首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
《Basin Research》2018,30(Z1):311-335
The analysis of volcano‐sedimentary infill in sedimentary basins constitutes a challenge for basin analysis and hydrocarbon exploration worldwide. In order to understand the contribution of volcanism to the sedimentary record in rift basins, we study the Jurassic effusive‐explosive volcanic infill of an inverted extensional depocentre at the Neuquén Basin, Argentina. A cause and effect model that evaluates the relationship between volcanism and sedimentation was devised to develop a conceptual model for the tectono‐stratigraphic evolution of this volcanic rift basin. We show how the variations in the volcanism, coupled with the activity of extensional faults, determined the types of volcanic edifices (i.e., composite volcanoes, graben‐calderas, and lava fields). Volcanic edifices controlled the stacking patterns of the volcanic units as well as sedimentary systems. The landform of the volcanic edifices, as well as the styles and scales of the eruptions governed the sedimentary input to the basin, setting the main variables of the sedimentary systems, such as provenance, grain size, transport and deposition and geometry. As a result, the contrasting volcaniclastic input, from higher volcaniclastic input to lower volcaniclastic input, associated with different subsidence patterns, determined the high‐resolution syn‐rift infill patterns of the extensional depocentre. The cause and effect model presented in this study isolates the variables of the volcanic environments that control the sedimentary scenarios. We suggest that, by adjusting the first order input parameters of the model, these cause and effect scenarios could be adapted to similar rift basins, in order to establish predictive facies models with stratigraphic controls, and the impact of volcanism on their stratigraphic records.  相似文献   

2.
This paper presents an overview of some of the most significant, recent to ancient, littoral morpho-sedimentary structures and deposits from the Lake Turkana Basin. We highlight the importance of wave-related sedimentary processes in lakes, and more specifically in rift lakes. In the published literature, references to wave-dominated shorelines are mainly in regards to coastal marine environments. However, numerous modern lakes exhibit typical wave-dominated littoral landforms, and related sedimentary deposits are known from several paleolake successions in the geological record. Wave-related processes are often of relatively minor importance in depositional models for lacustrine environments. Classical models emphasize clastics transported by rivers, which are then distributed by fan-deltas and/or deltas into a water body of fluctuating depth, where reworking of clastics is limited in the littoral domain, and episodic in deep waters. Modern processes in Lake Turkana and the exposed paleolake deposits of the Turkana Basin demonstrate that this view is incomplete. Wave-dominated shorelines are evident (1) for modern Lake Turkana based on prominent and active littoral landforms (e.g., beach ridges, sand spits, washover fans, and arcuate-cuspate deltas); (2) for the Holocene (African Humid Period) climate-driven highstand of Megalake Turkana and its subsequent forced regression based on conspicuous raised beach ridges and spits; and (3) for the Pliocene–Pleistocene (Omo Group, Nachukui Formation) from typical nearshore sedimentary facies and stratigraphic architectures associated with paleolake Turkana. These examples from the Turkana Basin coupled with examples from other lacustrine settings, suggest that wave-dominated clastic shorelines represent significant portions of existing and ancient lake-shores. As this view contrasts with classic depositional models for lakes, notably for those found in rift setting, we also present examples of wave-influenced littoral landforms from other lakes of the East African Rift System. Identifying lacustrine paleoshorelines from typical clastic landforms and deposits is the key to the spatial reconstruction of lakes over time, and to determine transgressive–regressive cycles. Waves action is an important agent in lakes for the erosion, transport, and deposition of clastics at the basin-scale, an aspect that needs to be integrated in sedimentary models.  相似文献   

