonstrate that the observations are consistent with the formation of multilayered organic films having thicknesses of approximately 10 nm. The results also suggest that the films were formed through condensation of low-volatile oxidation products that did not take up water considerably. Even though dissolution of oxidation products into the particle aqueous phase cannot be conclusively ruled out, the most plausible interpretation of the results is that the monoterpene ozonolysis lead to the formation of organic coatings on aqueous aerosols. Such films are likely to form in regions with monoterpene emissions.  相似文献   

6.
The profiles of aerosol extinction coefficients are investigated by micro-pulse lidar(MPL) combined with the meteorological data in the lower troposphere at Meteorological Research Institute(MRI).Japan.Larger extinction values of aerosol are demonstrated in the nocturnal stable air layer with larger Richardson number,and light wind velocities are favorable for aerosol concentrating in the planetary boundary layer(PBL).But aerosol extinction coefficients show larger values over the altitudes of 2.0 to 5.0km where correspond to higher relative humidity(RH).The tops of PBL identified by the aerosol extinction profiles almost agree with ones by radiosonde data.The diurnal variations of aerosol extinction profiles are clearly displayed,intensive aerosol layers usually are formed over the period of mid-morning to 1400 Loeal Time(LT).then elapse in the cloudless late afternoon and nighttime.Thermal eonvection or turbulent transport from the surfaee probably dominates these temporal and spatial changes of aerosol distribution.  相似文献   

7.
本文利用NASA发布的MODIS气溶胶光学厚度产品,对西南地区2001~2016年气溶胶光度厚度空间分布和时间演变特征进行了分析,研究发现:(1)西南地区年均气溶胶光学厚度空间分布特征整体表现为东部高于西部,海拔低的地区气溶胶光学厚度高于海拔高的地区。高值中心位于四川盆地南部,低值区位于川西高原和云南北部地区。(2)西南地区季节气溶胶光学厚度空间分布特征与年均相似。(3)就西南各地区而言,重庆气溶胶光学厚度最大,其次是四川盆地和贵州地区,再次是云南地区,川西高原地区气溶胶光学厚度最小。(4)2001~2016年,西南地区年均气溶胶光学厚度呈显著减少趋势。夏季和秋季气溶胶光学厚度年际变化浮动较大,也具有显著的减少趋势。   相似文献   

8.
SUNFLUX is a fast parameterization scheme for determination of the solar radiation at the Earth's surface.In this paper,SUNFLUX is further modified in the treatment of aerosols.A new aerosol parameterization scheme is developed for five aerosol species.Observational data from Baseline Surface Radiation Network(BSRN),Surface Radiation Budget Network(SURFRAD) and Aerosol Robotic Network(AERONET) stations are used to evaluate the accuracy of the original and modified SUNFLUX schemes.General meteorological data are available at SURFRAD stations,but not at BSRN stations.Therefore,the total precipitable water content and aerosol data are obtained from AERONET stations.Fourteen stations are selected from both BSRN and AERONET.Cloud fraction data from MODIS are further used to screen the cloud.Ten-year average aerosol mixing ratios simulated by the CAM-chem system are used to calculate the fractions of aerosol optical depth for each aerosol species,and these fractions are further used to convert the observed total aerosol optical depth into the components of individual species for use in the evaluations.The proper treatment of multiple aerosol types in the model is discussed.The evaluation results using SUNFLUX with the new aerosol scheme,in terms of the BSRN dataset,are better than those using the original aerosol scheme under clear-sky conditions.However,the results using the SURFRAD dataset are slightly worse,attributable to the differences in the input water vapor and aerosol optical depth.Sensitivity tests are conducted to investigate the error response of the SUNFLUX scheme to the errors in the input variables.  相似文献   

