首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In North America, land use practices of the last two centuries have strongly influenced aquatic communities and freshwater quality, but the impacts of prehistoric land use on freshwater resources remain poorly documented. Here we investigate the influence of prehistoric and historical land use on Horseshoe Lake, Illinois, USA, an oxbow lake in a floodplain of the Mississippi River that is adjacent to Cahokia, the largest prehistoric indigenous population center north of Mexico. Diatom assemblages from Horseshoe Lake’s sedimentary record track shifts in aquatic environmental conditions over the last ca. 1600 years. During the period of prehistoric population growth and agricultural intensification associated with Cahokia’s emergence (ca. 600–1200 CE), the relative abundance of Aulacoseira granulata—a planktonic diatom associated with shallow eutrophic lakes—increased. Following the abandonment of Cahokia in the 14th century CE, the diatom flora of the lake shifted from planktonic Aulacoseira taxa to the epiphytic taxa Cocconeis and Gomphonema. This shift in diatom assemblages is consistent with a reduction of nutrient inputs to the lake and/or reduced fishing pressure as prehistoric populations abandoned the area. Following the intensification of historic settlement after 1800 CE, diatom assemblages shift to epipelic species of small Staurosira and Fragilaria, indicating a reduction in aquatic macrophytes and increased turbidity. Our results document prehistoric indigenous impacts on a freshwater system beginning nearly 1000 years before European colonization of the Americas and demonstrate the antiquity of human impacts on freshwater resources in North America.  相似文献   

2.
Benthic diatoms are commonly used for palaeoenvironmental reconstruction in Arctic regions, but interpretation of their ecology remains challenging. We studied epilithic diatom assemblages from the shallow margins of 19 lakes from three areas (coast-inland-ice sheet margin) along a climate gradient in Kangerlussuaq, West Greenland during two periods; shortly after ice-off (spring) and in the middle of the growth season (summer). We aimed to understand the distribution of Arctic epilithic diatoms in relation to water chemistry gradients during the two seasons, to investigate their incorporation into lake sediments and to assess their applicability as palaeoenvironmental indicators. Diatoms were correlated with nutrients in the spring and alkalinity/major ions in the summer, when nutrients were depleted; approximately half of the variance explained was independent of spatial factors. When categorised by functional attributes, diatom seasonal succession differed among regions with the most obvious changes in inland lakes where summer temperatures are warmer, organic nutrient processing is prevalent and silicate is limiting. These conditions led to small, motile and adnate diatoms being abundant in inland lakes during the summer (Nitzschia spp., Encyonopsis microcephala), as these functional attributes are suited to living within complex mats of non-siliceous microbial biofilms. Seasonal succession in silica-rich lakes at the coast was less pronounced and assemblages included Tabellaria flocculosa (indicating more acidic conditions) and Hannaea arcus (indicating input from inflowing rivers). The nitrogen-fixing diatom Epithemia sorex increased from the coast to the ice sheet, negatively correlating with a gradient of reactive nitrogen. The presence of this diatom in Holocene sediment records alongside cyanobacterial carotenoids during arid periods of low nitrogen delivery, suggests that it is a useful indicator of nitrogen limitation. Nitzschia species appear to be associated with high concentrations of organic carbon and heterotrophy, but their poor representation in West Greenland lake sediments due to taphonomic processes limits their palaeoenvironmental application in this region. Proportions of epilithic taxa in lake sediment records of coastal lakes increased during some wetter periods of the Holocene, suggesting that snowpack-derived nutrient delivery may offer diatom taxa living at lake margins a competitive advantage over planktonic diatoms during the “moating” ice melt period. Thus, further research investigating linkages between epilithic diatoms, snowpack and nutrient delivery in seasonally frozen lakes is recommended as these taxa live on the ‘front-line’ during the spring and may be especially sensitive to changes in snowmelt conditions.  相似文献   

