首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three major, interdependent processes control the genesis and distribution of mineral and thermal waters in the Rhenish Massif, Central Europe: (a) Magmatic processes in the upper mantle provide most of the CO2 to produce bicarbonate waters in shallow aquifers. (b) Extension of the brittle upper crust enables the ascent of sodium chloride waters. (c) Uplift and erosion shape the massif's relief, which determines the extent of flow systems and the distribution of thermal springs. The chemistry of mineral waters further depends on the aquifers' mineral composition. A comprehensive set of hydrological, chemical, tectonic and geophysical data on the Rhenish Massif has been compiled. It was used to classify the mineral waters and to map the spatial distribution of water properties. The composition of cuttings from several representative wells producing different water types shows that the hydrothermal alteration of the aquifer rocks consists mainly of kaolinization of chlorite and dissolution of feldspar. Numerical transport simulations favour two modes of groundwater flow: topography-driven flow and the pressure-driven ascent of basement brines along active faults. Thermal convection is less important.  相似文献   

2.
澳大利亚西澳州2004-2005年度矿产勘探综述   总被引:1,自引:0,他引:1  
张金昌 《地质通报》2007,26(3):361-365
介绍了澳大利亚西澳州2004—2005年度金、镍、铁、钛、锆、金刚石矿床的勘探情况和取得的找矿成果。简述了2004—2005年度西澳州矿产勘探(包括石油勘探)消费支出、不同矿产品所占勘探支出的份额、钻探、矿山土地复垦及环境保护的情况。  相似文献   

3.
The eastern Yilgarn Craton (EYC) is one of the world's premier gold provinces subject to over a century of mineral exploration. Prolonged interest in the terrane has led to the assembly of multiple world-class data sets suitable for testing district scale targeting methodologies. District scale targeting is concerned with identifying a mineral camp ∼60 km × 60 km in size within a prospective region or province ∼1000 km × 1000 km in size. Exploration at the district scale necessitates the development of predictive exploration models, which can be applied to large regions. Recent advances in the study of the geodynamic evolution and 3D architecture of the EYC, together with an understanding of their interrelationship with the orogenic gold mineral system, has resulted in identification of critical mineralisation processes responsible for the region's rich gold endowment. Here we describe and map these critical processes, using them as a basis for district scale targeting. We relate gold mineralisation to three temporally constrained geodynamic periods, integrated with regional hydrothermal alteration. Unlike many targeting methodologies, this methodology does not incorporate the location of known gold deposits in the analysis, yet it predicted 75% of known gold mineralisation in 5% of the area. The methodology allows critical mineralisation processes to be identified and mapped through time and space. These critical processes are mostly generic and can be applied to other granite–greenstone orogenic gold regions, such as the Abitibi in Canada. An important outcome of this work for the EYC is the identification of a number of new target areas, not known currently for significant gold mineralisation, in what is otherwise thought to represent a mature terrane for gold exploration.  相似文献   

4.
The Phanerozoic cooling history of the Western Australian Shield has been investigated using apatite fission track (AFT) thermochronology. AFT ages from the northern part of the Archaean Yilgarn Craton, Western Australia, primarily range between 200 and 280 Ma, with mean confined horizontal track lengths varying between 11.5 and 14.3 μm. Time–temperature modelling of the AFT data together with geological information suggest the onset of a regional cooling episode in the Late Carboniferous/Early Permian, which continued into Late Jurassic/Early Cretaceous time. Present-day heat flow measurements on the Western Australian Shield fall in the range of 40–50 mW m−2. If the present day geothermal gradient of  18 ± 2 °C km−1 is representative of average Phanerozoic gradients, then this implies a minimum of  50 °C of Late Palaeozoic to Mesozoic cooling. Assuming that cooling resulted from denudation, the data suggest the removal of at least 3 km of rock section from the northern Yilgarn Craton over this interval. The Perth Basin, located west of the Yilgarn Craton, contains up to 15 km of mostly Permian to Lower Cretaceous clastic sediment. However, published U–Pb data of detrital zircons from Permian and Lower Triassic basin strata show relatively few or no grains of Archaean age. This suggests that the recorded cooling can probably be attributed to the removal of a sedimentary cover rather than by denudation of material from the underlying craton itself. The onset of cooling is linked to tectonism related to either the waning stages of the Alice Springs Orogeny or to the early stages of Gondwana breakup.  相似文献   

