首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a 4D seismic operation to be successful, it is important to know what kind of 4D signal we expect to observe, as well as its magnitude. Normally, in a 4D feasibility study, we use rock physics models to quantify the effect of fluid or pressure changes within the reservoir and calculate the corresponding effects to the seismogram. However, to find if the predicted changes are actually observable at a given field, a dedicated calibration procedure might give valuable insight. One such procedure for marine seismics is to gradually change the source strength by varying the firing pressure in order to detect the sensitivity threshold for a given subsurface reflection. This procedure would be practical and feasible if the change of the source signature changes linearly with the source pressure. However, non‐linear effects will lead to minor changes in the later arrivals of the source signature, the so‐called bubble. By investigating these introduced errors for a reasonable air‐gun array we conclude that the method is still feasible since we find it possible to control and diminish the impact of the introduced errors.  相似文献   

2.
Updating of reservoir models by history matching of 4D seismic data along with production data gives us a better understanding of changes to the reservoir, reduces risk in forecasting and leads to better management decisions. This process of seismic history matching requires an accurate representation of predicted and observed data so that they can be compared quantitatively when using automated inversion. Observed seismic data is often obtained as a relative measure of the reservoir state or its change, however. The data, usually attribute maps, need to be calibrated to be compared to predictions. In this paper we describe an alternative approach where we normalize the data by scaling to the model data in regions where predictions are good. To remove measurements of high uncertainty and make normalization more effective, we use a measure of repeatability of the monitor surveys to filter the observed time‐lapse data. We apply this approach to the Nelson field. We normalize the 4D signature based on deriving a least squares regression equation between the observed and synthetic data which consist of attributes representing measured acoustic impedances and predictions from the model. Two regression equations are derived as part of the analysis. For one, the whole 4D signature map of the reservoir is used while in the second, 4D seismic data is used from the vicinity of wells with a good production match. The repeatability of time‐lapse seismic data is assessed using the normalized root mean square of measurements outside of the reservoir. Where normalized root mean square is high, observations and predictions are ignored. Net: gross and permeability are modified to improve the match. The best results are obtained by using the normalized root mean square filtered maps of the 4D signature which better constrain normalization. The misfit of the first six years of history data is reduced by 55 per cent while the forecast of the following three years is reduced by 29 per cent. The well based normalization uses fewer data when repeatability is used as a filter and the result is poorer. The value of seismic data is demonstrated from production matching only where the history and forecast misfit reductions are 45% and 20% respectively while the seismic misfit increases by 5%. In the best case using seismic data, it dropped by 6%. We conclude that normalization with repeatability based filtering is a useful approach in the absence of full calibration and improves the reliability of seismic data.  相似文献   

3.
Seismic wave propagation through a fluid-saturated poroelastic layer might be strongly affected by media heterogeneities. Via incorporating controlled laboratory simulation experiments, we extend previous studies of time-lapse seismic effects to evaluate the wave scattering influence of the heterogeneous nature of porous permeable media and the associated amplification effects on 4D seismic response characteristics of reservoir fluid substitution. A physical model consisted of stratified thin layers of shale and porous sandstone reservoir with rock heterogeneities was built based on the geological data of a real hydrocarbon-saturated reservoir in Northeast China. Multi-surveys data of good quality were acquired by filling poroelastic reservoir layers with gas, water and oil in sequence. Experimental observations show that reservoir heterogeneity effect causes significantly magnified abnormal responses to the fluid-saturated media. Specifically, reflection signatures of the gas-filled reservoir are dramatically deviated from those of the liquid fluid-filled reservoir, compared with ones of the homogeneous media. By removing the influences unrelated to reservoir property alterations, 4D seismic estimates of travel-time and frequency-dependent characteristic are reasonably consistent with fluid variations. Nevertheless, strong 4D amplitude difference anomalies might not correspond to the regions where fluid variations occur. We also find that 4D seismic difference attributes are evident between oil- and water-filled models, whereas significant between oil- and gas-filled models. Meanwhile, rock physics modelling results reveal the predicted 4D seismic differences are obviously smaller than those calculated from seismic observations. The results in this paper, therefore, implicate that the effect of a reservoir's heterogeneous nature might be beneficial for hydrocarbons detection as well as monitoring small variations in pore fluids.  相似文献   