3.
The St. Louis River Estuary (SLRE), a freshwater estuary bordering Duluth, Minnesota, Superior, Wisconsin, and the most western point of Lake Superior (46.74°, ? 92.13°), has a long history of human development since Euro-American settlement ~ 200 years ago. Due to degradation from logging, hydrologic modification, industrial practices, and untreated sewage, the SLRE was designated an Area of Concern in 1987. Action has been taken to restore water quality including the installation of the Western Lake Superior Sanitary District in 1978 to help remove beneficial use impairments. A better understanding of historical impacts and remediation is necessary to help document progress and knowledge gaps related to water quality, so a paleolimnological study of the SLRE was initiated. Various paleolimnological indicators (pigments, diatom communities, and diatom-inferred phosphorus) were analyzed from six cores taken throughout the SLRE and another from western Lake Superior. Reductions in eutrophic diatom taxa such as Cyclotella meneghiniana and Stephanodiscus after 1970 in certain cores suggest an improvement in water quality over the last 40 years. However, in cores taken from estuarine bay environments, persistence of eutrophic taxa such as Cyclostephanos dubius and Stephanodiscus binderanus indicate ongoing nutrient problems. Sedimentary pigments also indicate cyanobacteria increases in bays over the last two decades. Diatom model-inferred phosphorus and contemporary monitoring data suggest some of the problems associated with excess nutrient loads have been remediated, but modern conditions (internal phosphorus loading, changing climate) may be contributing to ongoing water quality impairments in some locations. The integrated record of biological, chemical, and physical indicators preserved in the sediments will aid state and federal agencies in determining where to target their resources.  相似文献   

4.
Ecological and biogeographical studies of Neotropical non-marine ostracods are rare, although such information is needed to develop reliable paleoecological and paleoclimatic reconstructions for the region. An extensive, yet little explored South American area of paleoclimatic interest, is the arid-semiarid ecotone (Arid Diagonal) that separates arid Patagonia from subtropical/tropical northern South America, and lies at the intersection of the Pacific and Atlantic atmospheric circulation systems. This study focused on the Laguna Llancanelo basin, Argentina, a Ramsar site located within the Arid Diagonal, and was designed to build a modern dataset using ostracods (diversity, spatial distribution, seasonality, habitat preferences) and water chemistry. Cluster and multivariate analysis of the data indicated that salinity is the most significant variable segregating two ostracod groups. Limnocythere aff. staplini is the only species that develops abundant populations in the saline ephemeral Laguna Llancanelo during almost all seasons, and is accompanied by scarce Cypridopsis vidua in summer. The latter species is abundant in freshwater lotic sites, where Ilyocypris ramirezi, Herpetocypris helenae, and Cyprididae indet. are also found in large numbers. Darwinula stevensoni, Penthesilenula incae, Heterocypris incongruens, Chlamydotheca arcuata, Chlamydotheca sp., Herpetocypris helenae, and Potamocypris smaragdina prefer freshwater lentic conditions (springs), with C. arcuata and Chlamydotheca sp. found only in the Carapacho warm spring, which has a year-round constant temperature of ~20 °C. Seasonal sampling was necessary because some taxa display a highly seasonal distribution. Species that were recorded have either subtropical or Patagonian affinities, although a few taxa are endemic or common to both regions. These data can serve as modern analogues for reconstructing the late Quaternary history of the area, and to investigate the extent and position of the arid/semiarid ecotone (Arid Diagonal) during past glacial/interglacial cycles.  相似文献   

5.
As a result of reductions in sulfate deposition and changing climate, dissolved organic carbon (DOC) concentrations have increased in many lakes situated in forests of northeastern North America and northern Europe since the 1990s. Although this increase is well documented, the associated ecological implications remain unclear. In particular, DOC strongly influences the vertical temperature structure of lakes, with increasing DOC often leading to a shallower epilimnion. We investigated the effect of increased DOC concentrations on lake thermal structure using fossil diatom records from six remote Maine lakes. Sedimentary diatom profiles from three pairs of small (<0.5 km2) lakes were compared, with each pair containing one lake with a documented significant increase in DOC and the other experiencing no change in DOC since the early 1990s. Lake thermal structure was inferred from changes in the relative abundance of Discostella stelligera and Aulacoseira species, two diatom taxa that are associated with changes in thermal stratification. The three lakes without increasing DOC showed no change in diatom-inferred mixing depth over the past few decades. Of the lakes with documented increases in DOC, two showed the highest turnover in diatom community structure over time. Profiles from both of these lakes also indicated directional change in diatom-inferred mixing depth over the past 20 years, but the direction of change differed. This study demonstrates that recent increases in DOC have the potential to alter the physical and biological structure of lakes, but that these responses may differ across lakes.  相似文献   

