首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
Studies addressing within-lake variability of fossil chironomid assemblages are very few, and all deal with hydrologically stable temperate lakes where the question of spatial integration mostly relates to the mixing of faunal assemblages associated with shallow, warm-water habitat and those associated with deeper, cold-water habitat. Here we study within-lake variability of surface-sediment chironomid assemblages in the fairly large (∼100–170 km2 since 1983) and shallow (Z max = 5–8 m) fluctuating tropical lake basin of Lake Naivasha, Kenya, and compare the patterns observed with those in two smaller adjacent basins, one similarly shallow (Lake Oloidien, 5.1–5.7 km2, 5–8 m), the other deep and stratified (Crescent Island Crater, 1.9 km2, 14–17 m). Chironomid assemblages were analysed in core-top samples and surface sediments along inshore to offshore transects, and how well individual samples represented the total (basin-wide mean) subfossil assemblage was considered both in terms of taxon richness and taxon percent composition. Within-lake variability of subfossil chironomid concentrations (with generally higher absolute values in nearshore samples) could be explained by effects of sediment winnowing and focusing, whereas between-lake variability reflected their relative susceptibility to wind-driven sediment disturbance or bottom anoxia. In all study lakes, but most significantly in lakes Naivasha and Oloidien, species distribution in the subfossil chironomid assemblages showed a strong nearshore to offshore gradient, which in these shallow lakes, reflects the dominant control of substrate and food quality on species distribution in the living community. Particularly in the larger basins, nearshore samples better represented the total lake assemblage than offshore samples, because the former always contained a component of mud-dwelling species whereas the latter often lacked a component of macrophyte-dwelling species. Our results show that although sedimentation dynamics in the shallow, wind-stressed Lake Naivasha is dominated by frequent resuspension and random sediment redistribution, the near- to offshore gradient in chironomid habitat remains imprinted on subfossil assemblages. We conclude that also in shallow fluctuating lakes, given sufficient size, incomplete pre-burial spatial integration of habitat-specific chironomid assemblages can be exploited for within-lake calibration of environmental gradients.  相似文献   

2.
The quantity and quality of lignin phenols (Σ8, Λ, S/V, C/V and (Ad/Al)v) in the sediments of three small Lobelia lakes with neither inlets nor outlets were investigated and compared with palynological data and lithology of the profiles. The method of alkaline CuO oxidation was used. Substantial differences with respect to sedimentary lignin concentration and provenance recorded along the profiles and among the sites are in good agreement with pollen data describing the dominant type of vegetation and with indices of soil erosion in the lakes’ catchments. This relation shows that the compositions of lignin degradation products in these lakes are closely related to the local environmental conditions. In all the lakes gymnosperm wood is the main source of lignin products; however, each lake is characterized by different S/V index values. Especially good correlations were obtained between pine pollen proportions in sediments and the S/V index. The correlation between the C/V and (Ad/Al)v indices indicates a higher degradation of organic matter when non-woody tissue is more abundant. This pilot study illustrates the usefulness and potential for a wider application of lignin oxidation products in palaeoecological reconstructions. This kind of data would be of special importance when investigating local presence/absence of woody plants and the role of angiosperms/gymnosperms in local vegetation. Estimates of lignin biodegradation levels, as well as the data on diagenetic processes, may afford supplementary information on possible disturbances in sedimentation.  相似文献   

3.
Carbon storage in lakes can have huge implications for the global carbon cycle, as lakes annually accumulate up to one half the amount of organic carbon buried in marine sediments. Yet little is known of the effect of recent climate change on carbon storage in lakes. We analyzed century-scale time series of climate variables (precipitation, temperature, NAO winter index) and profiles of sediment characteristics in a dated sediment core from shallow, eutrophic Lake Võrtsjärv, south Estonia. We used path analysis to evaluate the effect of climate conditions on phytoplankton biomass in the lake and accumulation of organic and inorganic carbon in the sediment. Changes in winter and spring climate influenced the lake’s phytoplankton growth significantly. Carbon pathways in hard-water Lake Võrtsjärv were influenced by both hydrological (most significant in colder periods) and biogeochemical processes. Increased nutrient and water input to Lake Võrtsjärv, anticipated with projected climate warming, favours greater in-lake productivity, larger accumulation of inorganic carbon in sediments, and an increase in organic carbon mineralisation, which fuels atmospheric greenhouse gas emissions from the lake.  相似文献   