9.
张杰  唐从国 《高原气象》2012,31(1):156-166
采用微脉冲激光雷达(Micro-Pulse Lidar,MPL)对干旱荒漠代表站张掖站上空一次春季沙尘暴过程的边界层和自由大气的气溶胶分布和大气环境进行了观测。结果表明,气溶胶的垂直廓线可分为高、中、低3层,高层气溶胶出现在5~9km,主要是通过上风方向的高海拔区域或低层气溶胶通过对流等过程突破边界层顶进入自由大气输送而来,其分布高度在一天中随着时间的推移逐渐降低;中层气溶胶位于2.5~4.5km,其消光特性随高度的增加没有明显的变化,具有垂直混合现象;低层气溶胶在2.5km以下,其消光特性随着高度增加反而降低;中、低层气溶胶主要来源于外部源区或当地沙尘源区和沙壤土起沙。气溶胶垂直分布表现出3种形式:在大气稳定条件下,气溶胶随高度增加呈单峰型减小趋势;不稳定条件下随高度增加指数型降低;混合层中随高度增加而保持稳定。由于受边界层日变化的影响,气溶胶分布的上界出现单峰型日变化特征,具体表现为下午较高,早晨较低。  相似文献   

10.
Sea-salt aerosol concentrations in the coastal zone are assessed with the numerical aerosol-transport model MACMod that applies separate aerosol source functions for open ocean and the surf zone near the sea–land transition. Numerical simulations of the aerosol concentration as a function of offshore distance from the surf zone compare favourably with experimental data obtained during a surf-zone aerosol experiment in Duck, North Carolina in autumn 2007. Based on numerical simulations, the effect of variations in aerosol production (source strength) and transport conditions (wind speed, air–sea temperature difference), we show that the surf-zone aerosols are replaced by aerosols generated over the open ocean as the airmass advects out to sea. The contribution from the surf-generated aerosol is significant during high wind speeds and high wave events, and is significant up to 30 km away from the production zone. At low wind speeds, the oceanic component dominates, except within 1–5 km of the surf zone. Similar results are obtained for onshore flow, where no further sea-salt aerosol production occurs as the airmass advects out over land. The oceanic aerosols that are well-mixed throughout the boundary layer are then more efficiently transported inland than are the surf-generated aerosols, which are confined to the first few tens of metres above the surface, and are therefore also more susceptible to the type of surface (trees or grass) that determines the deposition velocity.  相似文献   

11.
气溶胶对环境、气象和人体健康都有较大影响,这些影响与气溶胶理化特性(粒子尺度谱、化学组分、混合状态等)密切相关。为了深入研究气溶胶的环境和气候效应,发展了一套气溶胶在线综合观测系统。本文介绍了利用该系统在北京、上海、广州三个超大城市开展的综合观测实验结果。通过对比分析发现,广州气溶胶数浓度最高,其粒子尺度谱分布特征与北京特征相似,均以核模态为主,上海气溶胶数浓度则整体较低。对比三个超大城市的新粒子生成(New Particle Formation,NPF)特征发现,北京NPF的发生频率低于广州,主要由于北京地区大气中大粒径气溶胶更多,较高的碰并汇抑制了NPF的发生和发展。研究发现,观测期间北京和上海站点气溶胶的吸湿性强于广州,人为一次性排放气溶胶吸湿性较弱。气溶胶吸湿性日变化特征与人为活动、气溶胶老化程度密切相关。此外,三个超大城市中气溶胶光吸收系数的日变化特征存在明显差别,北京站点的气溶胶吸收系数呈现白天高、夜间低的特点,而广州站点气溶胶的吸收系数呈现相反的日变化趋势,这可能是由观测站周边的环境差异及大气边界层的变化特征差异造成的。  相似文献   

12.
基于2016年冬季和2017年夏季在北京、2016年夏季在邢台的三次气溶胶外场观测实验,选取三次观测期间典型的新粒子生成事件,分析其对气溶胶吸湿和云凝结核(CCN)活化特性的影响。两地分别位于华北平原北部超大城市区域和中南部工业化区域,两地不同季节新粒子形成机制不同,对应的凝结汇、生长速率以及气溶胶化学组分也不同。北京站点新粒子生成事件的发生以有机物的生成主导,而邢台站点新粒子生成事件的发生则以硫酸盐和有机物的生成共同主导。邢台站点新粒子生成过程中气溶胶吸湿性及云凝结核活化能力明显强于北京站点,此特点在核模态尺度粒子中表现尤为明显。以上结果表明,在估算新粒子生成对CCN数浓度的影响时,应充分考虑气溶胶吸湿和活化特性的差异。  相似文献   

