首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Aquatic macrophytes play a key role in providing habitat, refuge and food for a range of biota in shallow lakes. However, many shallow lakes have experienced declines in macrophyte vegetation in recent decades, principally due to eutrophication. As changes in macrophyte composition and abundance can affect overall ecological structure and function of a lake, an assessment of the timing and nature of such changes is crucial to our understanding of the wider lake ecosystem. In the typical absence of historical plant records, the macro-remains of macrophytes preserved in lake sediments can be used to assess long-term changes in aquatic vegetation. We generated recent (150–200 years) plant macrofossil records for six English lakes subject to conservation protection to define past macrophyte communities, assess trajectories of ecological change and consider the implications of our findings for conservation targets and strategies. The data for all six lakes reveal a diverse submerged macrophyte community, with charophytes as a key component, in the early part of the sedimentary records. The stratigraphies indicate considerable change to the aquatic vegetation over the last two centuries with a general shift towards species more typically associated with eutrophic conditions. A common feature is the decline in abundance of low-growing charophytes and an increase in tall canopy-forming angiosperms such as fine-leaved Potamogeton species, Zannichellia palustris and Callitriche species. We hypothesise, based on findings from long-term datasets and palaeoecological records from enriched shallow lakes where plants are now absent, that the observed shifts provide a warning to managers that the lakes are on a pathway to complete macrophyte loss such that nutrient load reduction is urgently needed. It is the sound understanding of present-day plant ecology that affords such reliable interpretation of the fossil data which, in turn, provide valuable context for current conservation decisions.  相似文献   

2.
Changes in macrophyte communities have occurred over the past decades in many oligotrophic softwater lakes with low carbon availability. Slow-growing isoetid species have been replaced by faster-growing elodeid species. Commonly, these changes are explained by anthropogenic nutrient enrichment or acidification of the lake water. Here we present a multi-proxy study in which we analysed plant macrofossils, pollen and spores, as well as sedimentological data from several cores taken from a SW Norwegian softwater lake. Our results indicate that the elodeid macrophyte Callitriche hamulata first appeared in this lake in the 1970s. Proliferation of C. hamulata occurred in the 1990s, replacing the hitherto dominant submerged Isoëtes macrophyte vegetation. Independent lines of evidence, such as diatom-inferred TP and pH reconstructions, showed no change during the past 200 years, therefore ruling out both acidification and phosphorus enrichment of the lake as possible causes for the observed change in the macrophyte community. Alternatively, expansion of Callitriche at the expense of Isoëtes may have been related to increased aquatic carbon availability, although nitrogen enrichment may also have been important.  相似文献   

3.
Preventing biodiversity loss is a key aim of modern conservation, and paleolimnology can inform conservation strategies for target species and habitats where other data are unavailable. Care must be taken to fully understand the possibilities and limits of such techniques, particularly where they concern single species. This study uses plant and seed distribution data to inform macrofossil reconstructions of the rare macrophyte Najas flexilis (Slender Naiad) in Scotland, UK. It answers three questions: (a) How does the location of N. flexilis seeds in the surface sediments relate to the distribution of N. flexilis plants? (b) How do the numbers of seeds in surface sediments correlate with % cover of N. flexilis plants across lakes with differing N. flexilis abundances? (c) What are the implications of these findings for paleolimnology? Percentage N. flexilis cover and number of N. flexilis seeds in surface sediments were recorded at ~100 sample points at each of three sites; one where the species was abundant, one where it was occasional and one where it was extinct. At all sites, N. flexilis seeds were present in surface sediments across the entire lake. No correlation between % cover N. flexilis and the number of seeds in surface sediments was found within individual sites. The distribution of seeds in these lakes appeared to be related to multiple environmental and ecological variables including latitude and longitude (proxies for water currents). This is attributed to the ability of seed-bearing N. flexilis plants to fragment and float large distances on water. Between sites, there was a significant difference in the mean seed counts, with higher mean seed counts corresponding to higher abundances of N. flexilis plants. It is concluded that N. flexilis is likely to be well represented in sediment cores taken from any location within a basin, but that care should be taken when inferring changes in N. flexilis abundance from changes in the numbers of seeds in sediment samples. This work demonstrates that the reproductive ecology (number of seeds produced and dispersal mechanisms) is an important factor to consider when attempting reconstructions of single aquatic plant populations from macrofossil records.  相似文献   