6.
To evaluate the comparability of neo- and paleo-limnology, we made year-to-year as well as seasonal comparisons of contemporary zooplankton data and cladoceran remains in thick (9–42 mm) annual laminations in sediment of Lake Vesijärvi, southern Finland. We calculated the expected annual exuviae production of nine planktonic taxa in the water column using contemporary zooplankton records, and compared the value to the observed net accumulation of their remains in deep sediment for 7 years. Although all of the species studied occur commonly in the lake pelagic zone, deposition of remains differed significantly among taxa. The observed accumulation of three Bosmina species and Chydorus sphaericus was similar to or exceeded expected values, suggesting good preservation of their remains as well as focusing of sediment into the deepest part of the lake. The accumulation of Limnosida and Leptodora remains exceeded expected values several fold, suggesting under-representation of these species in pelagic plankton samples, as well as efficient transportation and spatial averaging of their remains in the sediment. Daphnia, Diaphanosoma, and Ceriodaphnia were clearly under-represented in the sediment due to poor preservation of their remains and use of a 50-μm sieve in sediment processing. Thus, sieving should be taken into account as a possible source of bias. Correlation between relative abundances of all species in the sediment and in the plankton was weak (r s = 0.54, P < 0.001), but for well-preserved species, the correlation was strong (r s = 0.91, P < 0.001). Inter-annual variation in the deposition of remains suggested that resuspension and sediment focusing may vary between years, thus making it difficult to interpret absolute abundances, even though the deepest part of the basin shows clear varve formation and seasonality is well recorded. Detailed study of the uppermost lamination showed the seasonal succession of a cladoceran community within an annual varve as well as differences in the seasonality and intensity of ephippia production among the species. We recommend that results of cladoceran analyses be expressed in several ways (relative abundances, per unit dry weight, per unit organic matter, and as net accumulation values) before drawing final conclusions, as each approach may reveal a different aspect of the deposition process. In addition, sedimentation differences between epilimnetic and hypolimnetic species should be considered in stratified lakes.  相似文献   

7.
Compared to larger lakes, ponds have rarely been the focus of palaeoecological studies. A common feature of ponds, especially those subject to eutrophication, is mass surface coverings of lemnoid Araceae (duckweed) which have severe implications for ecological processes in small waterbodies, in particular lowered oxygen content. To help understand the implications of duckweed dominance for the long-term ecology of ponds, and to determine the potential for palaeoecological studies in ponds more generally, we develop a new diatom-based Lemna-indicator metric. Recent studies of diatom host-plant relationships have shown significant associations between duckweed and the epiphytes Lemnicola hungarica and Sellaphora saugerresii (formally known as Sellaphora seminulum). To determine the potential of these species as palaeo-indicators of long-term duckweed dynamics in ponds, we investigated the diatom composition of surface sediment assemblages in sets of duckweed and non-duckweed-dominated ponds in Norfolk, eastern England. In addition, we undertook diatom analysis of two cores from a small farmland pond (Bodham Rail Pit) subject to a known duckweed dominance event (1999–2005). Both L. hungarica and S. saugerresii were significant predictors of past Lemna dominance in the surface sediments. Further, in the core study, both diatom species accurately and closely tracked the documented “on–off” duckweed cycle. Our study suggests huge potential for using ponds in palaeoecological studies and for diatom-based investigations of floating plant histories.  相似文献   

8.
The primary producer community of Lake Apopka, a large (125 km2), shallow (mean depth, 1.7 m), polymictic Florida lake, shifted from macrophyte dominance to phytoplankton dominance in the 1940s. Today, frequent wind resuspension of highly organic, unconsolidated sediments supports a meroplanktonic community that is predominantly diatoms, but during calm periods the algal community is dominated by planktonic cyanobacteria. Sedimentary algal pigments (chlorophyll derivatives and carotenoids) and chemical proxies for nutrient enrichment (polyphosphate, total phosphorus and biogenic silica) in three sediment cores were used to investigate historic changes in primary producers. Sediments were separated into three stratigraphic zones using multivariate statistical techniques. Stratigraphic zonation was established in each core although sediment deposition at one site was insufficient to adequately resolve temporal changes. These results show the importance of selecting suitable sites for paleolimnological studies. The oldest zone represents macrophyte-derived sediments, and the two overlying zones represent phytoplankton-derived sediments deposited since the 1940s. Algal pigments in the most recent sediment zone show little degradation, which might be due to the presence of viable meroplankton in the sediment. After the initial primary producer shift from macrophytes to phytoplankton, the lake experienced a short period of cyanobacterial dominance followed by a period of benthic diatom abundance before being replaced by the present algal community consisting of cyanobacteria and meroplanktonic diatoms. Chlorophyll derivatives and carotenoids were highly correlated with total phosphorus. Historic trends inferred from the data include algal and cyanobacterial productivity that increased with increased phosphorus loading. The study demonstrates that valid paleolimnological proxies for historic eutrophication are available in loosely consolidated sediments of shallow, subtropical lakes.  相似文献   