3.
《Basin Research》2018,30(Z1):437-451
Many prospective sedimentary basins contain a variety of extrusive volcanic products that are ultimately sourced from volcanoes. However, seismic reflection‐based studies of magmatic rift basins have tended to focus on the underlying magma plumbing system, meaning that the seismic characteristics of volcanoes are not well understood. Additionally, volcanoes have similar morphologies to hydrothermal vents, which are also linked to underlying magmatic intrusions. In this study, we use high resolution 3D seismic and well data from the Bass Basin, offshore southern Australia, to document 34 cone‐ and crater‐type vents of Miocene age. The vents overlie magmatic intrusions and have seismic properties indicative of a volcanic origin: their moderate–high amplitude upper reflections and zones of “wash‐out” and velocity pull‐up beneath. The internal reflections of the vents are similar to those found in lava deltas, suggesting they are composed of volcaniclastic material. This interpretation is corroborated by data from exploration wells which penetrated the flanks of several vents. We infer that the vents we describe are composed of hyaloclastite and pyroclasts produced during submarine volcanic eruptions. The morphology of the vents is typical of monogenetic volcanoes, consistent with the onshore record of volcanism on the southern Australian margin. Based on temporal, spatial and volumetric relationships, we propose that submarine volcanoes can evolve from maars to tuff cones as a result of varying magma‐water interaction efficiency. The morphologies of the volcanoes and their links to the underlying feeder systems are superficially similar to hydrothermal vents. This highlights the need for careful seismic interpretation and characterization of vent structures linked to magmatic intrusions within sedimentary basins.  相似文献   

4.
The sedimentary fill of Lake Annecy (northwestern Alps) - related to the last glacial/post-glacial episode - was investigated through high resolution (sparker) and very high resolution (2.5 kHz) seismic-reflection surveys. A seismostratigraphic approach led to subdivision of a 150 m-thick pile (maximum thickness in axial part) into five units. Basal units (1 and 2) represent an imbrication of subglacial and glacio-lacustrine deposits, close to the grounding line of the glaciers' fronts (respectively at the northern and southern terminations of the lake). The first acoustically well-stratified unit (3) developed during a fast retreat of the glaciers fronts far from the lake basin, and a progradational alluvial regime, with abundant underflows, in a lake larger than the present one. Unit 4 represents the progressive decrease of this clastic input mixed with the progressive development of in situ bio-induced production. As in many other alpine lakes, a topmost unit (5), relatively thin (about 8-10 m) and with a conspicuous drape configuration, is the signature of the Holocene interglacial climatic conditions with a sedimentation rate of about 1 mm/yr. On the lacustrine basin slopes, slumps and debris flow occurred mainly within Unit 3; they may be due to, either climate-induced high rate terrigenous sedimentation, or/and to a period of increased seismo-tectonic activity.  相似文献   

5.
Lake sediments in the Ruhuhu Basin, Tanzania, and other East African basins have a similar facies evolution for particular time slices of the Permian and Lower Triassic. The Ruhuhu Basin exhibits three lacustrine phases related partly to climate and partly to tectonic setting. Two pre-rift lacustrine stages — post glacial and swampy lacustrine phases — are followed by major rifting in the Upper Permian. Postgacial lakes developed in pre-Karoo depressions were fed initially by meltwater and later by runoff and grounwater associated with climatic amelioration. The following swampy lacustrine episode developed from fluvial to lacustrine conditions with alternating clastic and organic input. Associated micritic carbonates and gypsum indicate high evaporation, and playa clay mineral associations provide evidence for poor drainage and saline, alkaline lake waters.The Upper Permian lake was characterized by fine clastics and biogenic carbonates. Facies include littoral clastics and turbidites, stromatolites, oolites and deeper water laminites. Early diagenetic cherts, chloritization and the absence of kaolinite indicate highly alkaline lake water during regressive phases. Stable isotopic evidence supports lake differentiation into hydrogeologically open and closed sub-basins.Two phases of rifting (Lower-Upper Permian; Upper Permian-Lower Triassic) are recognized in several Karoo basins. Rift evolution and lake formation are intimately related. The first rifting episode was characterized by local extension of depositional areas. Half-graben basinal asymmetry and permanent lacustrine conditions became established. The second episode was regional, and was characterized by further extension of depositional area, a basal unconformity, and a hiatus between the uppermost Permian and lowermost Triassic units. Climate was the main controlling factor during the Early Permian lake development, whereas structural constraints strongly influenced vertical and lateral facies development in the Late Permian/Early Triassic lakes.  相似文献   