4.
We have explored the contemporary spatial relationship between aquatic vegetation and surficial macrofossil and pollen remains in a small, shallow, English lake. A detailed point-based (n = 87) underwater vegetation survey was undertaken in the middle of the plant-growing season in July 2000. Then following plant die-back in November 2000, surface sediment samples (upper 1.5 cm) were collected from 30 of these plant survey points and analysed for plant macro-remains (all 30 samples), and pollen (4 evenly spaced samples). All data were stored as separate layers in a geographical information system and spatial relationships between the aquatic vegetation and plant remains were explored. In contrast to pollen types, plant macrofossils were not evenly dispersed across all parts of the lake and, with the exception of Chara oospores, higher concentrations of remains (particularly for Potamogeton) were found close to areas of source-plant dominance. The spatial pattern of macrophyte–macrofossil relationships revealed that vegetative remains (particularly leaf fragments) were probably deposited at source, whereas seeds were recovered close to the shore suggesting slightly wider dispersal. Overall, however, macro-remains best represented local ‘patch-scale’ vegetation within 20–30 m of the core site. The macro-remains effectively recorded the dominant plants in the lake with 63% of samples containing a combination of remains of Chara, Elodea, and Potamogeton. However, relationships between macrophytes and fossils were complex. Some species were significantly over-represented by macrofossils (e.g., Chara spp., Nitella flexilis agg., and Zannichellia palustris), while others were either under-represented (e.g., Potamogeton spp.), or not represented at all (e.g., Lemna trisulca). Pollen represented macrophyte diversity poorly, but some taxa were found (e.g., Myriophyllum spicatum, Ceratophyllum demersum) that were not recorded by macro-remains. We conclude that macrofossil analysis may be very usefully employed to determine the dominant taxa in past aquatic plant communities of shallow, productive lakes and that the addition of pollen analysis provides further information on former species richness.  相似文献   

5.
Due to methodological challenges there are only a few studies that focus on macrophyte dynamics in large lakes despite their notable role in a lake’s ecosystem functioning. This study investigates composition and productivity changes of the submerged vegetation of Lake Karakul, Pamir Mountains (Tajikistan), using sedimentary ancient DNA metabarcoding and elemental (C/N) and isotopic (δ13C, δ15N) measurements of Stuckenia cf. pamirica (Baagøe) Z. Kaplan (Potamogetonaceae) leaf remains. No Stuckenia cf. pamirica leaf remains were found for 28.7–26.1 cal ka BP, when both Potamogetonaceae and Chara (L.) DNA sequences were recorded, suggesting sparse submerged vegetation at the coring site. This agrees with the inference of a deep lake reached using geochemical proxies. From 26.1 to 17.5 cal ka BP a few macrophyte remains and high numbers of Potamogetonaceae sequences were recovered: lake level was probably low, as suggested by other studies on the lake. Another phase of increased numbers of Chara sequences and the absence of Stuckenia cf. pamirica leaf remains was found between 17.5 and 12.2 cal ka BP, which coincides with a lake-level transgression at Lake Karakul as indicated by paleo-shoreline investigations. Analyses of macrophyte remains reveal intermediate paleo-productivity from 6.9 cal ka BP and high paleo-productivity from 2.2 cal ka BP onwards. From comparisons with other studies, we suggest that lake-level changes are the main driver for the submerged vegetation composition and productivity at the coring site in Lake Karakul and underline our conclusions by depicting the present-day distribution of Stuckenia cf. pamirica and Chara within the lake.  相似文献   