4.
We studied mineral magnetic properties of a 6-m-long, late Pleistocene through Holocene sediment sequence from Lake Aibi in Dzungaria (Zunggary, Junggar), northern Xinjiang, China. Results were used to infer environmental changes and are compared with previously studied cores from Lake Manas. Both water bodies occupy the deepest parts of the Dzungarian Basin and are remnants of large Holocene lakes. During the Late Pleistocene, the magnetic mineralogy in both lakes was dominated by detrital, iron oxide minerals. Oxic conditions, which dominated during sedimentation and early diagenesis, persisted over the Pleistocene–Holocene transition. Later, during the middle Holocene, lake bottom conditions enabled authigenic formation of iron sulphide minerals such as pyrite (FeS2) in Lake Aibi, and pyrite and greigite (Fe3S4) in Lake Manas. This iron sulphide mineralogy suggests increased biological activity in stagnant, anoxic bottom waters. Anoxic bottom conditions started about 9.8 cal kyr BP in Lake Manas and at about 7.2 cal kyr BP in Lake Aibi. A short dry event recorded in Lake Manas between 6.8 and 5.2 cal kyr BP is not clearly observed in Lake Aibi. In the late Holocene, i.e. the last 2.8 cal kyr, sediments of both lakes are again characterised by iron oxides, suggesting well-mixed, shallow water bodies. For this recent period, it seems that the detrital material in the two lakes had a common origin. Magnetic properties of sediments in Lakes Aibi and Manas show broadly similar environmental evolution during the late Pleistocene and Holocene. Nevertheless, despite the close proximity of the two lakes (~200 km) in the same basin, they display some different magnetic properties and record environmental changes at different times.  相似文献   

5.
Sediment diatom and chemical analyses of cores from three poorly buffered extra-glacial lakes on the northeastern margin of the Canadian Shield (Cumberland Peninsula, Baffin Island) record interactions between aquatic and terrestrial spheres that were influenced by late Quaternary climatic conditions. Although differences exist between each of the lakes, notably with regards to the intensity of pre-Holocene catchment erosion and the timing of the onset of organic sedimentation, an underlying pattern of lake ontogeny, common to all three lakes, is identified. Although intensified watershed erosion characterized the Late Wisconsinan and Neoglacial cold periods, the lakes nonetheless remained viable ecosystems at these times. Sudden catchment stabilization during the late-glacial to earliest Holocene is associated with incipient organic sedimentation. Lake-water pH increased at this time, likely in response both longer base cation residence times as lake flushing rates decreased, and enhanced alkalinity production from sediment biogeochemical reactions. Subsequently, as the catchments remained stable during the productive early Holocene (c.9–7 ka BP), then gradually received a renewed increase of minerogenic sedimentation, the breakdown of sources of lake alkalinity resulted in natural acidification. Burial of cation-rich mineral sediments and the loss of permanent sedimentary sinks for the products of microbial reduction likely impeded within-lake alkalinity production, and catchment-derived base cations appeared ineffective in curtailing pH declines. The general nature of the Holocene development of these lakes is similar to that observed elsewhere on crystalline terrains, following deglaciation. Our data therefore suggest that catchment glaciation is not a necessary precursor for models of lake development characterized by initial base cation enrichment and subsequent gradual acidification.  相似文献   