9.
In recent decades, softwater lakes across Canada have experienced a wide array of anthropogenic influences, with acidification and climate warming of particular concern. Here, we compare modern and pre-industrial sedimentary diatom assemblages from 36 softwater lakes located on the Canadian Shield in south-central Ontario to determine whether lake acidification or reduced calcium availability was the main stressor responsible for recent declines in Ca-sensitive cladoceran taxa. Regional surveys of south-central Ontario water chemistry have identified the pH recovery of many formerly acidified lakes, and our fossil diatom-inferred pH analyses indicate that modern lakewater pH in the 36 study lakes is similar to (or higher than) pre-industrial levels, with diatom assemblages from both time periods dominated by taxa with similar pH preferences. In addition, modern diatom assemblages compared to pre-industrial assemblages contained higher relative abundances of planktonic diatom taxa (e.g. Asterionella formosa and the Discostella stelligera complex) and lower relative abundances of heavily silicified diatoms (e.g. Aulacoseira taxa) and benthic fragilarioid taxa. These taxonomic shifts are consistent with warming-induced changes in lake properties including a longer ice-free period, decreased wind speed and/or increased thermal stability. We conclude that recent changes observed within the cladoceran assemblages of these lakes are not a response to acidification, but are likely a consequence of Ca declines. In addition, our data suggest that regional climate warming is now responsible for the diatom changes observed in this region.  相似文献   

10.
Stable isotopes and trace elements in ostracod shells have been used widely in paleolimnological investigations of past lake hydrochemistry and climate because they provide insights into past water balance and solute evolution of lakes. Regional differences in lake characteristics and species-specific element fractionation, however, do not permit generalization of results from other regions or ostracod species to the southern Tibetan Plateau, in part because most common taxa from the southern Tibetan Plateau are endemic to the area. This study evaluated relations between present-day environmental conditions and the geochemical composition of modern ostracod shells from the southern Tibetan Plateau, to assess the suitability of using shell chemistry to infer hydrological conditions. We studied nine lakes and their catchments, located along a west–east transect in the south-central part of the Tibetan Plateau. Stable oxygen and carbon isotope values and trace element concentrations in recent shells from the four most abundant ostracod species (Leucocytherella sinensis, ?Leucocythere dorsotuberosa, Limnocythere inopinata, Tonnacypris gyirongensis) were measured, together with hydrochemical properties of host waters at the time of sampling. Results revealed significant between-species differences in stable isotope fractionation and trace element incorporation into shell calcite. Stable oxygen and carbon isotope values of ostracod shells were correlated significantly with the stable isotope composition of the respective water body \( \left( {\updelta^{18} {\text{O}}_{{{\text{H}}_{ 2} {\text{O}}}} \,{\text{and }}\updelta^{13} {\text{C}}_{{{\text{H}}_{ 2} {\text{O}}}} } \right) \), reflecting salinity and productivity, respectively. Offsets between δ18Oshell and δ13Cshell and inorganic calcite, the latter representing isotopic equilibrium, suggest shell formation of T. gyirongensis during spring melt. L. sinensis reproduces throughout the monsoon season until September and shows several consecutive generations, and L. inopinata molts to the adult stage after the monsoon season in August/September. The influence of pore water δ13C was displayed by L. inopinata, suggesting shell calcification within the sediment. Mg/Cashell is primarily influenced by water Mg/Ca ratios and salinity and confirms the use of this shell ratio as a proxy for precipitation-evaporation balance and lake level. In addition, Sr/Ca and Ba/Ca can be used to infer changes in salinity, at least in closed-basin lakes with calcite saturation. Observed effects of water Sr/Ca and salinity on Sr/Ca incorporation are biased by the presence of aragonite precipitation in the lakes, which removes bioavailable Sr from the host water, resulting in low Sr/Cashell values. Changes in carbonate mineralogy affect the bioavailability of trace elements, a process that should be considered in paleoclimate reconstructions. Oxygen isotopes and Mg/Cashell ratios were unaffected by water temperature. Positive correlations among Fe/Ca, Mn/Ca and U/Ca in ostracod shells, and their negative correlation with δ13C, which reflects organic matter decay, show the potential to infer changes in redox conditions that can be used to reconstruct past oxygen supply to bottom waters and thus past water-circulation changes within lakes. The intensity of microbial activity, associated with organic matter decomposition, can be inferred from U/Ca ratios in ostracod shells. These findings highlight the value of fossil ostracod records in lake deposits for inferring paleoenvironmental conditions on the southern Tibetan Plateau.  相似文献   