6.
Fragilarioid diatom taxa are often deemed ubiquitous in shallow lake systems. Their presence has been described as contributing to statistical noise in paleolimnological studies of cold-temperate lakes. In shallow, warm-temperate lakes of Florida, long-term transitions from assemblages dominated by Aulacoseira spp. to fragilarioid taxa, particularly Pseudostaurosira brevistriata, Staurosira construens var. venter, and Staurosirella pinnata, often occur. Distinctly higher limnetic nutrient optima are demonstrated by these fragilarioid taxa than by planktonic Aulacoseira spp. Community successions occur during eutrophication, and progressive replacement of Aulacoseira spp. and other planktonic taxa by fragilarioid taxa is concurrent with and apparently related to the onset of cyanobacterial dominance. We examine successions from Aulacoseira-dominated to fragilarioid-dominated assemblages in sediment cores from subtropical Florida lakes that have undergone eutrophication. Diatom profiles are compared with sedimented pigments, nitrogen stable isotopes of organic matter, and with silica accumulation rates. These study lakes have little if any macrophyte presence. Their light-extinction depths are extremely shallow, yet diatom communities are dominated by bottom-dwelling rather than planktonic taxa. Frequent wind-generated mixing, sometimes to lake bottoms, is sufficient to sustain the light needs of benthic and tychoplanktonic taxa. We conclude that assemblage changes generally are not caused by reduced water depths, silica limitation, nor increased incipient stratification, but that cyanobacteria are responsible for reducing planktonic Aulacoseira in favor of fragilarioid taxa. Cyanobacteria blooms persist over a wide seasonal range because of warm climate and high limnetic nutrient concentrations in Florida lakes. Cyanobacteria progressively displace and outcompete Aulacoseira and other planktonic taxa as eutrophication proceeds. Reduced light availability, changes in mineral/nutrient availability, and other aspects of competitive exclusion, such as cyanobacterial allelotoxins, might contribute to observed changes. Climate warming is not likely to account for Aulacoseira reduction as in colder regions because it is less pronounced in this subtropical district. Lakes with low nutrient levels and less cyanobacteria still sustain large Aulacoseira populations, and decreases in limnetic nutrients sometimes lead to the return of planktonic Aulacoseira. Rather than simply representing statistical noise for paleolimnological reconstructions, shifts to certain fragilarioid taxa indicate when subtropical Florida lakes progressed to hypereutrophic conditions that were marked by cyanobacterial proliferation.  相似文献   

7.
To evaluate the comparability of neo- and paleo-limnology, we made year-to-year as well as seasonal comparisons of contemporary zooplankton data and cladoceran remains in thick (9–42 mm) annual laminations in sediment of Lake Vesijärvi, southern Finland. We calculated the expected annual exuviae production of nine planktonic taxa in the water column using contemporary zooplankton records, and compared the value to the observed net accumulation of their remains in deep sediment for 7 years. Although all of the species studied occur commonly in the lake pelagic zone, deposition of remains differed significantly among taxa. The observed accumulation of three Bosmina species and Chydorus sphaericus was similar to or exceeded expected values, suggesting good preservation of their remains as well as focusing of sediment into the deepest part of the lake. The accumulation of Limnosida and Leptodora remains exceeded expected values several fold, suggesting under-representation of these species in pelagic plankton samples, as well as efficient transportation and spatial averaging of their remains in the sediment. Daphnia, Diaphanosoma, and Ceriodaphnia were clearly under-represented in the sediment due to poor preservation of their remains and use of a 50-μm sieve in sediment processing. Thus, sieving should be taken into account as a possible source of bias. Correlation between relative abundances of all species in the sediment and in the plankton was weak (r s = 0.54, P < 0.001), but for well-preserved species, the correlation was strong (r s = 0.91, P < 0.001). Inter-annual variation in the deposition of remains suggested that resuspension and sediment focusing may vary between years, thus making it difficult to interpret absolute abundances, even though the deepest part of the basin shows clear varve formation and seasonality is well recorded. Detailed study of the uppermost lamination showed the seasonal succession of a cladoceran community within an annual varve as well as differences in the seasonality and intensity of ephippia production among the species. We recommend that results of cladoceran analyses be expressed in several ways (relative abundances, per unit dry weight, per unit organic matter, and as net accumulation values) before drawing final conclusions, as each approach may reveal a different aspect of the deposition process. In addition, sedimentation differences between epilimnetic and hypolimnetic species should be considered in stratified lakes.  相似文献   

8.
Plant macrofossils and pollen were analyzed from sediment cores to identify long-term changes in the aquatic plant community of Jones Creek, Thousand Islands National Park, Ontario, Canada. Six sediment cores were recovered from Jones Creek in February 2014. One complete core and five top/bottom samples were analyzed for plant macrofossil abundance and diversity. Sediment analysis and 210Pb dating confirmed a productive wetland throughout the core, dating back beyond 1883 AD. Jones Creek is currently dominated by thick stands of cattails, particularly the hybrid white cattail (Typha x glauca Godr). The relative abundance of Typha pollen began to increase in the late nineteenth and early twentieth century, reaching a relative abundance of nearly 40% in the modern day surface sediment. Common macrofossils recovered from the sediment record included seeds of Carex, Schoenoplectus, Najas, and Eleocharis. There is evidence that community composition, as recorded by the macrofossil record, has shifted in Jones Creek in response to human activities. In particular there has been a reduction in sedge species between historical and present day conditions as the wetland shifted from a sedge dominated wet-meadow wetland to a cattail dominated system. The results of our study indicate that future restoration efforts should be directed towards reintroducing native sedge species that were present prior to major changes in land-use that occurred in the St. Lawrence region throughout the nineteenth and twentieth centuries.  相似文献   