6.
Lake sediments can be significantly impacted by industrial activities. These impacts vary among sites and include both local point sources and atmospherically-derived pollution. Here we present results of a lake sediment pollution record from Ullswater, UK, where lead mining activities have taken place within the catchment since 1690, although large-scale mining did not begin until 1840. Metal concentration data from 12 cores taken along a lake bed transect illustrate that lead mining at Greenside Mine had a significant impact on the lake sediments. High Pb concentrations were identified throughout Ullswater, and exhibited a spatial gradient from south to north, with concentrations decreasing with greater distance from the main source of input at Glenridding. Furthermore, inter-element correlations exhibit spatial variation that reflects the processes by which they are incorporated into the lake sediment record. Together, these observations illustrate potential shortcomings in palaeoenvironmental reconstructions and pollution studies based on single cores from large and morphologically variable lakes. Sedimentation rates were estimated by matching this pollution record with the historical record of mining activities. Within Ullswater, sedimentation rates from 1840 to the present varied from 0.67 to 2.33 mm year−1 with a mean of 1.4 mm year−1; highest sedimentation rates were observed in the deepest section of the lake and close to the main inputs, and lowest sedimentation rates were observed in the northern part of the lake, furthest from the main input. Despite the considerable changes in mining techniques and production, there is little evidence to suggest significant changes in sedimentation rates over time.  相似文献   

7.
Permafrost in peatlands of subarctic Sweden is presently thawing at accelerated rates, which raises questions about the destiny of stored carbon and nutrients and impacts on adjacent freshwater ecosystems. In this study we use peat and lake sediment records from the Stordalen palsa mire in northern Sweden to address the late Holocene (5,000 cal BP-present) development of the mire as well as related changes in carbon and nutrient cycling. Formation, sediment accumulation and biogeochemistry of two studied lakes are suggested to be largely controlled by the development of the mire and its permafrost dynamics. Peat inception took place at ca. 4,700 cal BP as a result of terrestrialisation. Onset of organic sedimentation in the adjacent lakes occurred at ca. 3,400 and 2,650 cal BP in response to mire expansion and permafrost aggradation, respectively. Mire erosion, possibly due to permafrost decay, led to re-deposition of peat into one of the lakes after ca. 2,100 cal BP, and stimulated primary productivity in the other lake at ca. 1,900–1,800 cal BP. Carbonate precipitation appears to have been suppressed when acidic poor fen and bog (palsa) communities dominated the catchment mire, and permafrost-induced changes in hydrology may further have affected the inflow of alkaline water from the catchment. Elevated contents of biogenic silica and diatom pigments in lake sediments during periods of poor fen and bog expansion further indicate that terrestrial vegetation influenced the amount of nutrients entering the lake. Increased productivity in the lake likely caused bottom-water anoxia in the downstream lake and led to recycling of sediment phosphorous, bringing the lake into a state of self-sustained eutrophication during two centuries preceding the onset of twentieth century permafrost thaw. Our results give insight into nutrient and permafrost dynamics in a subarctic wetland and imply that continued permafrost decay and related vegetation changes towards minerotrophy may increase carbon and nutrient storage of mire deposits and reduce nutrient fluxes in runoff. Rapid permafrost degradation may on the other hand lead to widespread mire erosion and to relatively short periods of significantly increased nutrient loading in adjacent lakes.  相似文献   

8.
In the western part of the Canadian Prairies, there are thousands of small, closed-basin saline lakes. Most of these lakes are ephemeral, filling with water during the spring and drying completely by late summer. Ceylon Lake, located in southern Saskatchewan, is typical of many of these shallow ephemeral lacustrine basins. The stratigraphic sequence recovered from this salt playa can be subdivided into six distinct facies types: (a) icelaid gravelly clay loam diamicton; (b) fluvial massive bedded to laminated sand; (c) lacustrine laminated calcareous clay and silt; (d) lacustrine laminated gypsiferous clay and silt; (e) lacustrine black, anoxic, nonlaminated, organic-rich mud; and (f) lacustrine salt. The crystalline salt facies, which can be up to 9 meters thick, is comprised mainly of sodium and sodium + magnesium sulfates, with smaller and more variable proportions of other sulfates, halides, carbonates, and insoluble clastic detritus.Although a variety of postdepositional processes have significantly altered the nature and stratigraphic relationships in the basin, the sediment fill does record, in a general way, the fluctuating depositional, hydrological, and geochemical conditions that existed in the basin since deglaciation. The Ceylon Lake basin originated about 15 000 years ago as meltwater from the retreating glacial ice cut a major spillway system in the drift and bedrock. The initial (early Holocene) phases of lacustrine sedimentation in Ceylon Lake occurred in a relatively deep freshwater lake. By about 6000 years B.P., the lake had become much shallower with numerous episodes of complete drying and subaerial exposure. The most recent 5000 years of deposition in the basin have been dominated by evaporite sedimentation. The composition of the soluble salts deposited during this time indicates some degree of cyclic sedimentation superimposed on an overall gradual shift from a sodium dominated brine to one of mixed sodium and magnesium.  相似文献   