13.
Brewer 分光光度计遥感大气臭氧垂直廓线的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用建立的球面分层大气散射模式,研究了Brewer仪器工作波长进行Umkehr短法反演所包含的信息量,给出Brewer仪器探测大气臭氧垂直廓线的方法。同时,用气溶胶光学厚度计算得到气溶胶订正系数,建立了Umkehr反演的程序,用此程序对TableMountain资料进行气溶胶修正,得到了较好的结果。对北京测站1991年1─3月资料进行由气溶胶造成的臭氧反演廓线的误差计算,结果表明,用常规反演方法得到的各层臭氧含量的误差与平流层气溶胶光学厚度有一近似线性的关系;进行气溶胶修正后,与国外的臭氧反演廓线的误差修正工作 ̄[1]比较,结果较一致。研究提出的气溶胶订正反演方法为更好地对平流层臭氧变化趋势进行研究提供了可能性和可靠的基础。  相似文献   

14.
马新成  田伟红  张磊  张蔷 《气象科技》2011,39(6):685-691
2004年秋季在北京地区利用机载大气气溶胶粒子探头进行了大气气溶胶观测,获得了0~7 km气溶胶细粒子数浓度和尺度谱分布的垂直、水平变化特征.结果表明:北京地区上空气溶胶粒子数浓度在1 km左右高度以下的混合层内有均匀的分布,明显递减层的高度范围约在1~2 km之间,2 km以上随高度递减很小,高层气溶胶数浓度变化不大...  相似文献   

15.
基于新耦合气溶胶气候模式FGOALS-f3-L模拟分析了2002-2011年青藏高原地区气溶胶时空分布特征.结果表明:青藏高原地区,沙尘,硫酸盐,碳质气溶胶(包括黑碳,有机碳和混合碳)地表质量浓度分别占比为53.6%,32.2%,14.2%;在拉萨站点,模拟的气溶胶地表质量浓度被低估,尤其是黑碳和有机碳气溶胶;模拟的气...  相似文献   

16.
刘颖  朱君 《气象科技》2022,50(6):878-884
利用青藏高原拉萨(Lhasa)和珠峰(QOMS_CAS)站点地基CE-318太阳光度计观测数据,研究了2012年4月2日至4月5日一次生物质燃烧输送对青藏高原气溶胶光学和辐射特性的影响;并结合卫星遥感产品以及后向轨迹模式分析了本次生物质燃烧输送的可能来源。结果表明:本次气溶胶污染期间Lhasa和QOMS_CAS站点的主要气溶胶类型变为生物质燃烧气溶胶,气溶胶粒子的消光性增大(气溶胶光学厚度(AOD)增大,Lhasa和QOMS_CAS站点AOD最大值分别为0.4和0.29),尺度减小(消光波长指数(EAE)>1.5),吸收性增大(吸收波长指数(AAE)>1.3),细模态粒子体积浓度增大,而细模态粒子峰值半径减小。气溶胶辐射强迫表明此次输送过程使得Lhasa和QOMS_CAS站点的气溶胶对大气顶和地表的降温作用增强,对大气的增温作用也增强。生物质燃烧输送的可能来源为南亚的印度东北部,尼泊尔与不丹地区。  相似文献   