5.
LA-ICP-MS U–Pb geochronological data from metamorphic monazite in granulite-facies metapelites in the Barossa Complex, southern Australia, yield ages in the range 1580–1550 Ma. Metapelitic rocks from the Myponga and Houghton Inliers contain early biotite–sillimanite-bearing assemblages that underwent partial melting to produce peak metamorphic garnet–sillimanite-bearing anatectic assemblages. Phase equilibrium modelling suggests a clockwise P–T evolution with peak temperatures between 800 and 870°C and peak pressures of 8–9 kbar, followed by decompression to pressures of ~6 kbar. In combination with existing age data, the monazite U–Pb ages indicate that the early Mesoproterozoic evolution of the Barossa Complex is contemporaneous with other high geothermal gradient metamorphic terranes in eastern Proterozoic Australia. The areal extent of early Mesoproterozoic metamorphism in eastern Australia suggests that any proposed continental reconstructions involving eastern Proterozoic Australia should share a similar tectonothermal history.  相似文献   

6.
Rocks of the Early Proterozoic Nabberu Supergroup were deposited in the Nabberu Basin along the northern margin of the Archaean Yilgarn Shield in Western Australia. The Nabberu Basin consists of three tectonic-sedimentary units known as the Earaheedy, Glengarry and Padbury Sub-basins.The Earaheedy Group within the easternmost sub-basin is divided into a lower Tooloo Sub-group and an upper Miningarra Sub-group, representing succeeding sedimentary cycles totalling some 6000 m of shallow water sediments. The Tooloo Sub-group comprises thin quartzose to arkosic clastics (Yelma Formation) which rest unconformably on Archaean rocks, and are overlain by chert, shale, iron formations and minor carbonate (Frere Formation), and thinly bedded carbonate, shale and sandstone (Windidda Formation). The overlying Miningarra Sub-group includes sandstone and shale (Wandiwarra Formation), super-mature quartz sandstone and arkosic siltstone (Princess Ranges Quartzite), fine arkosic sandstone, siltstone, shale and carbonate (Wongawol Formation), limestone, shale and sandstone (Kulele Creek Limestone) and sandstone and shale (Mulgarra Sandstone). Distinctive stromatolite assemblages occur in carbonate units throughout the sequence.Iron formations of the Frere Formation are similar to those of the Lake Superior and Labrador Provinces of North America, and commonly have a distinctive pelletal (intraclastic) texture, but are locally oolitic or laminated. Benthonic microfossils found at one locality are identical to those in the Lake Superior iron formations (Walter et al., 1976).West into the Glengarry Sub-basin and Peak Hill—Robinson Ranges area the basal clastics become considerably thicker, finer-grained and more varied, and are commonly interbedded with basaltic volcanics and greywackes. The Peak Hill Beds (MacLeod, 1970), Finlayson Sandstone and Maraloou Formation (Bunting et al., 1977) may be lateral equivalents of the Yelma Formation, while the overlying Horseshoe Range Beds, Labouchere Formation and Robinson Range Formation (Barnett, 1975) are possible equivalents of the Frere Formation. The Millidie Creek Formation may be equivalent to the Wandiwarra Formation.Deformation of the Nabberu Basin has resulted in the development of the Stanley Fold Belt in the north and the Kingston Platform in the south. On the Kingston Platform the rocks dip very gently north, but deformation increases northwards. A slaty cleavage becomes more conspicuous in this direction, while folds become tighter, overturned southwards and cut by north-dipping thrusts. The fold belt trends west-northwest across the eastern portion of the basin before swinging to the southwest. Archaean basement is increasingly involved in the deformation and becomes progressively more gneissic as the Early Proterozoic rocks become more strongly schistose. Refolding of early structures is pronounced in the west. Metamorphic grade, based on mineral assemblages in basic, pelitic and carbonate rocks and iron formations, also increases north and northwest, reaching a maximum grade of granulite facies west of the Robinson Ranges. The sediments are essentially unmetamorphosed in the southeastern part of the basin.  相似文献   

7.
结合双频激电法在西澳大利亚典型覆盖区(热带稀树草原覆盖区)的应用实践,讨论了在特殊地质景观条件下,双频激电法在工作设计中装置选择、工作频率选择、接地电阻改善、电磁耦合克服等方面遇到的问题以及解决这些问题所提出的技术方法,总结整理了一些具有代表性的工作准则和野外工作经验。结论表明:双频激电法在澳洲某金矿的特殊地理环境下的应用效果良好,圈定的激电异常符合地质预期,有进行工程验证的必要;使用双频激电法,在设计及施工过程中应综合分析各方面的影响因素,科学决策,并对可能影响测量数据准确性的因素采取有效的措施,这样才能充分发挥其技术优势,取得令人满意的成果。  相似文献   