11.
Aquatic macrophytes play a key role in providing habitat, refuge and food for a range of biota in shallow lakes. However, many shallow lakes have experienced declines in macrophyte vegetation in recent decades, principally due to eutrophication. As changes in macrophyte composition and abundance can affect overall ecological structure and function of a lake, an assessment of the timing and nature of such changes is crucial to our understanding of the wider lake ecosystem. In the typical absence of historical plant records, the macro-remains of macrophytes preserved in lake sediments can be used to assess long-term changes in aquatic vegetation. We generated recent (150–200 years) plant macrofossil records for six English lakes subject to conservation protection to define past macrophyte communities, assess trajectories of ecological change and consider the implications of our findings for conservation targets and strategies. The data for all six lakes reveal a diverse submerged macrophyte community, with charophytes as a key component, in the early part of the sedimentary records. The stratigraphies indicate considerable change to the aquatic vegetation over the last two centuries with a general shift towards species more typically associated with eutrophic conditions. A common feature is the decline in abundance of low-growing charophytes and an increase in tall canopy-forming angiosperms such as fine-leaved Potamogeton species, Zannichellia palustris and Callitriche species. We hypothesise, based on findings from long-term datasets and palaeoecological records from enriched shallow lakes where plants are now absent, that the observed shifts provide a warning to managers that the lakes are on a pathway to complete macrophyte loss such that nutrient load reduction is urgently needed. It is the sound understanding of present-day plant ecology that affords such reliable interpretation of the fossil data which, in turn, provide valuable context for current conservation decisions.  相似文献   

12.
This study represents a step towards developing seasonal climate inferences by using high-resolution modern data sets. The importance of seasonal climate changes is highlighted by the instrumental record of a meteorological station close to our study site (lac du Sommet in the Laurentian Mountains, Québec, Canada): Between 1966 and 2001, May temperatures increased significantly by 3.1°C (r = 0.41, n = 35, p < 0.01) but annual mean temperatures only by 0.6°C (r = 0.21, n = 35, p > 0.05). Comparison of this instrumental record with fossil diatom assemblages in a sediment core from lac du Sommet showed that axis one of a principal component analysis (PCA) of the fossil diatoms was best correlated with wind velocity in June (r = 0.62, n = 19, p < 0.005) and that past diatom production was significantly enhanced in periods with colder July temperatures (r =  ?0.77, n = 19, p < 0.0005) and higher wind velocity in June (r = 77, n = 19, p < 0.0005). The strong impact of the spring and summer conditions on overall diatom composition and productivity suggests that seasonal lake responses to climate are more important than annual mean temperatures. However, the seasonal dynamics of diatom communities are not well understood, and seasonality is rarely inferred effectively from lake sediment studies. Our research presents a pilot study to answer a twofold question: Is it possible to identify diatom communities which are typical for warmer or colder seasonal climate using sediment traps, and if it is, can this knowledge be used to infer seasonal climate conditions from fossil diatom assemblages? To address these questions, the seasonal dynamics of diatom communities and water chemistry were studied using sediment traps and water samples at biweekly intervals in four lakes distributed along an altitudinal gradient in the Laurentian Mountains from May through October 2002. Date of ice break-up was significantly related to the diatom assemblages taken in spring and uncorrelated to other significant environmental variables. Summer water temperature, circulation of the water column and pH explained a significant part of the biological variance in summer, and total nitrogen (TN) explained most of the biological variance in autumn. To infer these variables, weighted averaging partial least squares models were applied to the seasonal data sets. Inferred ice break-up dates were significantly correlated with number of days below 0°C in April (r = 0.52, n = 19, p < 0.025), inferred circulation of the water column was significantly related to measured wind velocity in June (r = 0.64, n = 19, p < 0.005), inferred summer water temperature and inferred pH was significantly related to measured July air temperature (r = 0.50, r =  ?53, n = 19, p < 0.025) and inferred TN autumn concentrations had an inverse relationship to August temperatures (r =  ?0.53, n = 19, p < 0.01). This comparison of the historical record with diatom-inferred seasonal climate signals, based on the comparison of fossil diatom assemblages with modern sediment trap data of high temporal resolution, provides a promising new approach for the reconstruction of seasonal climate aspects in paleolimnological studies.  相似文献   