17.
The microstructure of orographic clouds related to the aerosol present was studied during the second Aerosol Characterisation Experiment (ACE‐2). Very high cloud droplet number concentrations (almost 3000 cm−3) were observed. These high concentrations occurred when clouds formed on a hill slope at Tenerife in polluted air masses originating in Europe that had transported the order of 1000 km over the Atlantic Ocean. The validity of the measured droplet number concentrations was investigated by comparing with measurements of the aerosol upstream of the cloud and cloud interstitial aerosol. Guided by distributions of the ratios between the measurements, three criteria of typically 30% in maximum deviation were applied to the measurements to test their validity. Agreement was found for 88% of the cases. The validated data set spans droplet number concentrations of 150–3000 cm−3. The updraught velocity during the cloud formation was estimated to 2.2 m s−1 by model calculations, which is typical of cumuliform clouds. The results of the present study are discussed in relation to cloud droplet number concentrations previously reported in the literature. The importance of promoting the mechanistic understanding of the aerosol/cloud interaction and the use of validation procedures of cloud microphysical parameters is stressed in relation to the assessment of the indirect climatic effect of aerosols.  相似文献   

18.
This study performed a three-dimensional regional-scale simulation of aerosol and cloud fields using a meso-scale non-hydrostatic model with a bin-based cloud microphysics. The representation of aerosols in the model has been improved to account for more realistic multi-modal size distribution and multiple chemical compositions. Two case studies for shallow stratocumulus over Northeast Asia in March 2005 were conducted with different aerosol conditions to evaluate model performance. Improved condensation nuclei (CN) and cloud condensation nuclei (CCN) are attributable to the newly constructed aerosol size distribution. The simulated results of cloud microphysical properties (cloud droplet effective radius, liquid water path, and optical thickness) with improved CN/CCN number are close to the retrievals from satellite-based observation. The effects of aerosol on the microphysical properties of shallow stratocumulus are investigated by model simulation, in terms of columnar aerosol number concentration. Enhanced aerosol number concentration results in increased liquid water path in humid case, but invariant liquid water path in dry case primarily due to precipitation occurrence. The changes of cloud microphysical properties are more predominant for small aerosol burden than for large aerosol burden with the retarded changes in cloud mass and size due to inactive condensation and collision-coalescence processes. Quantitative evaluation of sensitivity factor between aerosol and cloud microphysical properties indicates a strong aerosol-cloud interaction in Northeast Asian region.  相似文献   

19.
The relationships between the physical and chemical properties of mixed-phase clouds were investigated at Storm Peak Laboratory (3220m MSL) located near the continental divide in northwestern Colorado. Interstitial aerosol particles, cloud droplets and snow crystals were concurrently collected when the laboratory was enveloped by a precipitating cloud. All samples were analyzed for trace elements, soluble anions, electrical conductivity and acidity.The results show average trace constituent concentration ratios of cloud water to snow water range from 0.4 to 26. All but six of the 32 elements and ions measured had ratios greater than one. This result suggests a chemical species dependency of in-cloud aerosol particle scavenging processes. Evidence of a decrease of in-cloud aerosol particle scavenging efficiency by snow due to increases in aerosol concentration is also presented.Differences between the chemical composition of cloud water and snow water are manifested most strongly when snow crystals grow by vapor deposition. In-cloud scavenging efficiencies by snow crystals for most aerosol particle chemical species are dependent on the growth of the snow crystals by accretion of cloud droplets. This chemical fractionation of the atmospheric aerosol by snow crystal formation and growth should be most active where narrow, continental cloud droplet size distributions and low liquid water contents are prevalent, enhancing the probability of snow crystal growth by diffusion.  相似文献   

20.
A global 3-D Lagrangian chemistry-transport model STOCHEM is used to describe the tropospheric distributions of four components of the secondary atmospheric aerosol: nitrate, sulphate, ammonium and organic compounds. The model describes the detailed chemistry of the formation of the acid precursors from the oxidation of SO2, DMS, NOx, NH3 and terpenes and their uptake into the aerosol. Model results are compared in some detail with the available surface observations. Comparisons are made between the global budgets and burdens found in other modelling studies. The global distributions of the total mass of secondary aerosols have been estimated for the pre-industrial, present day and 2030 emissions and large changes have been estimated in the mass fractions of the different secondary aerosol components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号