8.
9.
During the Neogene and Quaternary, tectonic and climatic processes have had a profound impact upon landscape evolution in England and, perhaps as far back as 0.9 Ma, patterns of early human occupation. Until the Late Miocene, large-scale plate tectonic processes were the principal drivers of landscape evolution causing localised basin inversion and widespread exhumation. This drove, in places, the erosion of several kilometres of Mesozoic cover rocks and the development of a regional unconformity across England and the North Sea Basin. By the Pliocene, the relative influence of tectonics on landscape evolution waned as the background tectonic stress regime evolved and climatic influences became more prominent. Global-scale climate-forcing increased step-wise during the Plio-Pleistocene amplifying erosional and depositional processes that operated within the landscape. These processes caused differential unloading (uplift) and loading (subsidence) of the crust (‘denudational isostasy’) in areas undergoing net erosion (upland areas and slopes) and deposition (basins). Denudational isostasy amplified during the Mid-Pleistocene Transition (c.0.9 Ma) as landscapes become progressively synchronised to large-scale 100 ka ‘eccentricity’ climate forcing. Over the past 0.5 Ma, this has led to the establishment of a robust climate record of individual glacial/interglacial cycles enabling comparison to other regional and global records. During the Last Glacial-Interglacial Transition and early Holocene (c.16–7 ka), evidence for more abrupt (millennial/centennial) scale climatic events has been discovered. This indicates that superimposed upon the longer-term pattern of landscape evolution is a more dynamic response of the landscape to local and regional drivers.  相似文献   

10.
We collected 38 groundwater and two surface-water samples in the semi-arid Lake Woods region of the Northern Territory to better understand the hydrogeochemistry of this system, which straddles the Wiso, Tennant Creek and Georgina geological regions. Lake Woods is presently a losing waterbody feeding the underlying groundwater system. The main aquifers comprise mainly carbonate (limestone and dolostone), siliciclastic (sandstone and siltstone) and evaporitic units. The water composition was determined in terms of bulk properties (pH, electrical conductivity, temperature, dissolved oxygen, redox potential), 40 major, minor and trace elements, and six isotopes (δ18Owater, δ2Hwater, δ13CDIC, δ34SSO42–, δ18OSO42–, 87Sr/86Sr). The groundwater is recharged through infiltration in the catchment from monsoonal rainfall (annual average rainfall ~600?mm) and runoff. It evolves geochemically mainly through evapotranspiration and water–mineral interaction (dissolution of carbonates, silicates and to a lesser extent sulfates). The two surface waters (one from the main creek feeding the lake, the other from the lake itself) are extraordinarily enriched in 18O and 2H isotopes (δ18O of +10.9 and +16.4‰ VSMOW, and δ2H of +41 and +93‰ VSMOW, respectively), which is interpreted to reflect evaporation during the dry season (annual average evaporation ~3000?mm) under low humidity conditions (annual average relative humidity ~40%). This interpretation is supported by modelling results. The potassium (K) relative enrichment (K/Cl mass ratio over 50 times that of sea water) is similar to that observed in salt-lake systems worldwide that are prospective for potash resources. Potassium enrichment is believed to derive partly from dust during atmospheric transport/deposition, but mostly from weathering of K-silicates in the aquifer materials (and possibly underlying formations). Further studies of Australian salt-lake systems are required to reach evidence-based conclusions on their mineral potential for potash, lithium, boron and other low-temperature mineral system commodities such as uranium.  相似文献   

11.