6.
7.
Janecke  McIntosh  & Good 《Basin Research》1999,11(2):143-165
We examine the basin geometry and sedimentary patterns in the Muddy Creek half graben of south-west Montana by integrating geological mapping, structural and basin analysis, 40Ar/39Ar geochronology, biostratigraphy and reflection seismic data. The half graben formed in late Middle Eocene to early Oligocene (?) time at the breakaway of a regional, WSW-dipping detachment system. Although the structure of the half graben is that of a supradetachment basin, facies patterns and basin architecture do not conform to a recent model for extensional basins above detachment faults. The border fault, the Muddy Creek fault system, consists of three en echelon, left-stepping normal faults separated by two relay ramps. The fault steepens southward toward each en echelon step, ranges in dip from 8 to 60° near the surface, but flattens at depths between 0 and 3 km. A broad ENE-plunging displacement-gradient syncline defines the central part of the half graben and is flanked by narrow SE-and NE-plunging anticlines to the north and south. Fine-grained deposits of the syntectonic basin-fill are thickest in the central syncline and interfinger with footwall-derived conglomerate near the adjacent anticlines. These facies patterns suggest that folding was coeval with extension and sedimentation in the half graben. Pre-extensional volcanic rocks and interbedded conglomerate filled a major ESE-trending palaeovalley along the future axis of the Muddy Creek half graben. Synextensional sedimentary deposits include lacustrine and paludal shale, mudstone and sandstone ponded in the centre of the half graben, and a narrow (typically <1.5 km wide) fringe of coarse alluvial-fan and fan-delta conglomerate and sandstone derived from the footwall. Angular unconformities and rock-slide deposits occur only locally within the syntectonic sequence. These facies patterns agree well with the half-graben depositional model of Leeder & Gawthorpe but not with a more recent supradetachment basin model of Friedmann & Burbank despite the demonstrably low dip-angle of the basin-bounding normal fault. These data show that it may not be possible to differentiate between supradetachment basins and half graben with steeper border faults using the architecture of the associated basin-fill deposits.  相似文献   

8.
The sedimentary record of fiords at high latitude where global change may be occurring earliest and will be greatest has the potential for assessment of environmental change at both low resolution (the scale of millennia) and high resolution (decadal to less than daily). Unlike the lacustrine record which has been used very successfully in these studies, the sedimentary processes and thus the sedimentary deposits of fiords differ (1) in the role of salt water in inhibiting mixing and promoting flocculation, and through the role of sea-ice, (2) in the exchange of mass and energy with the much larger ocean beyond, and (3) in the role of benthic biota in the sedimentary environment. The work reviewed in this paper shows that fiord sediments are being used to assess sedimentary and oceanic processes, as well as glacial, periglacial and geomorphic history, and that they are important proxies for long-term climate and hydrology. Recommendations for advancing this work include long-term monitoring of conditions in fiords and their drainage basins so that the transfer relations can be more solidly constructed from the proxy of fiord sediment. Integration of results from fiords in opposite polar latitudes, and among proxies especially from lacustrine and ice-core records will produce valuable insights. Assessment of the range of conditions in fiords from the most polar to temperate regions is important to building models of their processes and understanding of the paleoenvironmental signals that can be interpreted from each type.  相似文献   

9.
Classification of lacustrine sediments based on sedimentary components   总被引:2,自引:12,他引:2  
This paper introduces a flexible sediment classification scheme for modern and ancient lake sediments employed at the Limnological Research Center, University of Minnesota. Our classification scheme emphasizes the macroscopic structure and microscopic components of the sedimentary matrix (clastic, chemical and biological) and can be applied to a wide range of lacustrine settings. Such a classification scheme is necessary to i) facilitate communication and collaboration between the highly interdisciplinary community of scientists that study lacustrine archives, ii) create a structure for comparative lacustrine sedimentological studies, and iii) take greater advantage of the great potential information recorded by changing depositional environments. Such a development is needed in light of current and planned Global Lake Drilling efforts and to expedite the creation of on-line, searchable databases of global lacustrine archives. A more comprehensive treatment of the topics discussed in this paper is available at: http://lrc.geo.umn.edu/services/handbook/sedclass.html.  相似文献   

