首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 903 毫秒
1.
工程场地地震安全性评价中计算二维复杂场地地震反应分析时,如采用一维等效线性化分析模型会带来较大的误差,而直接采用二维的非线性模型在技术上还存在一定的困难和不合理性。目前工程中多采用对一维分析结果进行二维修正的思想给出设计地震动及反应谱。然而在建立二维分析模型时,由于勘测条件的限制使模型建立出现很多不确定性。基于以往提出的二维复杂工程场址设计地震动的修正分析思想,建立了几种可能且工程认可的二维复杂场地模型,主要研究不同分层特征模型及土层剪切波速这一物理参数不确定时对设计地震动的影响,进一步考虑不同场地类别下,不同二维分层模型及土体物理参数对地震动的影响。根据分析结果提出了不同类别场地下,方便且合理建立二维复杂场地地震动分析模型的方法,为实际工程中模型的建立及参数的选取提供一些参考。  相似文献   

2.
以上海浦东机场二期航站楼软土场地为例,应用二维土体模型和一维土体模型分别计算了深覆盖土层的地震反应,讨论了古河道对场地地震动参数的影响。此外,在二维土层地震反应分析中,进一步对比了基岩面地震波行波输入和一致输入下,场地地震动参数的差异。  相似文献   

3.
地震数据中的面波是严重降低地震资料信噪比的干扰波,它的存在影响了后续地震资料的处理与解释。本文根据地震记录中面波与反射波信号形态结构的差异,采用基于二维字典形态成分分析方法对面波噪声与反射波进行分离。根据面波信号的低频、低视速度和频散的特性,选择二维非抽样离散小波变换作为面波的稀疏表示字典,根据反射波局部相关性较强的特点,选择二维局部离散余弦变换作为反射波的稀疏表示字典,构建地震记录在联合二维字典下的稀疏表示模型并采用块协调松弛算法进行求解,将地震记录分解为反射波部分和面波部分。对合成地震信号以及实际地震资料的处理结果表明本文方法不仅能有效压制强能量的面波干扰,而且还能很好保护反射波信号的波形。  相似文献   

4.
由于地磁观测场地施工动土,引起河北涉县地震台载荷变化。本文分别用质点模型、二维模型和三维模型计算了载荷变化对山洞水管倾斜仪的影响,结果表明,观测曲线年变和月变受影响不明显,但内精度有所降低;与质点模型相比,二维模型与三维模型更接近实际情况。  相似文献   

5.
三维不规则地形河谷场地地震响应分析方法研究   总被引:1,自引:0,他引:1  
本文提出了不规则地形地震响应分析的自由场计算方法,并以小湾拱坝场址作为三维场地模型,比较了三维不规则场地侧边界自由场的精确解和近似解;同时,采用大型有限元软件Ansys/Ls-Dyna计算了自由场对场地内部场点地震响应的影响.计算结果表明,三维场地模型的二维自由场近似解与精确解有很大差异,其结果对三维场地内部场点地震响应影响显著,因此,要准确求解三维不规则地形的地震响应必须采用真实的二维侧边界模型.  相似文献   

6.
董国胜 《地震研究》1993,16(4):338-349
本文从系统结构的概念出发,对短临前兆突变的特征和二维构模进行了讨论,利用层次分析法制定综合模式,对1991年7月22日云南施甸5.2级地震作出了较好的短临预报。  相似文献   

7.
柯西约束盲反褶积技术在井间地震的应用   总被引:10,自引:4,他引:6  
利用地面三维地震资料将二维井间地震资料推广到井间范围以外。对于提高井间地震的效益,加快其应用十分重要.为了将井间地震二维资料推广到井外三维,需要从地面地震低频信息提取层位、断面的几何信息,反褶积方法是重要的部分.本文给出了盲源反褶积方法的一种具体实现。并结合优化的预条件共轭梯度法以改善算法的稳定性,同时减少计算量.然后对经过高频恢复的地面地震数据与井间地震数据进行联合约束反演,有效地提高了地面地震的频带.并用实际资料的处理给予证实.  相似文献   

8.
传统断层自主剖分技术进行地震断层滑动对地质形变的测绘研究时,未考虑走滑位移量、倾滑位移量和张开位移量对地质形变测绘研究的影响,无法对差异断层转动角下的地质形变情况实施有效测绘,提出基于矩形位错模型的地质形变的测绘研究方法,采用矩形断层位错模型通过点源位错公式,获取地震断层滑动时地质形变的走滑位移量、倾滑位移量和张开位移量;基于地震矩形断层三维滑动对地表产生的位移进行测绘时,获取各位移量同地面形成的三维位移场,采用二维高斯-勒让德求积计算断层三维位移场转动形成的地表位移,实现地质形变的测绘研究。实验结果表明,所提方法可对不同矩形断层转动角下的地质变形情况进行准确测绘,实际应用价值高。  相似文献   

9.
对一个地震突变模型的讨论   总被引:4,自引:0,他引:4  
殷有泉  杜静 《中国地震》1994,10(4):363-370
本文用非线性力学方法讨论了地震过程的非稳定现象并建立了相应的突变理论模型。文章详细讨论了断层带的本构性质和突变模型中状态变量的选取对地震非稳性的影响,揭示了用突变模型研究地震现象的可行性。  相似文献   