4.
Ghawar, the largest oilfield in the world, produces oil from the Upper Jurassic Arab‐D carbonate reservoir. The high rigidity of the limestone–dolomite reservoir rock matrix and the small contrast between the elastic properties of the pore fluids, i.e. oil and water, are responsible for the weak 4D seismic effect due to oil production. A feasibility study was recently completed to quantify the 4D seismic response of reservoir saturation changes as brine replaced oil. The study consisted of analysing reservoir rock physics, petro‐acoustic data and seismic modelling. A seismic model of flow simulation using fluid substitution concluded that time‐lapse surface seismic or conventional 4D seismic is unlikely to detect the floodfront within the repeatability of surface seismic measurements. Thus, an alternative approach to 4D seismic for reservoir fluid monitoring is proposed. Permanent seismic sensors could be installed in a borehole and on the surface for passive monitoring of microseismic activity from reservoir pore‐pressure perturbations. Reservoir production and injection operations create these pressure or stress perturbations. Reservoir heterogeneities affecting the fluid flow could be mapped by recording the distribution of epicentre locations of these microseisms or small earthquakes. The permanent borehole sensors could also record repeated offset vertical seismic profiling surveys using a surface source at a fixed location to ensure repeatability. The repeated vertical seismic profiling could image the change in reservoir properties with production.  相似文献   

5.
The possibility of using 4D seismic data for monitoring pressure depletion in the low‐porosity, tight gas‐bearing Rotliegende sandstones of the UK Southern Gas Basin is investigated. The focus here is on whether fractures in the upper part of the reservoir, known to enhance productivity, can also enhance the time‐lapse seismic response. The study uses laboratory data to evaluate core‐plug stress sensitivity, published data for the stress behaviour of the fractures, followed by petro‐elastic and 4D seismic modelling of both the fractured and unfractured formation. The magnitude of the resultant 4D signatures suggests that production‐induced changes in the unfractured sands are unlikely to be observed except perhaps with highly repeatable time‐lapse surveys. On the other hand, the presence of fractures could render production effects visible in dedicated 4D acquisition or prestack parallel processed data. If present however, the signature will be sporadic, as fractures in the area are known to exist in clusters. The 4D signature may be enhanced further by certain classes of vertical geological variability and also areas of high reservoir pressure. The strongest evidence of depletion is expected to be time‐shifts seen at the base of the Rotliegende reservoir.  相似文献   

6.
P‐wave data from a time‐lapse 3D OBC survey have been analysed to estimate and interpret azimuthal seismic anisotropy. This is achieved by careful processing to preserve the azimuthal signature. The survey images a major reservoir body in a channelized turbidite field in the Gulf of Mexico. Three distinct and significant anisotropy anomalies are discovered on or around this particular ‘4500‐ft sand’, all of which change intensity but not orientation with hydrocarbon production. These anomalies are distributed along the highest concentration of cumulative sand thickness, with their symmetry axes aligned with the main channel axis. We suspect that this time‐lapse anisotropy could be caused by the alignment of the depositional grain fabric. Theoretical calculation predicts that this mechanism, when combined with fluid‐saturation changes, can generate the observed pattern of behaviour. If further supported by other researchers, this result would indicate that appropriately designed seismic surveys could be a useful tool for palaeo‐direction studies in clastic reservoirs and also a useful constraint for directional permeability in the reservoir flow simulation model.  相似文献   