9.
The mechanical denudation rates of 81 large lake basins (lake area > 500 km2) were determined from long-term river loads and erosion maps. Using the drainage area/lake area ratios the mean sedimentation rates of the lakes were calculated for a porosity of 0.3. The mean sedimentation rates of different lake types vary between 0.1 mm/a (glacial lakes, lowland) and 5.4 mm/a (mostly sag basin lakes). The calculated lifetimes of the lakes are based on the lake volumes and mean sedimentation rates, assuming steady-state conditions and solely clastic material. On average, glacial lakes in highlands and fault-related lakes show the shortest lifetimes (c. 70 ka), glacial lakes in lowlands and rift lakes have the longest lifetimes (c. 1 Ma). Some lakes remain unfilled for very long time spans due to rapid subsidence of their basin floors. The calculated lifetimes are compared with those derived from sediment core studies. Most core studies indicate lower mechanical sedimentation rates than the calculated ones because a major part of the incoming sediment is trapped in deltas. However, a number of lakes (e.g., the Great Lakes of North America) show the opposite tendency which is largely caused by extensive shoreline erosion and resuspension. The lifetimes of large glacial lakes often exceed the duration of interglacials. Hence, their lifetimes are restricted by glaciation and not by sediment infill. Rift lakes persist for long time periods which exceed the calculated lifetimes in some cases. Time-dependent subsidence, basin extension, as well as the impact of climate change are briefly described.  相似文献   

10.
We studied the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) in water-column particulate matter and the top 5 cm of sediment from 47 lakes along a transect from southern Italy to the northern part of Scandinavia. Our objective was to investigate the biological sources and potential palaeoenvironmental applications of GDGTs in lacustrine sediments. Both archaea-derived isoprenoid and bacteria-derived branched GDGTs, produced by yet unknown soil bacteria, were identified in all lake sediments. GDGT distributions varied substantially. Crenarchaeotal GDGTs, including the characteristic GDGT crenarchaeol, were found in varying relative concentrations, and were more dominant in lakes from the Alps and some of the lakes from the more southern part of the latitudinal transect. In some lakes, we observed high amounts of the GDGT with no cyclopentane moieties relative to crenarchaeol. As methanogenic Euryarchaeota are known to biosynthesise this GDGT predominantly, these Archaea, rather than Crenarchaeota, may be its dominant biological source. In most of the lakes, high amounts of soil-bacteria-derived, branched GDGTs (>40% of total GDGTs) indicated a substantial contribution from soil erosion. Branched GDGTs dominated, especially in the northern lakes, possibly related to high soil-erosion rates. In many of the lakes, soil input affects the distribution of isoprenoidal GDGTs and prevents the reliable application of the TEX86 temperature proxy for lake water temperature, which is based on in situ crenarchaeotal GDGTs production. In 9 out of the 47 lakes studied, the TEX86 temperature proxy could be used reliably. When we compared the TEX86 correlation with annual and winter lake-surface temperature, respectively, the relationship between TEX86 and winter temperature was slightly stronger. This may indicate the season in which these GDGT-producing organisms have their peak production.  相似文献   