10.
采用平面应变模型对地下结构进行地震反应分析时,其核心问题是中柱的二维等效简化。常用的简化方法是将中柱的材料性质(如弹性模量和密度)进行折减。在此基础上,进一步引入空间约束影响系数和三维还原系数,提出新的中柱二维等效简化方法。针对不同简化方法,分别建立对应的地下结构地震反应分析平面应变模型,计算各模型的地震反应。通过与三维模型计算结果进行对比分析,研究不同简化方法的合理性。计算结果表明,本研究建议的方法可有效提高地下结构平面应变模型的计算精度。  相似文献   

11.
It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall‐runoff modelling. This paper compares the value of incorporating both spatially distributed forcing data and spatially distributed model conceptualisations based on landscape heterogeneity, applied to the Ourthe catchment in Belgium. Distributed forcing data were used to create a spatial distribution of model states. Eight different configurations were tested: a lumped and distributed model structure, each with four levels of model state distribution. The results show that in the study catchment the distributed model structure can in general better reproduce the dynamics of the hydrograph, and furthermore, that the differences in performance and consistency between calibration and validation are smallest for the distributed model structure with distributed model states. For the Ourthe catchment, it can be concluded that the positive effect of incorporating a distributed model structure is larger than that of incorporating distributed model states. Distribution of model structure increases both model performance and consistency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Although the nonlinear power form model structure is widely accepted by practitioners in the flood regionalization modelling, there is a lack of studies on whether there is a room for further improvement, and if the answer is yes, what should be done to explore alternative model structures. A framework is proposed in this study towards investigating this issue by the following steps: (i) a universal data‐driven model is utilized to see if there is a room for improvement compared with the conventional model, and (ii) if improvement is achieved, this means that there should exist more effective model structures than the current form. However, because the universal data‐driven models are usually opaque, more explicit model structures should be explored, which are convenient for practical usage. In this study, the proposed framework is applied in a case study using the catchment characteristics from the Flood Estimation Handbook in conjunction with the gamma test, support vector machine (SVM) and genetic programming (GP). First, the gamma test is used for the purpose of input variables selection where no model structure needs to be defined as a priori, and therefore, the result can be applied to any model structures for model building. Second, an SVM, which is a powerful data‐driven nonlinear model capable of modelling a variety of nonlinear systems, is applied to the index flood model for the first time. Once the best model is determined using those two data‐driven tools, GP is employed to find an alternative model structure. As the SVM is not formulated for producing explicit model functional form, the GP offers an advantage at this point where it can infer an explicit mathematical model functional form. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
针对振动台试验,采用u-p形式控制方程表述饱和砂土的动力属性,选用土的多屈服面塑性本构模型刻画饱和砂土和黏土的力学特性,引入非线性梁-柱单元模拟桩,建立试验受控条件下液化场地群桩-土强震相互作用分析的三维有限元模型,并通过试验结果验证数值建模途径与模拟方法的正确性。以实际工程中常用的2×2群桩为例,建立桩-土-桥梁结构强震反应分析三维有限元模型。基于此,针对不同群桩基础配置对液化场地群桩-土强震相互作用影响展开具体分析。对比发现,桩的数量相同时,桩排列方向与地震波输入方向平行时比垂直时桩基受力减小5%~10%,而对场地液化情况无明显影响;相同排列形式下,三桩模型中土体出现液化的时间约比双桩模型延缓5s,桩上弯矩和剪力减小33%~38%。由此可见,桩基数量增加,桩-土体系整体刚度更大,场地抗液化性能显著,桩基对上部桥梁结构的承载性能明显增强,其安全性与可靠性更高。这对实际桥梁工程抗震设计具有一定的借鉴意义。  相似文献   

14.
15.
Hydrologic model development and calibration have continued in most cases to focus only on accurately reproducing streamflows. However, complex models, for example, the so‐called physically based models, possess large degrees of freedom that, if not constrained properly, may lead to poor model performance when used for prediction. We argue that constraining a model to represent streamflow, which is an integrated resultant of many factors across the watershed, is necessary but by no means sufficient to develop a high‐fidelity model. To address this problem, we develop a framework to utilize the Gravity Recovery and Climate Experiment's (GRACE) total water storage anomaly data as a supplement to streamflows for model calibration, in a multiobjective setting. The VARS method (Variogram Analysis of Response Surfaces) for global sensitivity analysis is used to understand the model behaviour with respect to streamflow and GRACE data, and the BORG multiobjective optimization method is applied for model calibration. Two subbasins of the Saskatchewan River Basin in Western Canada are used as a case study. Results show that the developed framework is superior to the conventional approach of calibration only to streamflows, even when multiple streamflow‐based error functions are simultaneously minimized. It is shown that a range of (possibly false) system trajectories in state variable space can lead to similar (acceptable) model responses. This observation has significant implications for land‐surface and hydrologic model development and, if not addressed properly, may undermine the credibility of the model in prediction. The framework effectively constrains the model behaviour (by constraining posterior parameter space) and results in more credible representation of hydrology across the watershed.  相似文献   