7.
Numerous examples of reservoir fields from continental and marine environments involve thin‐bedded geology, yet, the inter‐relationship between thin‐bedded geology, fluid flow and seismic wave propagation is poorly understood. In this paper, we explore the 4D seismic signature due to saturation changes of gas within thin layers, and address the challenge of identifying the relevant scales and properties, which correctly define the geology, fluid flow and seismic wave propagation in the field. Based on the study of an outcrop analogue for a thin‐bedded turbidite, we model the time‐lapse seismic response to fluid saturation changes for different levels of model scale, and explore discrepancies in quantitative seismic attributes caused by upscaling. Our model reflects the geological complexity associated with thin‐bedded turbidites, and its coupling to fluid flow, which in turn affects the gas saturation distribution in space, and its time‐lapse seismic imprint. Rock matrix and fluid properties are modelled after selected fields to reproduce representative field models with realistic impedance contrasts. In addition, seismic modelling includes multiples, in order to assess their contribution in seismic propagation through thin gas layers. Our results show that multiples could contribute significantly to the measured amplitudes in the case of thin‐bedded geology. This suggests that forward/inverse modelling involving the flow simulation and seismic domains used in time‐lapse seismic interpretation should account for thin layers, when these are present in the geological setting.  相似文献   

8.
Of particular concern in the monitoring of gas injection for the purposes of storage, disposal or improved oil recovery is the exact spatial distribution of the gas volumes in the subsurface. In principle this requirement is addressed by the use of 4D seismic data, although it is recognized that the seismic response still largely provides a qualitative estimate of moved subsurface fluids. Exact quantitative evaluation of fluid distributions and associated saturations remains a challenge to be solved. Here, an attempt has been made to produce mapped quantitative estimates of the gas volume injected into a clastic reservoir. Despite good results using three accurately repeated seismic surveys, time‐delay and amplitude attributes reveal fine‐scale differences though large‐scale agreement in the estimated fluid movement. These differences indicate disparities in the nature of the two attributes themselves, which can be explained by several possible causes. Of most impact are the effects of processing and migration, wave interference effects and noise from non‐repeatability of the seismic surveys. This subject highlights the need for a more careful consideration in 4D acquisition, amplitude processing and use of true amplitude preserving attributes in quantitative interpretation.  相似文献   

9.
Quantitative detection of fluid distribution using time-lapse seismic   总被引:1,自引:0,他引:1  
Although previous seismic monitoring studies have revealed several relationships between seismic responses and changes in reservoir rock properties, the quantitative evaluation of time‐lapse seismic data remains a challenge. In most cases of time‐lapse seismic analysis, fluid and/or pressure changes are detected qualitatively by changes in amplitude strength, traveltime and/or Poisson's ratio. We present the steps for time‐lapse seismic analysis, considering the pressure effect and the saturation scale of fluids. We then demonstrate a deterministic workflow for computing the fluid saturation in a reservoir in order to evaluate time‐lapse seismic data. In this approach, we derive the physical properties of the water‐saturated sandstone reservoir, based on the following inputs: VP, VS, ρ and the shale volume from seismic analysis, the average properties of sand grains, and formation‐water properties. Next, by comparing the in‐situ fluid‐saturated properties with the 100% formation‐water‐saturated reservoir properties, we determine the bulk modulus and density of the in‐situ fluid. Solving three simultaneous equations (relating the saturations of water, oil and gas in terms of the bulk modulus, density and the total saturation), we compute the saturation of each fluid. We use a real time‐lapse seismic data set from an oilfield in the North Sea for a case study.  相似文献   

10.
Two formulae are developed for estimating horizontal permeability directly from maps of 4D seismic signatures. The choice of the formula used depends on whether the seismic is dominated by changes of pressure or saturation. However, pressure derived from time‐lapse seismic, or seismic amplitudes controlled predominantly by pressure are to be preferred for optimal ‘illumination’ of the reservoir. The permeability is predicted to be dependent on porosity but weighted by a 4D term related to the magnitude and spatial gradient of the 4D signature. Tests performed on model‐based synthetic seismic data affirm the validity and accuracy of this approach. Application to field data from the UK continental shelf reveals a large‐scale permeability variation similar to the existing simulation model, but with additional fine‐scale detail. The technique thus has the potential of providing extra information with which to update the simulation model. The resultant permeability estimates have been successfully ground‐truthed against the results of two well tests. As non‐repeatable noise in the time‐lapse seismic data diminishes with improved 4D‐related acquisition, it will become increasingly possible to make robust permeability estimates using this approach.  相似文献   