10.
Sub-bottom profiling was conducted at eight sub-basins within the lower French River area, Ontario, to investigate deposits preserved within the ancient North Bay outlet. Ten cores were collected that targeted the four depositional acoustic facies identified in the sub-bottom profiling records. The rhythmically laminated/bedded glaciolacustrine deposits of facies I are interpreted to have aggraded within glacial Lake Algonquin and its associated recessional lakes that persisted between 13,000 and 11,300 cal BP (~11,100 and 9,900 BP). The majority of the facies II, III and IV lacustrine deposits accumulated between about 9,500 cal BP (~8,500 BP) and the mid-Holocene, based on radiocarbon-dated organic materials. These deposits represent sedimentation within a ‘large’ lake during the late portion of the Mattawa-Stanley phase, and the Nipissing transgression, Nipissing Great Lakes and post-Nipissing recession phases of lake levels. Two sets of organic-rich sand beds are preserved within facies II deposits and reveal that the large lake lacustrine depositional environment was interrupted during the late Mattawa-Stanley phase between 9,500–9,300 and 9,000–8,400 cal BP (~8,500–8,300 and ~8,000–7,600 BP), when the water surface of Lake Hough fell below the outlet threshold and the lake basin became hydrologically closed. Pre-9,500 cal BP (~8,500 BP), the early and middle portions of the Mattawa-Stanley phase were dominated by erosion, as reflected by an unconformity at the base of facies II that occurs widely in the sub-basins and the general lack of preserved deposits for these intervals in the cores. This erosion is attributed to wave action and fluvial scouring within the outlet mouth during the early and mid-Stanley-Hough low stages and relates specifically to the period when the flowing portion of the North Bay outlet was situated over the lower French River area. This study reveals that the majority of the post-glacial deposits accumulated after the outlet threshold had shifted permanently eastwards and the lower French River area was inundated under the multiple phases of the large lake occupying the Nipissing Lowlands and Georgian-Huron basins, extending well into the mid-Holocene. The occurrence of deposits marking two closed-basin intervals during the late Stanley-Hough stage are well preserved locally within the lacustrine depositional sequence, but identifying earlier closed-basin intervals from the French River stratigraphy is hindered by the lack of preserved pre-9,500 cal BP (~8,500 BP) post-glacial deposits.  相似文献   

11.
Prior to the collection of a series of sediment cores, a high- and very-high-resolution reflection seismic survey was carried out on Lago Puyehue, Lake District, South-Central Chile. The data reveal a complex bathymetry and basin structure, with three sub-basins separated by bathymetric ridges, bedrock islands and interconnected channels. The sedimentary infill reaches a thickness of >200 m. It can be sub-divided into five seismic-stratigraphic units, which are interpreted as: moraine, ice-contact or outwash deposits (Unit I), glacio-lacustrine sediments rapidly deposited in a proglacial or subglacial lake at the onset of deglaciation (Unit II), lacustrine fan deposits fed by sediment-laden meltwater streams in a proglacial lake (Unit III), distal deposits of fluvially derived sediment in an open, post-glacial lake (Unit IV) and authigenic lacustrine sediments, predominantly of biogenic origin, that accumulated in an open, post-glacial lake (Unit V). This facies succession is very similar to that observed in other glacial lakes, and minor differences are attributed to an overall higher depositional energy and higher terrigenous input caused by the strong seismic and volcanic activity in the region combined with heavy precipitation. A long sediment core (PU-II core) penetrates part of Unit V and its base is dated as 17,915 cal. yr. BP. Extrapolation of average sedimentation rates yields an age of ca. 24,750 cal. yr. BP for the base of Unit V, and of ca. 28,000 cal. yr. BP for the base of Unit IV or for the onset of open-water conditions. This is in contrast with previous glacial-history reconstructions based on terrestrial records, which date the complete deglaciation of the basin as ca. 14,600 cal. yr. BP. This discrepancy cannot be easily explained and highlights the need for more lacustrine records from this region. This is the second in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   

12.
中昆仑山阿什库勒盆地地貌与第四纪环境问题   总被引:8,自引:0,他引:8  
李栓科 《地理学报》1991,46(2):224-232
本文论述了阿什库勒盆地的地貌和沉积物的发育等问题。认为:(1)阿什库勒盆地的火山锥至少有11座,1号火山1951年不可能有岩浆喷发,火山泥石流体是不存在的;(2)黄土物质是全新世风积物,戈壁荒漠是其物源区;(3)阿什库勒湖与乌鲁克库勒湖均是火山堰塞湖,前者是18kaB.P.前熔岩流阻塞盆地东部出口而成;后者则是6.5kaB.P.新期火山喷发物拦截阿什库勒湖的部分水域所致。  相似文献   