13.
Changes in macrophyte communities have occurred over the past decades in many oligotrophic softwater lakes with low carbon availability. Slow-growing isoetid species have been replaced by faster-growing elodeid species. Commonly, these changes are explained by anthropogenic nutrient enrichment or acidification of the lake water. Here we present a multi-proxy study in which we analysed plant macrofossils, pollen and spores, as well as sedimentological data from several cores taken from a SW Norwegian softwater lake. Our results indicate that the elodeid macrophyte Callitriche hamulata first appeared in this lake in the 1970s. Proliferation of C. hamulata occurred in the 1990s, replacing the hitherto dominant submerged Isoëtes macrophyte vegetation. Independent lines of evidence, such as diatom-inferred TP and pH reconstructions, showed no change during the past 200 years, therefore ruling out both acidification and phosphorus enrichment of the lake as possible causes for the observed change in the macrophyte community. Alternatively, expansion of Callitriche at the expense of Isoëtes may have been related to increased aquatic carbon availability, although nitrogen enrichment may also have been important.  相似文献   

14.
Diatom diversity in lakes of northwest Yakutia (Siberia) was investigated by microscopic and genetic analysis of surface and cored lake sediments, to evaluate the use of sedimentary DNA for paleolimnological diatom studies and to identify obscure genetic diversity that cannot be detected by microscopic methods. Two short (76 and 73 bp) and one longer (577 bp) fragments of the ribulose 1,5-bisphosphate carboxylase/oxygenase (rbcL) gene, encoding the large subunit of the rbcL, were used as genetic markers. Diverse morphological assemblages of diatoms, dominated by small benthic fragilarioid taxa, were retrieved from the sediments of each lake. These minute fragilarioid taxa were examined by scanning electron microscopy, revealing diverse morphotypes in Staurosira and Staurosirella from the different lakes. Genetic analyses indicated a dominance of haplotypes that were assigned to fragilarioid taxa and less genetic diversity in other diatom taxa. The long rbcL_577 amplicon identified considerable diversification among haplotypes clustering within the Staurosira/Staurosirella genera, revealing 19 different haplotypes whose spatial distribution appears to be primarily related to the latitude of the lakes, which corresponds to a vegetation and climate gradient. Our rbcL markers are valuable tools for tracking differences between diatom lineages that are not visible in their morphologies. These markers revealed putatively high genetic diversity within the Staurosira/Staurosirella species complex, at a finer scale than is possible to resolve by microscopic determination. The rbcL markers may provide additional reliable information on the diversity of barely distinguishable minute benthic fragilarioids. Environmental sequencing may thus allow the tracking of spatial and temporal diversification in Siberian lakes, especially in the context of diatom responses to recent environmental changes, which remains a matter of controversy.  相似文献   

15.
Eutrophication, prompted by anthropogenic activities and climate change has led to multiple adverse effects in freshwater systems across the world. As instrumental measurements are typically short, lake sediment proxies of aquatic primary productivity (PP) are often used to extend the observational record of eutrophication back in time. Sedimentary pigments provide specific information on PP and major algal communities, but the records are often limited in the temporal resolution. Hyperspectral imaging (HSI) data, in contrast, provide very high seasonal (sub-varve-scale) resolution, but the pigment speciation is limited. Here, we explore a combined approach on varved sediments from the Ponte Tresa basin, southern Switzerland, taking the advantages of both methods (HSI and high performance liquid chromatography, HPLC) with the goal to reconstruct the recent eutrophication history at seasonal to interannual resolution. We propose a modified scheme for the calibration of HSI data (here: Relative Absorption Band Depth between 590 and 730 nm RABD590–730) and HPLC-inferred pigment concentrations (here: ‘green pigments’ {chlorophyll a and pheophytin a}) and present a calibration model (R2?=?0.82; RMSEP?~?12%). The calibration range covers >?98% of the spectral index values of all individual pixels (68 µm?×?68 µm) in the sediment core. This allows us to identify and quantify extreme pigment concentrations related to individual major algal blooms, to identify multiple algal blooms within one season, and to assess interannual variability of PP. Prior to the 1930s, ‘green pigment’ concentrations and fluxes (~?50 µg g?1;?~?2 µg cm?2a?1, chlorophyll a and pheophytin a) and interannual variability was very low. From the 1930s to 1964, chlorophyll a and pheophytin a increased by a factor of ~?4, and ββ-carotene appeared in substantial amounts (~?0.4 µg cm?2a?1). Interannual variability increased markedly and a first strong algal bloom with ‘green pigment’ concentrations as high as 700 µg g?1 is observed in 1958. Peak eutrophication (~?12 µg cm?2a?1 chlorophyll a and pheophytin a) and very high interannual variability with extreme algal blooms (‘green pigment’ concentrations up to 1400 µg g?1) is observed until ca. 1990, when eutrophication decreases slightly. Maximum PP values after 2009 are likely the result of internal nutrient cycling related to repeated deep mixing of the lake.  相似文献   