11.
The aim of seismic reservoir monitoring is to map the spatial and temporal distributions and contact interfaces of various hydrocarbon fluids and water within a reservoir rock. During the production of hydrocarbons, the fluids produced are generally displaced by an injection fluid. We discuss possible seismic effects which may occur when the pore volume contains two or more fluids. In particular, we investigate the effect of immiscible pore fluids, i.e. when the pore fluids occupy different parts of the pore volume. The modelling of seismic velocities is performed using a differential effective‐medium theory in which the various pore fluids are allowed to occupy the pore space in different ways. The P‐wave velocity is seen to depend strongly on the bulk modulus of the pore fluids in the most compliant (low aspect ratio) pores. Various scenarios of the microscopic fluid distribution across a gas–oil contact (GOC) zone have been designed, and the corresponding seismic properties modelled. Such GOC transition zones generally give diffuse reflection regions instead of the typical distinct GOC interface. Hence, such transition zones generally should be modelled by finite‐difference or finite‐element techniques. We have combined rock physics modelling and seismic modelling to simulate the seismic responses of some gas–oil zones, applying various fluid‐distribution models. The seismic responses may vary both in the reflection time, amplitude and phase characteristics. Our results indicate that when performing a reservoir monitoring experiment, erroneous conclusions about a GOC movement may be drawn if the microscopic fluid‐distribution effects are neglected.  相似文献   

12.
The propagation of seismic waves through a saturated reservoir compresses the fluid in the pore spaces. During this transition, parts of seismic energy would be attenuated because of intrinsic absorption. Rock physics models make the bridge between the seismic properties and petrophysical reality in the earth. Attenuation is one of the significant seismic attributes used to describe the fluid behaviour in the reservoirs. We examined the core samples using ultrasonic experiments at the reservoir conditions. Given the rock properties of the carbonate reservoir and experiment results, the patchy saturation mechanism was solved for substituted fluid using the theory of modulus frequency. The extracted relationship between the seismic attenuation and water saturation was used in time–frequency analysis. We performed the peak frequency method to estimate the Q factor in the Gabor domain and determined the water saturation based on the computed rock physics model. The results showed how the probable fault in the reservoir has stopped the fluid movement in the reservoir and caused touching the water‐bearing zone through drilling.  相似文献   

13.
The measured geophysical response of sand – shale sequences is an average over multiple layers when the tool resolution (seismic or well log) is coarser than the scale of sand – shale mixing. Shale can be found within sand – shale sequences as laminations, dispersed in sand pores, as well as load bearing clasts. We present a rock physics framework to model seismic/sonic properties of sub-resolution interbedded shaly sands using the so-called solid and mineral substitution models. This modelling approach stays consistent with the conceptual model of the Thomas–Stieber approach for estimating volumetric properties of shaly sands; thus, this work connects established well log data-based petrophysical workflows with quantitative interpretation of seismic data for modelling hydrocarbon signature in sand – shale sequences. We present applications of the new model to infer thickness of sand – shale lamination (i.e., net to gross) and other volumetric properties using seismic data. Another application of the new approach is fluid substitution in sub-resolution interbedded sand–shale sequences that operate directly at the measurement scale without the need to downscale; such a procedure has many practical advantages over the approach of “first-downscale-and-then-upscale” as it is not very sensitive to errors in estimated sand fraction and end member sand/shale properties and remains stable at small sand/shale fractions.  相似文献   