The 1979 Cadoux earthquake (magnitude Ms ~ 6.0), which caused over $4 million damage in 1979, occurred in the Southwest Seismic Zone (SWSZ) of Western Australia and produced a shallow dipping thrust fault with an average strike close to north‐south. The fault length was approximately 15 km and the maximum displacement close to 1 m. The seismic moment is estimated to be 1.8 ±0.1 X 1018 Nm and the earthquake was, like the 1968 Meckering earthquake, caused by east‐west compressive stress in the crust. Aftershocks of the Cadoux earthquake are still continuing (1986) at the northern and southern ends of the area affected by the main earthquake; strain‐release data from the aftershocks indicate that significant strain energy is yet to be released in the region. Overcoring measurements in the SWSZ indicated high stress (up to 30 MPa) at shallow depths (~ 10 m). Near the epicentre of the Cadoux earthquake overcoring measurements revealed stress levels ranging from about 4 MPa, less than 1 km from the fault trace, to about 20 MPa at 15 km from the fault. This difference in stress at the two locations is much larger than the stress drop associated with the Cadoux earthquake (~ 1 MPa) obtained from seismological observations. However, the maximum compressive stress direction is consistent with the direction of the P‐axis obtained from the focal mechanism. Reliable hydro fracturing results, from a depth of 65 m, were similar to the stress directions and magnitudes obtained from overcoring measurements made at the same site. It appears that the crust in the SWSZ is under compressive stress and that earthquake activity releases this stress in small areas rather than along linear fault zones. Shallow earthquakes of similar magnitude could well take place in the SWSZ during the next 50 years.  相似文献   

12.
The clustering of mineral occurrences and their spatial associations with particular geological features are critical aspects of mineral distributions for exploration and understanding ore genesis. Variations in the degree of clustering of mineral occurrences or geological features can be measured by fractal dimensions, obtained from a shifting box counting method. Spatial associations between mineral occurrences and geological features can be quantified by the weights of evidence (WofE) method using the contrast value, which increases with the strength of the spatial relationship. A new method is proposed to evaluate mineral occurrence distributions by combining the power of fractal analysis of clustering with the WofE approach. The method compares the correlation between the variation in degree of clustering of mineral occurrences and a geological feature in a study area, with the contrast value of the same feature. The possible outcomes can be simplified into four scenarios, depending on whether the correlation in variation of clustering and the contrast are high or low, respectively. Each outcome has specific exploration implications. If either a high correlation in variation of clustering or a high contrast value is obtained, the geological feature can be used for exploration targeting.The integrated fractal and WofE approach is applied to copper occurrences in the Proterozoic Mount Isa Inlier, NW Queensland, Australia, which hosts large numbers of copper deposits (1,869 occurrences), including the world class Mount Isa copper deposit. Variation in clustering of copper occurrences has a positive correlation with variation in clustering of fault bends (R = 0.823), fault intersections (R = 0.862) and mafic rocks (R = 0.885). WofE results indicate that the copper occurrences are spatially associated with fault intersections and bends and with mafic rocks. Analyses were carried out separately for the two major lithostratigraphic sequences in the Inlier, the Eastern and Western Successions. The Western Succession copper occurrences are apparently more clustered than those of the Eastern Succession, which may reflect a lower degree of exploration and/or geological factors. The association of copper occurrences with mafic rocks compared with fault bends and intersections is greater in the Eastern Succession, which may reflect genetic factors. Correlations in the variation of clustering of mineral occurrences and geological features have a linear relationship with the contrast values, and the spatial association between all geological features and copper occurrences constitute high correlation/high contrast cases. The linear relationship suggests that the geological features that control the clustering of the copper occurrences could be the same features that control their localization.  相似文献   

13.
This work presents a geoscientific map and database for geology, mineral and energy resources of Ethiopia in a digital form at a scale of 1:2,000,000, compiled from several sources. The final result of the work has been recorded on CD-ROM in GIS format so that the map and the database could be available to users on a personal computer.Metallic resources (precious, rare, base and ferrous–ferroalloy metals) are widely related to the metamorphic meta-volcano-sedimentary belts and associated intrusives belonging to various terranes of the Arabian–Nubian Shield, accreted during the East and West Gondwana collision (Neoproterozoic, 900–500 Ma).Industrial minerals and rock resources occur in more diversified geological environments, including the Proterozoic basement rocks, the Late Paleozoic to Mesozoic sediments and recent (Cenozoic) volcanics and associated sediments.Energy resources (oil, coal, geothermal resources) are restricted to Phanerozoic basin sediments and Cenozoic volcanism and rifting areas.  相似文献   