9.
In North America, land use practices of the last two centuries have strongly influenced aquatic communities and freshwater quality, but the impacts of prehistoric land use on freshwater resources remain poorly documented. Here we investigate the influence of prehistoric and historical land use on Horseshoe Lake, Illinois, USA, an oxbow lake in a floodplain of the Mississippi River that is adjacent to Cahokia, the largest prehistoric indigenous population center north of Mexico. Diatom assemblages from Horseshoe Lake’s sedimentary record track shifts in aquatic environmental conditions over the last ca. 1600 years. During the period of prehistoric population growth and agricultural intensification associated with Cahokia’s emergence (ca. 600–1200 CE), the relative abundance of Aulacoseira granulata—a planktonic diatom associated with shallow eutrophic lakes—increased. Following the abandonment of Cahokia in the 14th century CE, the diatom flora of the lake shifted from planktonic Aulacoseira taxa to the epiphytic taxa Cocconeis and Gomphonema. This shift in diatom assemblages is consistent with a reduction of nutrient inputs to the lake and/or reduced fishing pressure as prehistoric populations abandoned the area. Following the intensification of historic settlement after 1800 CE, diatom assemblages shift to epipelic species of small Staurosira and Fragilaria, indicating a reduction in aquatic macrophytes and increased turbidity. Our results document prehistoric indigenous impacts on a freshwater system beginning nearly 1000 years before European colonization of the Americas and demonstrate the antiquity of human impacts on freshwater resources in North America.  相似文献   

10.
Cladocerans are valuable indicators of environmental change in lakes. Their fossils provide information on past changes in lake environments. However, few studies have quantitatively examined the relationships between contemporary and sub-fossil cladoceran assemblages and no investigations are available from Mediterranean lakes where salinity, eutrophication and top-down control of large-bodied cladocerans are known to be important. Here we compared contemporary Cladocera assemblages, sampled in summer, from both littoral and pelagic zones, with their sub-fossil remains from surface sediment samples from 40 Turkish, mainly shallow, lakes. A total of 20 and 27 taxa were recorded in the contemporary and surface sediment samples, respectively. Procrustes rotation was applied to both the principal components analysis (PCA) and redundancy analysis (RDA) ordinations in order to explore the relationship between the cladoceran community and the environmental variables. Procrustes rotation analysis based on PCA showed a significant accord between both littoral and combined pelagic–littoral contemporary and sedimentary assemblages. RDA ordinations indicated that a similar proportion of variance was explained by environmental variation for the contemporary and fossil Cladocera data. Total phosphorus and salinity were significant explanatory variables for the contemporary assemblage, whereas salinity emerged as the only significant variable for the sedimentary assemblage. The residuals from the Procrustes rotation identified a number of lakes with a high degree of dissimilarity between modern and sub-fossil assemblages. Analysis showed that high salinity, deep water and high macrophyte abundance were linked to a lower accord between contemporary and sedimentary assemblages. This low accord was, generally the result of poor representation of some salinity tolerant, pelagic and macrophyte-associated taxa in the contemporary samples. This study provides further confirmation that there is a robust relationship between samples of modern cladoceran assemblages and their sedimentary remains. Thus, sub-fossil cladoceran assemblages from sediment cores can be used with confidence to track long-term changes in this environmentally sensitive group and in Mediterranean lakes, subjected to large inter-annual variation in water level, salinity and nutrients.  相似文献   