14.
Time-lapse seismic analysis of pressure depletion in the Southern Gas Basin   总被引:1,自引:0,他引:1  
In the Southern Gas Basin (SGB) of the North Sea there are many mature gas fields where time‐lapse monitoring could be very beneficial in extending production life. However, the conditions are not immediately attractive for time‐lapse seismic assessment. This is primarily because the main production effect to be assessed is a pore pressure reduction and frame stiffening because of gas production in tight sandstone reservoirs that also have no real seismic direct hydrocarbon indicators. Modelling, based on laboratory measurements, has shown that such an effect would be small and difficult to detect in seismic data. This paper makes two main contributions. Firstly, this is, to our knowledge, the first time‐lapse study in the SGB and involves a real‐data assessment of the viability for detecting production in such an environment. Secondly, the feasibility of using markedly different legacies of data in such a study is addressed, including an assessment of the factors influencing the crossmatching. From the latter, it is found that significant, spatially varying time shifts need to be, and are successfully, resolved through 3‐D warping. After the warping, the primary factors limiting the crossmatching appear to be residual local phase variations, possibly induced by the differing migration strategies, structure, reverberations and different coherencies of the volumes, caused by differences in acquisition‐structure azimuth and acquisition fold. Despite these differences, a time‐lapse amplitude signature is observed that is attributable to production. The character of the 4‐D amplitude anomalies may also indicate variations in stress sensitivity, e.g. because of zones of fracturing. Additionally, warping‐derived time attributes have been highlighted as a potential additional avenue for detection of pressure depletion in such reservoirs. Although the effects are subtle, they may indicate changes in stress/pressure in and around the reservoir because of production. However, to fully resolve the subtle time‐lapse effects in such a reservoir, the data differences need to be better addressed, which may be possible by full re‐processing and pre‐stack analysis, but more likely dedicated 4‐D acquisition would be required.  相似文献   

15.
Fluid depletion within a compacting reservoir can lead to significant stress and strain changes and potentially severe geomechanical issues, both inside and outside the reservoir. We extend previous research of time‐lapse seismic interpretation by incorporating synthetic near‐offset and full‐offset common‐midpoint reflection data using anisotropic ray tracing to investigate uncertainties in time‐lapse seismic observations. The time‐lapse seismic simulations use dynamic elasticity models built from hydro‐geomechanical simulation output and a stress‐dependent rock physics model. The reservoir model is a conceptual two‐fault graben reservoir, where we allow the fault fluid‐flow transmissibility to vary from high to low to simulate non‐compartmentalized and compartmentalized reservoirs, respectively. The results indicate time‐lapse seismic amplitude changes and travel‐time shifts can be used to qualitatively identify reservoir compartmentalization. Due to the high repeatability and good quality of the time‐lapse synthetic dataset, the estimated travel‐time shifts and amplitude changes for near‐offset data match the true model subsurface changes with minimal errors. A 1D velocity–strain relation was used to estimate the vertical velocity change for the reservoir bottom interface by applying zero‐offset time shifts from both the near‐offset and full‐offset measurements. For near‐offset data, the estimated P‐wave velocity changes were within 10% of the true value. However, for full‐offset data, time‐lapse attributes are quantitatively reliable using standard time‐lapse seismic methods when an updated velocity model is used rather than the baseline model.  相似文献   

16.
Seismic inversion plays an important role in reservoir modelling and characterisation due to its potential for assessing the spatial distribution of the sub‐surface petro‐elastic properties. Seismic amplitude‐versus‐angle inversion methodologies allow to retrieve P‐wave and S‐wave velocities and density individually allowing a better characterisation of existing litho‐fluid facies. We present an iterative geostatistical seismic amplitude‐versus‐angle inversion algorithm that inverts pre‐stack seismic data, sorted by angle gather, directly for: density; P‐wave; and S‐wave velocity models. The proposed iterative geostatistical inverse procedure is based on the use of stochastic sequential simulation and co‐simulation algorithms as the perturbation technique of the model parametre space; and the use of a genetic algorithm as a global optimiser to make the simulated elastic models converge from iteration to iteration. All the elastic models simulated during the iterative procedure honour the marginal prior distributions of P‐wave velocity, S‐wave velocity and density estimated from the available well‐log data, and the corresponding joint distributions between density versus P‐wave velocity and P‐wave versus S‐wave velocity. We successfully tested and implemented the proposed inversion procedure on a pre‐stack synthetic dataset, built from a real reservoir, and on a real pre‐stack seismic dataset acquired over a deep‐water gas reservoir. In both cases the results show a good convergence between real and synthetic seismic and reliable high‐resolution elastic sub‐surface Earth models.  相似文献   