16.
Preventing biodiversity loss is a key aim of modern conservation, and paleolimnology can inform conservation strategies for target species and habitats where other data are unavailable. Care must be taken to fully understand the possibilities and limits of such techniques, particularly where they concern single species. This study uses plant and seed distribution data to inform macrofossil reconstructions of the rare macrophyte Najas flexilis (Slender Naiad) in Scotland, UK. It answers three questions: (a) How does the location of N. flexilis seeds in the surface sediments relate to the distribution of N. flexilis plants? (b) How do the numbers of seeds in surface sediments correlate with % cover of N. flexilis plants across lakes with differing N. flexilis abundances? (c) What are the implications of these findings for paleolimnology? Percentage N. flexilis cover and number of N. flexilis seeds in surface sediments were recorded at ~100 sample points at each of three sites; one where the species was abundant, one where it was occasional and one where it was extinct. At all sites, N. flexilis seeds were present in surface sediments across the entire lake. No correlation between % cover N. flexilis and the number of seeds in surface sediments was found within individual sites. The distribution of seeds in these lakes appeared to be related to multiple environmental and ecological variables including latitude and longitude (proxies for water currents). This is attributed to the ability of seed-bearing N. flexilis plants to fragment and float large distances on water. Between sites, there was a significant difference in the mean seed counts, with higher mean seed counts corresponding to higher abundances of N. flexilis plants. It is concluded that N. flexilis is likely to be well represented in sediment cores taken from any location within a basin, but that care should be taken when inferring changes in N. flexilis abundance from changes in the numbers of seeds in sediment samples. This work demonstrates that the reproductive ecology (number of seeds produced and dispersal mechanisms) is an important factor to consider when attempting reconstructions of single aquatic plant populations from macrofossil records.  相似文献   

17.
The stable carbon isotope composition, expressed as δ13C values, of chitinous resting stages of planktivorous invertebrates can provide information on past changes in carbon cycling in lakes. For example, the δ13C values of cladoceran ephippia and bryozoan statoblasts have been used to estimate the past contribution of methane-derived carbon to lake food webs and variations in the δ13C value of planktonic algae. Limited information, however, is available concerning seasonal variations in δ13C values of these organisms and their resting stages. We measured the seasonal variation in δ13C values of Daphnia (Branchiopoda: Cladocera: Daphniidae) and their floating ephippia over a 2-year period in small, dimictic Lake Gerzensee, Switzerland. Floating ephippia of Ceriodaphnia (Branchiopoda: Cladocera: Daphniidae) and statoblasts of Plumatella (Phylactolaemata: Plumatellida: Plumatellidae) were analysed during parts of this period. Furthermore, δ13C values of remains from all three organism groups were analysed in a 62-cm-long sediment core. Throughout the year, Daphnia δ13C values tracked the δ13C values of particulate organic matter (POM), but were more negative than POM, indicating that Daphnia also utilize a relatively 13C-depleted carbon source. Daphnia ephippia δ13C values did not show any pronounced seasonal variation, suggesting that they are produced batch-wise in autumn and/or spring and float for several months. In contrast, δ13C values of Ceriodaphnia ephippia and Plumatella statoblasts followed variations in δ13CPOM values, Ceriodaphnia values being the most negative of the resting stages. Average cladoceran ephippia δ13C values in the flotsam agreed well with ephippia values from Gerzensee surface sediments. In contrast, average Plumatella statoblast δ13C values from the flotsam were 4‰ more negative than in the surface sediments. In the sediment core, δ13C values of the two cladocerans remained low (mean ?39.0 and ?41.9‰) throughout the record. In contrast, Plumatella had distinctly less negative δ13C values (mean ?32.0‰). Our results indicate that in Gerzensee, Daphnia and Ceriodaphnia strongly relied on a 13C-depleted food source throughout the past 150 years, most likely methane-oxidising bacteria, whereas this food source was not a major contribution to the diet of bryozoans.  相似文献   