11.
Sediment records from floodplain lakes have a large and commonly untapped potential for inferring wetland response to global change. The Brazilian Pantanal is a vast, seasonally inundated savanna floodplain system controlled by the flood pulse of the Upper Paraguay River. Little is known, however, about how floodplain lakes within the Pantanal act as sedimentary basins, or what influence hydroclimatic variables exert on limnogeological processes. This knowledge gap was addressed through an actualistic analysis of three large, shallow (<5 m) floodplain lakes in the western Pantanal: Lagoa Gaíva, Lagoa Mandioré and Baia Vermelha. The lakes are dilute (CO3 2− > Si4+ > Ca2+), mildly alkaline, freshwater systems, the chemistries and morphometrics of which evolve with seasonal flooding. Lake sills are bathymetric shoals marked by siliciclastic fans and marsh vegetation. Flows at the sills likely undergo seasonal reversals with the changing stage of the Upper Paraguay River. Deposition in deeper waters, typically encountered in proximity to margin-coincident topography, is dominated by reduced silty-clays with abundant siliceous microfossils and organic matter. Stable isotopes of carbon and nitrogen, plus hydrogen index measured on bulk organic matter, suggest that contributions from algae (including cyanobacteria) and other C3-vegetation dominate in these environments. The presence of lotic sponge spicules, together with patterns of terrigenous sand deposition and geochemical indicators of productivity, points to the importance of the flood pulse for sediment and nutrient delivery to the lakes. Flood-pulse plumes, waves and bioturbation likewise affect the continuity of sedimentation. Short-lived radioisotopes indicate rates of 0.11–0.24 cm year−1 at sites of uninterrupted deposition. A conceptual facies model, developed from insights gained from modern seasonal processes, can be used to predict limnogeological change when the lakes become isolated on the floodplain or during intervals associated with a strengthened flood pulse. Amplification of the seasonal cycle over longer time scales suggests carbonate, sandy lowstand fan and terrestrial organic matter deposition during arid periods, whereas deposition of lotic sponges, mixed aquatic organic matter, and highstand deltas characterizes wet intervals. The results hold substantial value for interpreting paleolimnological records from floodplain lakes linked to large tropical rivers with annual flooding cycles.  相似文献   

12.
This study used organic matter in oligotrophic Lake Constance (southern Germany) to reconstruct lake environment and to disentangle the multiple factors, such as climate change and human impacts, which influence sedimentation in large lakes. A sediment core from Upper Lake Constance, which represents 16,000 years of Late Glacial and Holocene lake history, was analysed for organic biomarkers, hydrogen index and elements calcium, strontium, and magnesium. Magnetic susceptibility was measured to establish a high-resolution stratigraphic framework for the core and to obtain further information about changes with respect to relative allochthonous versus autochthonous sedimentation. Dinosterol—a biomarker for dinoflagellates—and calcium have low concentrations in Younger Dryas sediments and consistently high concentrations between 10,500 and 7,000 cal. years BP. These variations are attributed to changes in lake productivity, but are not reflected in the proportion of total organic carbon within the sediment. During the Younger Dryas and between 6,000 and 2,800 cal. years BP, concentrations and accumulation rates of land-plant-derived C29-steroids (β-sitosterol, stigmastanol and stigmasterol), in combination with a relatively low HI, indicate periods of enhanced terrigenous input to the lake. For the Younger Dryas, higher runoff can be attributed to a cold climate, leading to decreased vegetation cover and increased erosion. After 6,000 cal. years BP, high terrestrial input may be explained by enhanced precipitation. Biomarker and HI results, in combination with archaeological studies, raise the question as to whether lakeshore settlements affected sedimentation in Upper Lake Constance between 6,000 and 2,800 cal. years BP.  相似文献   