17.
Conventional seismic analysis of gravity dams assumes that the behaviour of the dam–water–soil system can be represented using a 2‐D model since dam vertical contraction joints between blocks allow them to vibrate independently from each other. The 2‐D model assumes the reservoir to be infinite and of constant width, which is not true for certain types of reservoirs. In this paper, a boundary element method (BEM) model in the frequency domain is used to investigate the influence of the reservoir geometry on the hydrodynamic dam response. Important conceptual conclusions about the dam–reservoir system behaviour are obtained using this model. The results show that the reservoir shape influences the seismic response of the dam, making it necessary to account for 3‐D effects in order to obtain accurate results. In particular, the 3‐D pressure and displacement responses can be substantially larger than those computed with the 2‐D model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Using numerical modelling, we investigate the evolution of seismoelectric effects induced by seismic excitation in spatially confined lithological units. Typical geometries represent clay lenses embedded in an aquifer or petroleum deposits in a host rock. In fluid‐saturated rocks, seismic waves can generate electromagnetic fields due to electrokinetic coupling mechanisms associated with such processes in the vicinity of the fluid‐mineral interface. Two seismoelectric phenomena are investigated: (1) the co‐seismic field associated with the seismic displacement at each point in a subsurface and (2) the interface response generated at layer boundaries. Our modelling uses a simplified time‐domain formulation of the coupled problem and an efficient 2D finite‐element implementation. To gain insight into the morphogenetic field behaviour of the seismoelectric effects, several numerical simulations for various target geometries were treated. Accordingly, we varied both the thickness of the confined units and the value of the electrical bulk conductivity in porous media. Analysis of these effects shows differences between interface responses for electrically conductive versus resistive units. So the pertinent contrast in electrical bulk conductivity controls the shape and structure of these seismoelectric conversion patterns. Moreover, the seismoelectric interface response captures both the petrophysical and geometrical characteristics of the geological unit. These models demonstrate the value of using seismoelectric interface response for reservoir characterization in either hydrogeological or hydrocarbon exploration studies.  相似文献   

19.
The important effects of bottom sediments on the seismic response of arch dams are studied in this paper. To do so, a three‐dimensional boundary element model is used. It includes the water reservoir as a compressible fluid, the dam and unbounded foundation rock as viscoelastic solids, and the bottom sediment as a two‐phase poroelastic domain with dynamic behaviour described by Biot's equations. Dynamic interaction among all those regions, local topography and travelling wave effects are taken into account. The results obtained show the important influence of sediment compressibility and permeability on the seismic response. The former is associated with a general change of the system response whereas the permeability has a significant influence on damping at resonance peaks. The analysis is carried out in the frequency domain considering time harmonic excitation due to P and S plane waves. The time‐domain results obtained by using the Fourier transform for a given earthquake accelerogram are also shown. The possibility of using simplified models to represent the bottom sediment effects is discussed in the paper. Two alternative models for porous sediment are tested. Simplified models are shown to be able to reproduce the effects of porous sediments except for very high permeability values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The seismic response of the intake–outlet towers has been widely analyzed in recent years. The usual models consider the hydrodynamic effects produced by the surrounding water and the interior water, characterizing the dynamic response of the tower–water–foundation–soil system. As a result of these works, simplified added mass models have been developed. However, in all previous models, the surrounding water is assumed to be of uniform depth and to have infinite extension. Consequently, the considered added mass is associated with only the pressures created by the displacements of the tower itself. For a real system, the intake tower is usually located in proximity to the dam and the dam pressures may influence the equivalent added mass. The objective of this paper is to investigate how the response of the tower is affected by the presence of the dam. A coupled three‐dimensional boundary element‐finite element model in the frequency domain is employed to analyze the tower–dam–reservoir interaction problem. In all cases, the system response is assumed to be linear, and the effect of the internal fluid and the soil–structure interaction effects are not considered. The results suggest that unexpected resonance amplifications can occur due to changes in the added mass for the tower as a result of the tower–dam–reservoir interaction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号