13.
We describe the tectono‐sedimentary evolution of a Middle Jurassic, rift‐related supra‐detachment basin of the ancient Alpine Tethys margin exposed in the Central Alps (SE Switzerland). Based on pre‐Alpine restoration, we demonstrate that the rift basin developed over a detachment system that is traced over more than 40 km from thinned continental crust to exhumed mantle. The detachment faults are overlain by extensional allochthons consisting of upper crustal rocks and pre‐rift sediments up to several kilometres long and several hundreds of metres thick, compartmentalizing the distal margin into sub‐basins. We mapped and restored one of these sub‐basins, the Samedan Basin. It consists of a V‐shape geometry in map view, which is confined by extensional allochthons and floored by a detachment fault. It can be restored over a minimum distance of 11 km along and about 4 km perpendicular to the basin axis. Its sedimentary infill can be subdivided into basal (initial), intermediate (widening) and top (post‐tectonic) facies tracts. These tracts document (1) formation of the basin initially bounded by high‐angle faults and developing into low‐angle detachment faults, (2) widening of the basin and (3) migration of deformation further outboard. The basal facies tract is made of locally derived, poorly sorted gravity flow deposits that show a progressive change from hangingwall to footwall‐derived lithologies. Upsection the sediments develop into turbidity current deposits that show retrogradation (intermediate facies tract) and starvation of the sedimentary system (post‐tectonic facies tract). On the scale of the distal margin, the syn‐tectonic record documents a thinning‐ and fining‐upward sequence related to the back stepping of the tectonically derived sediment source, progressive starvation of the sedimentary system and migration of deformation resulting in exhumation and progressive delamination of the thinned crust during final rifting. This study provides valuable insights into the tectono‐sedimentary evolution and stratigraphic architecture of a supra‐detachment basin formed over hyper‐extended crust.  相似文献   

14.
Lacustrine basins of Neogene age in Serbia were formed either in intramountain valleys-graben and half-graben structures or in the marginal part of the Pannonian sea during Oligocene or at the beginning of Miocene, lasted and ended at the end of Miocene or Pliocene. The formation of the numerous depressions of the Balkan Peninsula, due to tectonic activity, gave lake basins with alluvial, swamp and lacustrine facies. The cycle with these facies was repeated several times. The lakes are mostly meromictic, often permanently stratified (oil-shale). A high rate of sedimentation with thickness up to 2000 m is characteristic for many of these basins. In many lakes phytogenic sedimentation occurs, giving facies with coal and with oil-shales. In this paper only some basins with oil-shales will be discussed, e.g. Valjevo-Mionica, Jadar and Pranjani basin. The characteristics of Vranje and Aleksinac basin will be discussed only in general. The organic rich sequences (oil shales) are characterized by the thin lamination, preservations of fish remains and plant leaves and absence of bioturbation, which needed permanent stratification of water body and anoxic conditions. Paleoclimatic regimes at the time of deposition and diagenesis were warm, subtropic with the changes of humid and dry periods.  相似文献   

15.
Geometric analysis shows that the angle of migration of coastal sedimentary facies is a function of the relative sea-level change and the thickness of sediment deposited or eroded. The angle of facies migration compared to the slopes on the sediment surface determines the degree of facies preservation and stratigraphic relationships to the surrounding facies. Vertical facies successions generated by radial migration of environments show a great deal of variety because the sediment surface in both marine and non-marine areas is concave-up. Both regressive and transgressive sequences with non-erosive marine-nonmarine contacts can be generated. Transgression at a slightly lower angle can form a ravinement surface cut on non-marine deposits with onlapping barrier sands or shallow marine deposits. Regression with relative sea-level drop generates a minor erosion surface with baselapping isolated shoreline deposits. Disequilibrium conditions occur when sea level varies at a rate exceeding the ability of the system to supply or redistribute sediment, with resulting changes in surficial slopes. Onlapping and downlapping stratal relationships across erosion surfaces result because of differences in slopes between marine and non-marine environments. These discontinuities are generally less than one degree, but could possibly be recognized on high quality multichannel seismic lines. Most of these discontinuities are probably not regionally extensive enough to be regarded as sequence boundaries. Tectonic tilting or differential subsidence of strata during depositional hiatuses is necessary to generate true regional unconformities or sequence boundaries. Where facies climb with respect to horizontal, erosion surfaces produced only by this migration may cut across lithostratigraphic units at higher angles, up to 3 or 4 degrees. Low-angle erosion surfaces relevant to the scales of sequence stratigraphic studies may result only from facies migration, even during a period of relative sea-level rise.  相似文献   