13.
This paper presents an overview of some of the most significant, recent to ancient, littoral morpho-sedimentary structures and deposits from the Lake Turkana Basin. We highlight the importance of wave-related sedimentary processes in lakes, and more specifically in rift lakes. In the published literature, references to wave-dominated shorelines are mainly in regards to coastal marine environments. However, numerous modern lakes exhibit typical wave-dominated littoral landforms, and related sedimentary deposits are known from several paleolake successions in the geological record. Wave-related processes are often of relatively minor importance in depositional models for lacustrine environments. Classical models emphasize clastics transported by rivers, which are then distributed by fan-deltas and/or deltas into a water body of fluctuating depth, where reworking of clastics is limited in the littoral domain, and episodic in deep waters. Modern processes in Lake Turkana and the exposed paleolake deposits of the Turkana Basin demonstrate that this view is incomplete. Wave-dominated shorelines are evident (1) for modern Lake Turkana based on prominent and active littoral landforms (e.g., beach ridges, sand spits, washover fans, and arcuate-cuspate deltas); (2) for the Holocene (African Humid Period) climate-driven highstand of Megalake Turkana and its subsequent forced regression based on conspicuous raised beach ridges and spits; and (3) for the Pliocene–Pleistocene (Omo Group, Nachukui Formation) from typical nearshore sedimentary facies and stratigraphic architectures associated with paleolake Turkana. These examples from the Turkana Basin coupled with examples from other lacustrine settings, suggest that wave-dominated clastic shorelines represent significant portions of existing and ancient lake-shores. As this view contrasts with classic depositional models for lakes, notably for those found in rift setting, we also present examples of wave-influenced littoral landforms from other lakes of the East African Rift System. Identifying lacustrine paleoshorelines from typical clastic landforms and deposits is the key to the spatial reconstruction of lakes over time, and to determine transgressive–regressive cycles. Waves action is an important agent in lakes for the erosion, transport, and deposition of clastics at the basin-scale, an aspect that needs to be integrated in sedimentary models.  相似文献   

14.
盐湖沉积记录了区域的气候和水文变化,是重要的古气候研究对象。年代学是盐湖古气候研究最重要的一项内容,是后续几乎所有工作的基础。盐湖沉积最常用的定年方法有14C定年、铀系定年、光释光(OSL)定年、古地磁定年。受各种定年方法自身的局限性以及盐湖沉积特有的沉积特征,存在不同方法测出的年龄差异较大的现象。准确测定盐湖沉积的年代还较为困难,一定程度制约了盐湖古气候研究的发展。由于盐湖沉积有机质含量低,易受现代碳的污染,其14C年代老于30 cal ka BP时,测出的年龄可能已饱和,需要谨慎对待。未来需要加强铀系定年和光释光定年等方法在盐湖沉积中的基础研究,并开发新的更好的测年方法,提高盐湖沉积测年的准确度,为深入开展盐湖古气候变化及成盐成矿规律研究提供坚实基础。  相似文献   

15.
Semiarid regions are vulnerable environments with a series of important and often discussed problems such as land degradation, water scarcity and desertification. These regions are dynamic and respond quickly to climatic and environmental changes. Unlike lakes in temperate zones, lakes in semiarid regions are yet poorly utilized as climatic and environmental indicators. In this study aquatic deposits are used to uncover the environmental history of a severely degraded area in central Tanzania. The 210Pb and 137Cs chronologies date a 360 cm long sediment sequence to 155 years. The sediments show that lake Haubi basin changed from a seasonally waterlogged depression to a lake at the turn of the century. Calculated sedimentation rates show that the catchment of the lake has been subject to varied and enhanced soil erosion during the last 155 years.  相似文献   