14.
Understanding the character of Australia's extensive regolith cover is crucial to the continuing success of mineral exploration. We hypothesise that the regolith contains geochemical fingerprints of processes related to the development and preservation of mineral systems at a range of scales. We test this hypothesis by analysing the composition of surface sediments within greenfield regional-scale (southern Thomson Orogen) and continental-scale (Australia) study areas. In the southern Thomson Orogen area, the first principal component (PC1) derived in our study [Ca, Sr, Cu, Mg, Au and Mo at one end; rare earth elements (REEs) and Th at the other] is very similar to the empirical vector used by a local company (enrichment in Sr, Ca and Au concomitant with depletion in REEs) to successfully site exploration drill holes for Cu–Au mineralisation. Mapping of the spatial distribution of PC1 in the region reveals several areas of elevated values and possible mineralisation potential. One of the strongest targets in the PC1 map is located between Brewarrina and Bourke in northern New South Wales. Here, exploration drilling has intersected porphyry Cu–Au mineralisation with up to 1 wt% Cu, 0.1 g/t Au, and 717 ppm Zn. The analysis of a comparable geochemical dataset at the continental scale yields a compositionally similar PC1 (Ca, Sr, Mg, Cu, Au and Mo at one end; REEs and Th at the other) to that of the regional study. Mapping PC1 at the continental scale shows patterns that (1) are spatially compatible with the regional study and (2) reveal several geological regions of elevated values, possibly suggesting an enhanced potential for porphyry Cu–Au mineralisation. These include well-endowed mineral provinces such as the Curnamona and Capricorn regions, but also some greenfield regions such as the Albany-Fraser/western Eucla, western Murray and Eromanga geological regions. We conclude that the geochemical composition of Australia's regolith may hold critical information pertaining to mineralisation within/beneath it.  相似文献   

15.

Most of the granitic residuals of the Wheat Belt of southwestern Western Australia are bornhardts, with some nubbins developed at the western margin and occasional poorly developed castellated forms. Their origin and age can be deduced from their structure and their relationship to a weathered (lateritic) land surface and various palaeochannels. The bornhardts are massive and most stand lower than local palaeosurface remnants. They are best interpreted as having formed by differential fracture density controlled weathering beneath the weathered land surface in pre‐Eocene times. They were exposed by the stripping of the regolith beginning in the Eocene. Many are clearly stepped, indicating that their exposure took place not all at once, but episodically. A few bornhardts stand higher than the weathered land surface. They pre‐date the Eocene and the stepped morphology preserved on some suggests that their crests are much older.  相似文献   

16.
The Canavese Intracontinental Suture Zone (CISZ) within the Inner Western Alps represents the remnant of a long-lived minor subduction zone involving a narrow, thinned continental crust/oceanic lithosphere seaway between two continental domains of the Adria microplate (i.e., the Sesia Zone and the Ivrea-Verbano Zone). As opposed to many suture zones, the CISZ mostly escaped pervasive tectonic deformation and metamorphism, thus preserving the original stratigraphy and allowing the relationships between tectonics and sedimentation to be defined. Through detailed geological mapping (1:5000 scale), structural analysis, stratigraphic and petrographic observations, we document evidences for the late Paleozoic to late Cenozoic tectonic evolution of the CISZ, showing that it played a significant role in the context of the tectonic evolution of the Inner Western Alps region from the early to late Permian Pangea segmentation, to the Jurassic Tethyan rifting, and up to the subduction and collisional stages, forming the Western Alps. The site of localization/formation of the CISZ was not accidental but associated with the re-use of structures inherited from regional-scale wrench tectonics related to the segmentation of Pangea, and from the subsequent extensional tectonics related to the Mesozoic rifting, as documented by crosscutting relationships between stratigraphic unconformities and tectonic features. Our findings document that evidences derived from stratigraphy, facies indicators, and relationships between tectonics and sedimentation in the shallow crustal portions of suture zones, such in the CISZ, are important to better constrain the tectonic history of those metamorphic orogenic belts around the world in which evolutionary details are commonly complicated by high-strain deformation and metamorphic transformations.  相似文献   