11.
Benthic diatoms are commonly used for palaeoenvironmental reconstruction in Arctic regions, but interpretation of their ecology remains challenging. We studied epilithic diatom assemblages from the shallow margins of 19 lakes from three areas (coast-inland-ice sheet margin) along a climate gradient in Kangerlussuaq, West Greenland during two periods; shortly after ice-off (spring) and in the middle of the growth season (summer). We aimed to understand the distribution of Arctic epilithic diatoms in relation to water chemistry gradients during the two seasons, to investigate their incorporation into lake sediments and to assess their applicability as palaeoenvironmental indicators. Diatoms were correlated with nutrients in the spring and alkalinity/major ions in the summer, when nutrients were depleted; approximately half of the variance explained was independent of spatial factors. When categorised by functional attributes, diatom seasonal succession differed among regions with the most obvious changes in inland lakes where summer temperatures are warmer, organic nutrient processing is prevalent and silicate is limiting. These conditions led to small, motile and adnate diatoms being abundant in inland lakes during the summer (Nitzschia spp., Encyonopsis microcephala), as these functional attributes are suited to living within complex mats of non-siliceous microbial biofilms. Seasonal succession in silica-rich lakes at the coast was less pronounced and assemblages included Tabellaria flocculosa (indicating more acidic conditions) and Hannaea arcus (indicating input from inflowing rivers). The nitrogen-fixing diatom Epithemia sorex increased from the coast to the ice sheet, negatively correlating with a gradient of reactive nitrogen. The presence of this diatom in Holocene sediment records alongside cyanobacterial carotenoids during arid periods of low nitrogen delivery, suggests that it is a useful indicator of nitrogen limitation. Nitzschia species appear to be associated with high concentrations of organic carbon and heterotrophy, but their poor representation in West Greenland lake sediments due to taphonomic processes limits their palaeoenvironmental application in this region. Proportions of epilithic taxa in lake sediment records of coastal lakes increased during some wetter periods of the Holocene, suggesting that snowpack-derived nutrient delivery may offer diatom taxa living at lake margins a competitive advantage over planktonic diatoms during the “moating” ice melt period. Thus, further research investigating linkages between epilithic diatoms, snowpack and nutrient delivery in seasonally frozen lakes is recommended as these taxa live on the ‘front-line’ during the spring and may be especially sensitive to changes in snowmelt conditions.  相似文献   

12.
Submerged macrophytes have a critical role in lake ecosystems affecting nutrient cycling, sediment stability, and community composition across multiple trophic levels. Consequently temporal changes in the composition of submerged plant populations can have profound ecological implications and key significance from the perspective of lake conservation. By focusing on macro-remains of aquatic macrophytes and extensive historical plant records spanning the last approximately 180 years, this study seeks to evaluate a combined historical-palaeolimnological approach for establishing pre-disturbance macrophytes communities in Loch Leven, Kinross, Scotland and to provide new information regarding temporal trends in its macrophyte vegetation as well as potential drivers of change. Some 81% of the species historically recorded for the core site (east side of St. Serf’s Island) were found as macro-remains. Potamogeton taxa were underrepresented, whereas remains of Elatine hexandra, a small species never recorded historically were found. The core sequence showed good agreement with known floristic changes including an early (pre- ca. 1850) loss of Isoetes lacustris and Lobelia dortmanna and a more recent (post-1910) shift to dominance by Potamogeton and Chara taxa associated with eutrophic conditions. A clear pattern in the relationship between macrofossil principal component analysis (PCA) and loss on ignition suggested a key control of sediment conditions on macrophyte community structure. In particular the major macrophyte community change of the mid-nineteenth century was concurrent with a substantial increase in organic matter, likely linked to a historic lake lowering (early 1830s) which would have beached the former gravel-sand shoreline leading to a much siltier lake littoral. Although recent monitoring data show signs of ecological recovery our study illustrates that Loch Leven remains a long way from its reference state as a lake with characteristic soft-water macrophytes. To achieve a full recovery, sediment properties would need to change in addition to nutrient reduction. Consequently restoration strategies will need to compromise between the desirability of achieving the pre-disturbance state and what is feasible and practicable. Our study shows the clear potential role of a combined palaeolimnological-historical approach for informing lake management decisions.  相似文献   

13.
Compared to larger lakes, ponds have rarely been the focus of palaeoecological studies. A common feature of ponds, especially those subject to eutrophication, is mass surface coverings of lemnoid Araceae (duckweed) which have severe implications for ecological processes in small waterbodies, in particular lowered oxygen content. To help understand the implications of duckweed dominance for the long-term ecology of ponds, and to determine the potential for palaeoecological studies in ponds more generally, we develop a new diatom-based Lemna-indicator metric. Recent studies of diatom host-plant relationships have shown significant associations between duckweed and the epiphytes Lemnicola hungarica and Sellaphora saugerresii (formally known as Sellaphora seminulum). To determine the potential of these species as palaeo-indicators of long-term duckweed dynamics in ponds, we investigated the diatom composition of surface sediment assemblages in sets of duckweed and non-duckweed-dominated ponds in Norfolk, eastern England. In addition, we undertook diatom analysis of two cores from a small farmland pond (Bodham Rail Pit) subject to a known duckweed dominance event (1999–2005). Both L. hungarica and S. saugerresii were significant predictors of past Lemna dominance in the surface sediments. Further, in the core study, both diatom species accurately and closely tracked the documented “on–off” duckweed cycle. Our study suggests huge potential for using ponds in palaeoecological studies and for diatom-based investigations of floating plant histories.  相似文献   