16.
大同火山活动的阶段性历史是一个尚未被揭示清楚的地学问题。野外实地考察及室内磁化率、化学成分、粒度和古地磁的测定结果显示:古湖滨处水平层理发育的火山碎屑层存在4个不同倾角的倾斜;古湖近岸处的湖相沉积层中含有4层火山碎屑层;古湖深处的湖相沉积层中出现4个磁化率显著正异常的层位,且这些层位粒度都较粗;古湖岸上的黄土沉积中出现3个磁化率为峰值、Rb/Sr比值为谷值的层位;古湖深处湖相沉积剖面中存在B/M和Jaramillo磁极性界限。据此进一步分析后认为:① 湖相沉积剖面中的磁化率显著正异常层位、黄土沉积中的高磁化率—低Rb/Sr比值层位可能是混入了大量火山灰物质;它们是区域火山活跃期的记录。② 系列沉积剖面特征指示区域火山活动曾经历4个活跃期,每个活跃期期间有多次密集的火山喷发。③ 4个活跃期的年代大约为早于0.90 Ma BP(第一活跃期)、~0.47 Ma BP(第二活跃期)、~0.31 Ma BP(第三活跃期)和~0.09 Ma BP(第四活跃期);黄土沉积中还记录了区域北部有一个发生于~0.19 Ma BP的活跃期。此外,区域湖相沉积中所记录的4个火山活跃期都出现在湖退时期,平静期出现在湖侵时期。  相似文献   

17.
Glacial landscapes of the Land of Great Masurian Lakes and Suwa?ki Lakelands in northeast Poland are characterized by very high abundance of lakes. These two areas were surveyed for lakes containing laminated sediments. Using bathymetry as a criterion, 60 small, deep lakes, representing preferred conditions for formation and preservation of lacustrine non-glacial varves, were selected for gravity coring. We found laminated sediments in 24 of the lakes, 15 in the Land of Great Masurian Lakes and 9 in the Suwa?ki Lakeland. Seven of these 24 sediment records were laminated in the topmost part only. Analysis of lake morphometric variables showed that the relation between surface area and maximum water depth can be used to identify lakes with laminated sediments. Most of the newly discovered lakes with laminated deposits have surface areas ≤0.3 km2 and maximum depths of 15–35 m. Multivariate statistical analysis (Linear Discriminant Analysis) of the lake dataset identified the morphological features of lake basins and their catchments that largely control preservation of laminated sediments. Microscopic and geochemical analyses revealed a biogenic (carbonaceous) type of lamination typical for lakes in northeast Poland. Such lakes are characterized by a spring-summer lamina that is rich in calcium carbonate and an autumn-winter lamina composed of organic and minerogenic detritus. This pattern may be modified by multiple periods of calcite deposition during a single year or substantial contribution of clastic material. Laminations and high sedimentation rates offer the possibility of high-resolution investigation of past climate and environmental changes through application of myriad biological, isotopic and geochemical proxies.  相似文献   