16.
The zooplankton community structure in lakes is highly influenced by size-selective predation by fish, with small zooplankton species dominating at high predation pressure. Remains of cladocerans are preserved in the sediment and may be used to trace historical changes in fish predation. We determined how contemporary data on planktivorous fish were related to the size of Daphnia ephippia (dorsal length) in the surface sediment (0-1 cm) of 52 mainly shallow lakes with contrasting densities of fish and nutrients (TP: 0.002-0.60 mg P l-1). Density of fish expressed as catch per unit effort, in terms of numbers in multiple mesh-sized gill nets (CPUEn), decreased significantly with increasing mean size of ephippia. The relationship was improved by adding TP as an independent variable, now explaining 90% of the variation in CPUEn on the full data set covering lakes in Denmark, Greenland and New Zealand, and 78% if only data on Danish lakes were used. CPUE by weight of planktivorous fish and mean weight of Daphnia in the pelagial during summer were also related to ephippial size. By including contemporary data on established relationships between the sizes of egg-bearing female Daphnia and ephippia, we inferred changes in the CPUEn, mean size of ephippia-bearing Daphnia and summer mean body weight of Daphnia from ephippial size in four lakes during the past 1-2 centuries. In a hypertrophic lake subject to periodic fish kills, Daphnia mean body weight was high and CPUEn was low compared with those in two eutrophic lakes, while CPUEn was low and Daphnia body weight was high in the least eutrophic, clearwater lake. Estimated CPUEn and Daphnia mean weight in the surface sediment of these four lakes corresponded well with contemporary data. Only small changes in ephippial size with time were observed in the clearwater lake and in one of the lakes that had suffered early eutrophication, while major changes occurred in the two other lakes that had been subjected to a major increase in nutrient input or fish kills. We conclude that Daphnia ephippia preserved in the surface sediments of lakes may be a useful and efficient method to quantify the present-day abundance of planktivorous fish and Daphnia mean size. The method is particularly valid in surveys aimed to give a general picture of the fish stock and the ecological state in a set of lakes in a region rather than a precise estimate for a single lake. Though some evidence is provided, more work is needed to evaluate whether the equations are valid for hind-casting in down-core palaeoecological studies.  相似文献   

17.
Sediment variables total organic carbon (TOC), total nitrogen (TN), total sulfur (TS), as well as their accumulation rates and atomic ratios (C/N and C/S), were studied along with stable isotopes (δ13C, δ15N, and δ34S), and specific biomarkers (n-alkanes and pigments) in a 35-cm-long sediment core from Lake Bhimtal, NW India. The average sedimentation rate is 3.6 mm year?1, and the core represents a provisional record of ~100 years of sedimentation history. Bulk elemental records and their ratios indicate that sediment organic matter (OM) is derived primarily from algae. In-lake productivity increased sharply over the last two decades, consistent with paleoproductivity reconstructions from other lakes in the area. An up-core decrease in δ13C values, despite other evidence for an increase in lake productivity, implies that multiple biogeochemical processes (e.g. external input of sewage or uptake of isotopically depleted CO2 as a result of fossil fuel burning) influence the C isotope record in the lake. The δ15N values (?0.2 to ?3.9 ‰) reflect the presence of N-fixing cyanobacteria, and an increase in lake productivity. The δ34S profile shows enrichment of up to 5.6 ‰, and suggests that sulfate reduction occurred in these anoxic sediments. Increases in total n-alkane concentrations and their specific ratios, such as the Carbon Preference Index (CPI) and Terrestrial Aquatic Ratio (TAR), imply in-lake algal production. Likewise, pigments indicate an up-core increase in total concentration and dominance of cyanobacteria over other phytoplankton. Geochemical trends indicate a recent increase in the lake’s trophic state as a result of human-induced changes in the catchment. The study highlights the vulnerability of mountain lakes in the Himalayan region to both natural and anthropogenic processes, and the difficulties associated with reversing trophic state and ecological changes.  相似文献   

18.
Here we present datasets from a hydroacoustic survey in July 2011 at Lake Torneträsk, northern Sweden. Our hydroacoustic data exhibit lake floor morphologies formed by glacial erosion and accumulation processes, insights into lacustrine sediment accumulation since the beginning of deglaciation, and information on seismic activity along the Pärvie Fault. Features of glacial scouring with a high‐energy relief, steep slopes, and relative reliefs of more than 50 m are observed in the large W‐basin. The remainder of the lacustrine subsurface appears to host a broad variety of well preserved formations from glacial accumulation related to the last retreat of the Fennoscandian ice sheet. Deposition of glaciolacustrine and lacustrine sediments is focused in areas situated in proximity to major inlets. Sediment accumulation in distal areas of the lake seldom exceeds 2 m or is not observable. We assume that lack of sediment deposition in the lake is a result of different factors, including low rates of erosion in the catchment, a previously high lake level leading to deposition of sediments in higher elevated paleodeltas, tributaries carrying low suspension loads as a result of sedimentation in upstream lakes, and an overall low productivity in the lake. A clear off‐shore trace of the Pärvie Fault could not be detected from our hydroacoustic data. However, an absence of sediment disturbance in close proximity to the presumed fault trace implies minimal seismic activity since deposition of the glaciolacustrine and lacustrine sediments.  相似文献   