14.
We recovered subfossil chydorid cladoceran remains, which morphologically resemble the remains of Unapertura latens, from the surface sediments of two small lakes (TK-32, TK-18) located in the Central Arctic Treeline region, Northwest Territories, Canada. This species had previously been described only from lakes in Europe, primarily in southern Finland. We compared head shields and postabdomens from Canadian and Finnish sites and found them to be morphologically identical. The occurrence of Unapertura remains in North America suggests that this group of chydorids may be much more widely distributed than previously reported.  相似文献   

15.
This study represents a step towards developing seasonal climate inferences by using high-resolution modern data sets. The importance of seasonal climate changes is highlighted by the instrumental record of a meteorological station close to our study site (lac du Sommet in the Laurentian Mountains, Québec, Canada): Between 1966 and 2001, May temperatures increased significantly by 3.1°C (r = 0.41, n = 35, p < 0.01) but annual mean temperatures only by 0.6°C (r = 0.21, n = 35, p > 0.05). Comparison of this instrumental record with fossil diatom assemblages in a sediment core from lac du Sommet showed that axis one of a principal component analysis (PCA) of the fossil diatoms was best correlated with wind velocity in June (r = 0.62, n = 19, p < 0.005) and that past diatom production was significantly enhanced in periods with colder July temperatures (r =  ?0.77, n = 19, p < 0.0005) and higher wind velocity in June (r = 77, n = 19, p < 0.0005). The strong impact of the spring and summer conditions on overall diatom composition and productivity suggests that seasonal lake responses to climate are more important than annual mean temperatures. However, the seasonal dynamics of diatom communities are not well understood, and seasonality is rarely inferred effectively from lake sediment studies. Our research presents a pilot study to answer a twofold question: Is it possible to identify diatom communities which are typical for warmer or colder seasonal climate using sediment traps, and if it is, can this knowledge be used to infer seasonal climate conditions from fossil diatom assemblages? To address these questions, the seasonal dynamics of diatom communities and water chemistry were studied using sediment traps and water samples at biweekly intervals in four lakes distributed along an altitudinal gradient in the Laurentian Mountains from May through October 2002. Date of ice break-up was significantly related to the diatom assemblages taken in spring and uncorrelated to other significant environmental variables. Summer water temperature, circulation of the water column and pH explained a significant part of the biological variance in summer, and total nitrogen (TN) explained most of the biological variance in autumn. To infer these variables, weighted averaging partial least squares models were applied to the seasonal data sets. Inferred ice break-up dates were significantly correlated with number of days below 0°C in April (r = 0.52, n = 19, p < 0.025), inferred circulation of the water column was significantly related to measured wind velocity in June (r = 0.64, n = 19, p < 0.005), inferred summer water temperature and inferred pH was significantly related to measured July air temperature (r = 0.50, r =  ?53, n = 19, p < 0.025) and inferred TN autumn concentrations had an inverse relationship to August temperatures (r =  ?0.53, n = 19, p < 0.01). This comparison of the historical record with diatom-inferred seasonal climate signals, based on the comparison of fossil diatom assemblages with modern sediment trap data of high temporal resolution, provides a promising new approach for the reconstruction of seasonal climate aspects in paleolimnological studies.  相似文献   