17.
Isolated quartzose pebbles, clusters of quartz granules, orthogonal aggregates of poorly sorted quartzose coarse sand, and ovoid pellets (≤2 mm long) of quartz silt occur in hemipelagic marine mudstone of the mid-Ediacaran Bunyeroo Formation exposed in the Adelaide Geosyncline (Adelaide Rift Complex), and ovoid pellets of quartz silt in cores of the correlative marine Dey Dey Mudstone from deep drillholes in the Officer Basin, South Australia. This detritus is interpreted respectively as dropstones, dumps, and frozen aggregates dispersed by sea ice possibly of seasonal origin, and till pellets transported by glacial ice. The ice-rafted material in the Bunyeroo Formation only has been found <10 m stratigraphically below and above a horizon of dacitic ejecta related to the 90 km diameter Acraman impact structure in the Mesoproterozoic Gawler Range Volcanics 300 km to the west. Furthermore, till pellets have been identified 4.4 to 68 m below distal Acraman ejecta in the Dey Dey Mudstone >500 km northwest of the impact site. The Acraman impact took place at a low paleolatitude (~12.5°) and would have adversely affected the global environment. The stratigraphic observations imply, however, that the impact occurred during, but did not trigger, a cold interval marked by sea ice and glacial ice, although the temporal relationship with Ediacaran glaciations elsewhere in Australia and on other continents is unclear. Release from the combined environmental stresses of a frigid, glacial climate near sea-level and a major impact in low latitudes may have been a factor influencing subsequent Ediacaran biotic evolution.  相似文献   

18.
The Zhongtiao Mountain is located in the southern part of the North China Craton. The area experienced multi-stage tectono-magmatic events during the Precambrian, including Neoarchean-Early Paleoproterozoic (2550–2350 Ma) crustal growth, Paleoproterozoic (2350–1850 Ma) rifting–subduction–accretion–collision, and Early Mesoproterozoic (1800–1750 Ma) extension. The geological events contributed to a major copper mineral system in the region. Here we evaluate the processes of the mineral system, such as the source of metals, migration pathways, the formation of trap zones, and the deposition of metal in an attempt to establish a mineral accumulation evaluation model for regional ore prospecting. A three-step process has been proposed in this study as follows. (i) Determining the spatial and temporal distribution of the essential elements and processes of the mineral system to understand the most critical ore-controlling factors. (ii) Translating the ore-forming processes into mappable features and quantitative extraction of the information on mineralization using Geographic Information System (GIS) technology to establish a mineral accumulation evaluation model. They were treated as evidence layers for weight-of-evidence (WofE) analysis. (iii) Utilizing the weighted values of the evidence layers to create a posterior probability map. Based on the posterior probabilities, four mineral accumulation horizons were finally delineated for the Zhongtiao Mountain, which are considered to provide important guidelines for further ore exploration and study.  相似文献   

19.
The Bardoc Tectonic Zone (BTZ) of the late Archaean Eastern Goldfields Province, Yilgarn Craton, Western Australia, is physically linked along strike to the Boulder-Lefroy Shear Zone (BLSZ), one of the richest orogenic gold shear systems in the world. However, gold production in the BTZ has only been one order of magnitude smaller than that of the BLSZ (∼100 t Au vs >1,500 t Au). The reasons for this difference can be found in the relative timing, distribution and style(s) of deformation that controlled gold deposition in the two shear systems. Deformation within the BTZ was relatively simple and is associated with tight to iso-clinal folding and reverse to transpressive shear zones over a <12-km-wide area of high straining, where lithological contacts have been rotated towards the plane of maximum shortening. These structures control gold mineralisation and also correspond to the second major shortening phase of the province (D2). In contrast, shearing within the BLSZ is concentrated to narrow shear zones (<2 km wide) cutting through rocks at a range of orientations that underwent more complex dip- and strike-slip deformation, possibly developed throughout the different deformation phases recorded in the region (D1–D4). Independent of other physico-chemical factors, these differences provided for effective fluid localisation to host units with greater competency contrasts during a prolonged mineralisation process in the BLSZ as compared to the more simple structural history of the BTZ.  相似文献   

20.
Views on the origin of sandplains in Western Australia remain controversial with debate focusing around three different models of formation. These are in situ, aeolian and in situ formation with local remobilisation by wind or colluvial transport. The only recent work on the subject to date espouses a dominantly aeolian origin. New work from a detailed study on the Victoria Plateau is described and demonstrates the applicability of utilising a range of evidence in understanding the origin of sandplains in Western Australia. Field investigations show a strong association of sandplain with sandstone and an absence of sand on non‐arenaceous geology in similar and adjacent topographic settings. Grainsize, mineral magnetic analysis and heavy‐mineral spectra show the Victoria Plateau to be a heterogeneous body of sand. These findings coupled with a lack of internal sedimentary structures are not consistent with an aeolian origin for the sandplain. Furthermore, scanning electron microscopy, grainsize and heavy minerals also demonstrate a clear link between bedrock and overlying sandplain. These data support the hypothesis that Western Australian sandplains are mostly the product of in situ weathering. Such findings question whether the origin of sandplains can be satisfactorily deduced without such a range of data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号