16.
Model predictive control (MPC) of open channel flow is becoming an important tool in water management. The complexity of the prediction model has a large influence on the MPC application in terms of control effectiveness and computational efficiency. The Saint-Venant equations, called SV model in this paper, and the Integrator Delay (ID) model are either accurate but computationally costly, or simple but restricted to allowed flow changes. In this paper, a reduced Saint-Venant (RSV) model is developed through a model reduction technique, Proper Orthogonal Decomposition (POD), on the SV equations. The RSV model keeps the main flow dynamics and functions over a large flow range but is easier to implement in MPC. In the test case of a modeled canal reach, the number of states and disturbances in the RSV model is about 45 and 16 times less than the SV model, respectively. The computational time of MPC with the RSV model is significantly reduced, while the controller remains effective. Thus, the RSV model is a promising means to balance the control effectiveness and computational efficiency.  相似文献   

17.
This paper provides a procedure for the evaluation of model performance for rainfall–runoff event summary variables, such as total discharge or peak runoff. The procedure is based on the analysis of model errors, defined as the differences between observed values and values predicted by a simulation model. Model errors can (i) indicate whether and where the model can be improved, (ii) be used to measure the performance of a model, and (iii) be used to compare model simulations. In this paper, both statistical and graphical methods are used to characterize model errors. We explore model recalibration by relating model errors to the model predictions, and to external, independent variables. The R‐5 catchment data sets that we used in this study include summary variables for 72 rainfall–runoff events. The simulations used in this study were previously conducted with the quasi‐physically based rainfall–runoff model QPBRRM for 11 different characterizations of the R‐5 catchment, each with increasing information or a refined spatial discretization of the overland flow planes. This paper is about proposing model diagnostics and not about procedures for using diagnostics for model modification. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Comparison of Seismic Dispersion and Attenuation Models   总被引:2,自引:0,他引:2  
The frequency-dependent attenuation of seismic waves causes decreased resolution of seismic images with depth, and the difference in transmission losses induces amplitude variations with offset. Transmission losses may occur due to friction or fluid movement, or may result from scattering in thin-layer. Whatever the physical mechanism, they can often be conveniently described using an empirical formulation wherein the elastic moduli and propagation velocity are complex functions of frequency.We have compiled and compared algebraically and numerically eight different models involving complex velocity: the Kolsky-Futterman model, the power-law model, Kjartansson's model, Müller's model, Azimi's second and third model, the Cole-Cole model, and the standard linear-solid model.For two different parameter sets, the attenuation and phase velocity are computed in the seismic frequency band, and the plane-wave propagation of a Ricker wavelet for the other models is compared with that for the Kolsky-Futterman model. The first parameter set consists of parameters for each of the models calculated from expressions given in the appendix. These expressions make the different models behave similarly to the KF model. The second parameter set consists of model parameters that are numerically adapted to the KF model.By selecting proper parameters, all models, except the standard linear-solid model, show behavior similar to that of the Kolsky-Futterman model. The SLS model behaves differently from the other models as the frequency goes to zero or infinity. Broadband measurement data is needed to select a specific model for a given seismic experiment.  相似文献   

19.
地球外部扰动重力严密改化模型及分析检验   总被引:1,自引:0,他引:1  
直接积分模型是计算地球外部扰动重力的主要数学工具,将全球积分模型改化为局域积分模型是实现地球外部重力场赋值的前提条件.相比表层积分模型和向上延拓积分模型,Stokes积分模型要求的输入信息种类最少,故在减轻数据保障压力方面具有比较明显的优势.在实施Stokes积分模型工程化应用过程中,我们发现扰动重力径向分量积分模型从...  相似文献   

20.
Details are given of the development and application of a numerical model for predicting free-surface flows in estuarine and coastal basins using the finite volume method. Both second- and third-order accurate and oscillation free explicit numerical schemes have been used to solve the shallow water equations. The model deploys an unstructured triangular mesh and incorporates two types of mesh layouts, namely the ‘cell centred’ and ‘mesh vertex’ layouts, and provides a powerful mesh generator in which a user can adjust the mesh-size distribution interactively to create a desirable mesh. The quality of mesh has been shown to have a major impact on the overall performance of the numerical model.The model has been applied to simulate two-dimensional dam break flows for which transient water level distributions measured within a laboratory flume were available. In total 12 model runs were undertaken to test the model for various flow conditions. These conditions include: (1) different bed slopes (ranging from zero to 0.8%), (2) different upstream and downstream water level conditions, and (3) initially wet and dry bed conditions, downstream of the dam. Detailed comparisons have been made between model predicted and measured water levels and good agreement achieved between both sets of results. The model was then used to predict water level and velocity distributions in a real estuary, i.e. the Ribble Estuary, where the bed level varies rapidly at certain locations. In order to model the whole estuary, a 1-D numerical model has also been used to model the upper part of the estuary and this model was linked dynamically to the 2-D model. Findings from this application are given in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号