16.
Stable isotopes and trace elements in ostracod shells have been used widely in paleolimnological investigations of past lake hydrochemistry and climate because they provide insights into past water balance and solute evolution of lakes. Regional differences in lake characteristics and species-specific element fractionation, however, do not permit generalization of results from other regions or ostracod species to the southern Tibetan Plateau, in part because most common taxa from the southern Tibetan Plateau are endemic to the area. This study evaluated relations between present-day environmental conditions and the geochemical composition of modern ostracod shells from the southern Tibetan Plateau, to assess the suitability of using shell chemistry to infer hydrological conditions. We studied nine lakes and their catchments, located along a west–east transect in the south-central part of the Tibetan Plateau. Stable oxygen and carbon isotope values and trace element concentrations in recent shells from the four most abundant ostracod species (Leucocytherella sinensis, ?Leucocythere dorsotuberosa, Limnocythere inopinata, Tonnacypris gyirongensis) were measured, together with hydrochemical properties of host waters at the time of sampling. Results revealed significant between-species differences in stable isotope fractionation and trace element incorporation into shell calcite. Stable oxygen and carbon isotope values of ostracod shells were correlated significantly with the stable isotope composition of the respective water body \( \left( {\updelta^{18} {\text{O}}_{{{\text{H}}_{ 2} {\text{O}}}} \,{\text{and }}\updelta^{13} {\text{C}}_{{{\text{H}}_{ 2} {\text{O}}}} } \right) \), reflecting salinity and productivity, respectively. Offsets between δ18Oshell and δ13Cshell and inorganic calcite, the latter representing isotopic equilibrium, suggest shell formation of T. gyirongensis during spring melt. L. sinensis reproduces throughout the monsoon season until September and shows several consecutive generations, and L. inopinata molts to the adult stage after the monsoon season in August/September. The influence of pore water δ13C was displayed by L. inopinata, suggesting shell calcification within the sediment. Mg/Cashell is primarily influenced by water Mg/Ca ratios and salinity and confirms the use of this shell ratio as a proxy for precipitation-evaporation balance and lake level. In addition, Sr/Ca and Ba/Ca can be used to infer changes in salinity, at least in closed-basin lakes with calcite saturation. Observed effects of water Sr/Ca and salinity on Sr/Ca incorporation are biased by the presence of aragonite precipitation in the lakes, which removes bioavailable Sr from the host water, resulting in low Sr/Cashell values. Changes in carbonate mineralogy affect the bioavailability of trace elements, a process that should be considered in paleoclimate reconstructions. Oxygen isotopes and Mg/Cashell ratios were unaffected by water temperature. Positive correlations among Fe/Ca, Mn/Ca and U/Ca in ostracod shells, and their negative correlation with δ13C, which reflects organic matter decay, show the potential to infer changes in redox conditions that can be used to reconstruct past oxygen supply to bottom waters and thus past water-circulation changes within lakes. The intensity of microbial activity, associated with organic matter decomposition, can be inferred from U/Ca ratios in ostracod shells. These findings highlight the value of fossil ostracod records in lake deposits for inferring paleoenvironmental conditions on the southern Tibetan Plateau.  相似文献   

17.
This study addresses the effects of climate, land-use, and atmospheric nitrogen (N) deposition on the Fallen Leaf Lake watershed, Lake Tahoe Basin, through diatom and geochemical analyses of sediment cores. Four diatom zones are recognized from a core taken at Fallen Leaf Lake (FLL), a site moderately impacted by human activities: (1) Pre-Little Ice Age Zone (840–1385), (2) Little Ice Age Zone (1385–1810) characterized by Stephanodiscus alpinus and Aulacoseira subarctica, (3) Transitional Zone (1810–1950) of warming and anthropogenic influence with increased Lindavia rossii-ocellata group and Discostella stelligera and decreased Pseudostaurosira brevistriata, and (4) Anthropogenic Zone (1950–2010) characterized by a rapid increase of mesotrophic diatoms of the Fragilaria tenera-nanana group, Tabellaria flocculosa strain IIIP, and Nitzschia gracilis. The Transitional Zone increases in elemental Co, Zn, and Sn that may be attributed to an increase in coal burning and smelting activities in California and Nevada. Beginning around 1910 and accelerating in the 1940s, increased building, land-use, and recreation around FLL caused an increase in terrestrial sedimentary input. Down core proxies for atmospheric N deposition in the FLL watershed are, at best, weakly expressed and appear to be overshadowed by stronger signals. Lack of support for N deposition includes the asynchrony in the appearance of the N-sensitive diatom Asterionella formosa in FLL and a lower impact site at Gilmore Lake, and an uninformative δ15N record. Asterionella formosa is a dominant component in the FLL water column today, but has been present in similar abundances for at least the last 1200 years. Asterionella formosa is present in the water column at Gilmore Lake and absent from the sediment, indicating a very recent appearance. The data collected show that the FLL record is sensitive to climatic cooling during the Little Ice Age and to anthropogenic activities commencing in the 1800s that increased throughout the latter half of the twentieth century; however the effects of anthropogenic N deposition in these lakes could not be substantiated.  相似文献   