18.
The application of sequence stratigraphy concepts to continental deposits lacking the referece provided sea level has been a challenge, mainly because the temporal relationships between stratigraphic surfaces and systems tracts depend on the tectonic and climatic evolution of the area. Using the concept of accommodation space (A) and sediment supply (S), we identify specific stacking patterns of aeolian, lacustrine, fluvial and alluvial systems that correspond to the particular tectonic and climatic evolution of the southeastern portion of South America. With the end of the Early Cretaceous volcanism (133 Ma), the southeastern portion of South America underwent tectonic restructuring, which generated basins that encompassed continental sedimentary sequences. The tectonic events responsible for the accumulation of these sequences occurred during two primary phases. The first phase is related to Early Cretaceous thermal subsidence, which was more pronounced in the regions where the thickest Serra Geral Formation basaltic successions are found, resulting in the formation of Bauru Basin. The second phase was related to the Late Cretaceous uplift in southeastern Brazil as a result of magmatic/volcanic activity associated with the Trindade Mantle Plume. Stratigraphic analysis based on well‐logs and outcrops and aided by petrographic studies identified three sequences that are bounded by regional unconformities that record important changes in the Bauru Basin's tectonic and paleoenvironmental conditions. The unconformity K‐0 is related to the origin of the Bauru Basin in the Early Cretaceous. The Early Cretaceous Sequence 1 (Caiuá Group) is interpreted as a second‐ order sequence, formed by aeolian and fluvial deposits and constituting a Fluvial‐Aeolian Systems Tract. Unconformity K‐1 that was generated in the Late Cretaceous (Cenomanian – Campanian?) is related to the tectonic evolution of the basin and source area. Overlying Unconformity K‐1, lacustrine, fluvial and alluvial deposits display progradational characteristics of the two‐third‐ order sequences: Sequences 2A and 2B, constituted by the Fluvial‐Lacustrine and Alluvial Systems Tracts, respectively, and separated by the Unconformity K‐1A. Sedimentological characteristics, paleosols and stratigraphic architecture, suggest that A/S ratio was neutral in the late stage of the Sequence 1, whereas in the Sequence 2 there was an increase (Sequence 2A) followed by a decrease in the A/S ratio (Sequence 2B). Aeolian facies and paleosol P1 (Sequence 1), fluvial‐lacustrine facies and hydromorphic soils (Sequence 2A), and alluvial facies and Paleosol P2 (Sequence 2B), indicate climatic changes in the South American during the Cretaceous. The stratigraphic framework, subaerial unconformities and paleosols provide key elements for subdividing of the Brazilian continental sequence into third‐order sequences and systems tracts, for identification of allocyclic and autocyclic patterns in time and space.  相似文献   

19.
The Spiti River that drains through the arid Trans-Himalayan region is studied here. The relict deposits exposed along the river provide an opportunity to understand the interaction between the phases of intense monsoon and surface processes occurring in the cold and semi arid to-arid Trans-Himalayan region. Based on geomorphological observation the valley is broadly divided into the upper and lower Spiti Valley. The braided channel and the relict fluvio-lacustrine deposits rising from the present riverbed characterize the upper valley. The deposits in the lower valley occur on the uplifted bedrock strath and where the channel characteristics are mainly of meandering nature. Conspicuous is the occurrence of significantly thick lacustrine units within the relict sedimentary sequences of Spiti throughout the valley. The broad sedimentary architecture suggests the formation of these palaeolakes due landslide-driven river damming. The Optically Stimulated Luminescence (OSL) dating of quartz derived from the bounding units of the lacustrine deposits suggests that the upper valley preserves the phase of deposition around 14–6 ka and in the lower valley around 50–30 ka. The review of published palaeoclimatic palaeolake chronology of Spiti Valley indicates that the lakes were probably formed during the wetter conditions related to Marine Isotope Stage III and II. The increased precipitation during these phases induced excessive landsliding and formation of dammed lakes along the Spiti River. The older lacustrine phase being preserved on the uplifted bedrock strath in the lower valley indicates late Pleistocene tectonic activity along the Kaurick Chango normal fault.  相似文献   

20.
为查明雷琼火山群中九斗洋干玛珥湖的第四纪地层空间展布,以及埋藏古火山形态,为后续研究提供地质背景资料,采用高效、便捷的高密度电阻率法对九斗洋干玛珥湖湖盆区进行勘测,并结合钻孔岩芯的研究进行验证。得出的主要结论为:1)盆地深部地层最高电阻率可达到300 Ω?m以上,盆地中央基岩以下存在高阻地质体,推测为岩浆通道位置。岩浆经过通道溢出后横向展布,覆于沉积地层上,随后在火山口内形成湖泊,堆积第四纪湖相沉积,其火山机构与玛珥湖型火山一致;2)九斗洋干玛珥湖第四纪松散沉积地层的电阻率通常<60 Ω?m,泥炭层电阻率最低;3)第四纪沉积总厚度为25~50 m,盆地松散沉积的岩浆岩基底总体平整,但尚有波状起伏。研究结果表明,高密度电阻率法结合钻孔验证是研究火山机构形态及火山口湖第四纪沉积空间展布的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号