19.
Three sediment cores from two lakes, Fish Lake and Phalarope Lake, in Truelove Lowland, Devon Island, N.W.T. were analyzed for diatoms and chemical composition. Multivariate statistical techniques using a range of chemical variables successfully isolated three sediment groupings in the cores. Allochthonous and autochthonous chemical components in the sediments have been used to reconstruct paleoenvironmental conditions. The two lakes began approximately 10600 years ago as shallow marine lagoons that were isolated from the sea as a result of glacio-isostatic rebound. Based on the presence of distinctive diatom assemblages, the three stratigraphic zones are identified as a basal marine zone, an intermediate and transitional brackish/marine zone and an upper freshwater zone. Following isolation from the sea, the lakes were flushed with freshwater produced by snow and ice melt. In Fish Lake, the period of transition from marine to freshwater, which began approximately 7000 years ago, lasted approximately 800 years. In Phalarope Lake, which was isolated from the sea approximately 5000 years ago, flushing by fresh water was completed only within the last 300 years. Fe, Cr, and Mo in the sediments are associated with the isolation phase when lake sedimentation is sensitive to the presence of brackish water and erosion within the lake catchments. In particular, the precipitation of Mo as MoS2 reflects the presence of hypolimnetic anoxia associated with lake isolation. During the early post-isolation phase the response of lake biota to an influx of nutrients is reflected in an increase in biological silica and organic carbon in the lake sediments. On the other hand, the generally low organic content of the sediments indicates that sedimentation in these lakes has been largely determined by variations in non-biogenic factors through time. During the mid Holocene the progressive stabilization of surface materials within the lake catchments is marked by decreasing Cr, As and Na in the sediments. At the same time, an increase in allochthonous Mn and Fe is attributed to progressive soil development. During the last 2500 years the catchments have experienced decreased erosion resulting in a decrease in both allochthonous clastic input and lake productivity.  相似文献   

20.
Stable isotope measures in organic matter are frequently used as indicators of past climate change. Although such analyses can provide valuable information, there is considerable uncertainty associated with studies of organic-rich sediments, especially those from Arctic lakes and bogs. We studied stable isotopes of carbon and nitrogen, and magnetic properties in a sediment core from a small alkaline lake with a high sedimentation rate, Lake Nattmålsvatn, Norway. There is good correspondence among the different sediment variables during the late glacial, and they seemingly reflect major climate variations such as the Allerød Interstade and the Younger Dryas, as well as the transition into the current interglacial. During the early Holocene, however, these relationships are more complex and δ13C and δ15N values do not stabilize until ~7,500 cal year BP. A significant excursion in all variables occurs between 6,850 and 6,500 cal year BP and is interpreted to represent climate deterioration. Holocene δ13C values vary little and indicate that isotopically-depleted dissolved inorganic carbon (DIC) in the lake, possibly influenced by methanotrophy and high pCO2, dominated the lake’s carbon cycle. Holocene δ15N is similarly muted, likely due to the availability of abundant dissolved nitrogen. Bulk organic matter is probably dominated by phytoplankton remains produced beneath the ice cover in late spring and during ice breakup when isotopically-depleted DIC, pCO2 and ammonium availability were maximal. Thus, use of δ13C and δ15N as indicators of Holocene paleoclimate and paleoproductivity variation can be challenging in a lake such as Nattmålsvatn, where ice cover isolates the basin for large parts of the year, allowing dissolved respiratory gases to accumulate in the water column. In contrast, magnetic variables appear to better track climate variations. In particular, runoff-driven influx of minerogenic sediments shows high variability that can be attributed to regional changes in Holocene winter precipitation. The most striking shifts occur between 4,000 and 2,300 cal year BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号