18.
A whole-basin, mass-balance approach to paleolimnology   总被引:1,自引:0,他引:1  
Lake sediments record the flux of materials (nutrients, pollutants, particulates) through a lake system both qualitatively, as changes in the composition of geochemical and biological tracers, as well as quantitatively, through changes in their rate of burial. Burial rates provide a direct link to contemporary (neo-) limnological studies as well as management efforts aimed at load reductions, but are difficult to reconstruct accurately from single cores owing to the spatial and temporal variability of sediment deposition in most lakes. The accurate determination of whole-lake burial rates from analysis of multiple cores, though requiring more effort per lake, can help resolve such problems and improve our understanding of sediment heterogeneity at multiple scales. Partial solutions to these problems also include focusing corrections based on 210Pb flux, co-evaluation of concentration profiles, trend analysis using multiple lakes, and trend replication based on a small number of cores from the same lake. Recent multi-core studies demonstrate that no single core site faithfully records the whole-lake time-resolved input of materials, but that as few as five well-placed cores can provide a reliable record of whole-lake sediment flux for morphometrically simple basins. Lake-wide sediment fluxes can be coupled with reconstructed outflow losses to calculate historical changes in watershed and atmospheric loading of nutrients, metals, and other constituents. The ability of paleolimnology to accurately assess the sedimentary flux and extend the period of reference into the distant past represents an important contribution to the understanding of biogeochemical processes and their response to human and natural disturbance.  相似文献   

19.
Hypoxia in freshwater systems is currently spreading globally and putting water quality, biodiversity and other ecosystem services at risk. Such adverse effects are of particular concern in permanently stratified meromictic lakes. Yet little is known about when and how meromixis and hypoxia became established (or vanished) prior to anthropogenic impacts, or how human activities such as deforestation, erosion and nutrient cycling affected the mixing regimes of lakes. We used calibrated hyperspectral imaging (HSI) data in the visible and near infrared range from a fresh, varved sediment core taken in Lake Jaczno, NE Poland, to map sedimentary pigments at very high resolution (sub-varve scale) over the past 1700 years. HSI-inferred bacteriopheophytin a (bphe a, produced by anoxygenic phototrophic bacteria) serves as a proxy for meromixis, whereas HSI-inferred green pigments (chlorophyll a and diagenetic products) can be used as estimators of aquatic productivity. Meromixis was established and vanished long before significant human disturbance in the catchment was observed in the late eleventh century AD. Under pre-anthropogenic conditions, however, meromixis was interrupted frequently, and the lake mixing regime flickered between dimixis and meromixis. During two periods with intense deforestation and soil erosion in the catchment, characterised by sedimentary facies rich in clay and charcoal (AD 1070–1255 and AD 1670–1710), the lake was mostly dimictic and better oxygenated than in periods with relative stability and a presumably closed forest around the lake, i.e. without human disturbances. After ca. AD 1960, meromixis became established quasi-permanently as a result of eutrophication. The persistent meromixis of the last ~60 years is unusual with respect to the record of the last 1700 years.  相似文献   

20.
The hydroseral development of a former small lake in Southern Finland was studied by means of subfossil cladoceran remains, diatoms, pollen, plant macrofossils and other sediment data. The diatom analysis shows the lake to have become markedly acid during the Early Holocene. This is reflected in the cladoceran communities in the form of a fall in the proportions of Bosmina longirostris etc. and a reciprocal rise in Bosmina (Eubosmina) longispina, an increase in the proportions of the chydorid species indicative of acidity, and the appearance of certain new morphotypes. The concentrations of both planktonic and littoral species and the numbers of such species increase with acidification. Advancement in the hydroseral succession is reflected in the disappearance of benthic species from the chydorid communities and a pronounced increase in exclusively phytophile species. Sedimentation and the drop in water levels are seen to have led to a spread of helophytes and floating-leaved plants over the water body around 6500–7000 B.P., and a vegetation-filled swamp was created at the site. The zooplankton was practically exterminated, but the concentrations of littoral cladocerans reached their peak at this point. The basin became overgrown completely at the beginning of the Subboreal chronozone (approx. 4600–4800 B.P.), simultaneously with the low-water phase observed in many lakes. It became covered with a Sphagnum stand, and this in turn led to complete destruction of the cladoceran communities. The planktonic/littoral ratio among the Cladocera closely reflected the relation between open water and the macrophyte zone as a function of time. Climatically induced rises and falls in water level are shown to have played a significant role in promoting the advancement of the hydroseral succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号