18.
Diatoms, organic matter and magnetic susceptibility in a 10-m-long sediment sequence from coastal Lake Lilaste, Latvia, were analysed to evaluate Holocene environmental changes related to past sea-water intrusions. Lake Lilaste is located ~1 km from the present sea coast in an area with a low uplift rate and a threshold altitude of 0.5 m a.s.l. It was thus considered to be an appropriate site to study the influence of past sea level fluctuations on the lake and its sediments. Variations in diatom community composition, along with sediment lithostratigraphy, show that a shallow, nutrient-rich freshwater lake existed there during the early Holocene. The first brackish-water diatoms appeared concurrent with a sea level rise ca. 8700 ± 50 cal a BP, but long-term, intermittent inputs of brackish water were observed between 6700 ± 40 and 4200 ± 80 cal a BP. During those time spans, diatoms indicate increased nutrient concentrations and high conductivity, a consequence of occasional mixing of brackish and freshwater that promoted biological productivity. Lilaste was isolated from the sea at 4200 ± 80 cal a BP, after which a stable freshwater environment, dominated by planktonic diatoms such as Aulacoseira ambigua, A. granulata, A. islandica and A. subarctica, was established. At 400 ± 50 cal a BP, planktonic diatoms were gradually replaced by Fragilaria spp., indicating the beginning of anthropogenic impact. The reconstructed relative water-level curve from the lake coincides with the eustatic sea level curve from 6800 ± 40 cal a BP onwards. There was a distinct increase in abundance of brackish-water diatoms when the sea level reached the threshold of Lilaste, which at that time was probably about 3 m lower than the present sea level. According to radiocarbon-dated shifts in the diatom community composition, the Litorina Sea transgression was a long-lasting event (ca. 2200 years) in the southern part of the Gulf of Riga, where the land uplift rate was near zero. It culminated more than 1000 years later than at other sites with higher uplift, in the northern part of the Baltic Sea.  相似文献   

19.
Albeit subfossil Cladocera remains are considered as a reliable proxy for tracking historical lake development, they have been scarcely studied in large subalpine lakes south of the Alps. In this study, subfossil Cladocera remains from Lake Garda in northern Italy were analyzed to track the lake’s environmental changes since the Middle Ages. One core was retrieved from the largest sub-basin of Lake Garda (Brenzone, 350 m deep) and two cores were retrieved from the profundal and littoral zone of the smaller lake sub-basin (Bardolino, 80 and 40 m deep, respectively). The species distribution of Cladocera remains in recent sediment layers was similar to that observed in contemporary water samples. The deepest sections of the three cores were characterized by species sensitive to water temperature, which suggest a key role of major climatic events in driving the lake response during the late Holocene. The most evident change in Cladocera assemblages in the studied cores was observed during the 1960s, when planktonic taxa such as Daphnia spp. and Bosmina spp. became dominant at the expense of littoral taxa. Despite the highly coherent general pattern of subfossil Cladocera, the cores showed a set of minor differences, which were attributed to different morphological and hydrological features of the two basins forming Lake Garda. Multivariate analysis revealed a clear relation of Cladocera to climate variability during periods of low lake nutrient levels (i.e. before the 1960s). This provides additional information on past ecological responses of Lake Garda, as contrast previous data from subfossil diatom and pigment analyses did not fully capture effects of climate change during the same period. Since the 1960s shifts in assemblage composition of Cladocera and diatoms were highly coherent, in response to nutrient increase and the following, less pronounced, decrease in nutrient concentrations. During the last five decades, the response of the Cladocera to climate variability appeared to be masked by nutrient change. This work points up the potential of the multi-proxy approach for disentangling the multifaceted biological responses to multiple environmental stressors in large and deep lakes.  相似文献   

20.
Due to methodological challenges there are only a few studies that focus on macrophyte dynamics in large lakes despite their notable role in a lake’s ecosystem functioning. This study investigates composition and productivity changes of the submerged vegetation of Lake Karakul, Pamir Mountains (Tajikistan), using sedimentary ancient DNA metabarcoding and elemental (C/N) and isotopic (δ13C, δ15N) measurements of Stuckenia cf. pamirica (Baagøe) Z. Kaplan (Potamogetonaceae) leaf remains. No Stuckenia cf. pamirica leaf remains were found for 28.7–26.1 cal ka BP, when both Potamogetonaceae and Chara (L.) DNA sequences were recorded, suggesting sparse submerged vegetation at the coring site. This agrees with the inference of a deep lake reached using geochemical proxies. From 26.1 to 17.5 cal ka BP a few macrophyte remains and high numbers of Potamogetonaceae sequences were recovered: lake level was probably low, as suggested by other studies on the lake. Another phase of increased numbers of Chara sequences and the absence of Stuckenia cf. pamirica leaf remains was found between 17.5 and 12.2 cal ka BP, which coincides with a lake-level transgression at Lake Karakul as indicated by paleo-shoreline investigations. Analyses of macrophyte remains reveal intermediate paleo-productivity from 6.9 cal ka BP and high paleo-productivity from 2.2 cal ka BP onwards. From comparisons with other studies, we suggest that lake-level changes are the main driver for the submerged vegetation composition and productivity at the coring site in Lake Karakul and underline our conclusions by depicting the present-day distribution of Stuckenia cf. pamirica and Chara within the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号