首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Landslide-generated waves (LGWs) are among natural hazards that have stimulated attentions and concerns of engineers and researchers during the past decades. At the same period, the application of numerical modeling has been progressively increased to assess, control, and manage the risks of such hazards. This paper represents an overview of numerical studies on LGWs to explore associated recent advances and future challenges. In this review, the main landslide events followed by an LGW hazard are scrutinized. The uncertainty regarding landslide characteristics and the lack of data concerning generated tsunami properties highlights the necessity of probabilistic analysis and numerical modeling. More than 53 % of landslides show the slide length larger than about 20 times of the slide thickness. This fact justifies the popular application of depth-averaged equations (DAEs) for landslides’ motion simulations. Such models are reviewed and tabulated based on their mathematical, numerical, and conceptual approaches. A landslide is generally treated as a homogeneous, mixture, or a multi-phase fluid with different rheologies. The Coulomb type rheology is the most-used rheology applied in more than 70 % of landslide models. Some of the recent studies are considering the effects of multi-phase nature, dynamic changes of rheological parameters, and grain-size segregation of the landslide on its deformations. The numerical tools that model LGWs are also reviewed, categorized, and examined. These models conceptualize a landslide as a general rigid LGW (R-LGW) or deformable LGW (D-LGW) mass. The rigid slide assumption is mainly applied in the LGW models with a focus on the accurate simulation of the wave propagation stage, particularly by means of higher order Boussinesq-type wave equations (BWEs). The majority of D-LGW models solve either the Navier–Stokes equations (NSEs) for a multi-phase (landslide material, water, and air) flow or the shallow water equations (SWEs) for a two-layer (a layer of granular material moving beneath a layer of water) flow. NSEs are more comprehensive models but less robust than DAEs. The key effect of dispersion in LGWs, which are typically important in intermediate and even deep water wave domains, challenges researchers to apply higher order BWEs instead of SWEs in two-layer models. Regarding numerical approaches, Lagrangian’s are more robust than Eulerian’s, but they have been rarely applied due to their high computational demands for real cases. The remaining challenges are reviewed as the necessity of probabilistic analysis to assess the risk of the related hazards more accurately for both past and potential LGW hazards; further thorough laboratory-scale experiments and field data measurements to have accurate and detailed benchmark data; providing RS/GIS-based worldwide hazard map for potential LGWs and compiled database for occurred events; extending BWEs for granular flows and DAEs with non-hydrostatic corrections; and economizing the computational costs of models by advanced techniques like parallel processing and GPU accelerators.  相似文献   

2.
A numerical model has been developed using the finite element method for the simulation of impulse waves generated by landslides. The fluid-like landslide is modeled as a generalized non-Newtonian visco-plastic fluid. A three-phase flow model based on the incompressible viscous Navier–Stokes equations is solved using the finite element method to describe the motion of the three types of fluid in landslide. The conservative level set method is expanded to n-phase flow cases and employed to capture the interface of the three phases: air, water, and the landslide. The overall performance of the approach is checked by a number of validation cases: a Rayleigh–Taylor instability problem to illustrate the capability of the proposed method to deal with interface capturing, a benchmark test of a subaerial landslide generated by an impulse wave is carried out and compared with the published experimental data and numerical results, and finally, the 1958 Lituya Bay landslide generated impulse wave, and its results are compared against a scaled-down experiment and other published numerical results. It can be noted that the current model has an excellent ability to capture the complex phenomena that occurs during the whole process of the landslide-generated impulse wave, and considering the simplified treatment of the landslide and the numerical model, fairly good agreement between computed and experimental results has been observed for all simulation cases.  相似文献   

3.
On June 24, 2015, Hongyanzi slope located in Wushan County of the Three Gorges Reservoir collapsed, generating 5–6-m-high impulse waves, which overturned 13 boats, killed 2 persons, and injured 4 persons. It is the second incident of landslide-generated impulse waves since the 175-m experimental impoundment in 2008. The emergency investigation shows that Hongyanzi landslide is a bedding soil landslide with a volume of 23?×?104 m3 induced by a series of triggering factors such as rainfall, flooding upstream, and reservoir drawdown. The nonlinear Boussinesq water wave model is used to reproduce the impulse waves generated by the landslide of June 24th. The numerical simulation results suggest that the wave propagation process was influenced by the T-shaped geomorphic conditions of river valley, and the coastal areas in the county seat were the major wave-affected areas, which is opposite to the landslide. The numerical wave process accord well with the observed incident, and the investigation values were in good agreement with the calculated values. Moreover, the worst-case scenario of the 7?×?104 m3 deformation mass beside Hongyanzi landslide is potential to generate impulse waves, which was predicted with the same numerical model. This adjacent deformation mass will probably generate impulse waves with maximum height and run-up of 2.2 and 2.0 m, respectively, and only a very few areas in the water course had waves rising to a height of 1 m or above. The research results provide a technical basis for emergency disposal to Hongyanzi landslide and navigation restriction in Wushan waterway. More importantly, it pushes the risk management of the navigation based on the impulse wave generated by landslide. It is advised that the Three Gorges Reservoir and other reservoirs around the world should put more efforts in performing special surveys and studies on the potential hazards associated with landslide-generated impulse waves.  相似文献   

4.
Surprisingly, hypermobility (high velocity and long run-out) is a remarkable feature of large landslides and is still poorly understood. In this paper, a velocity-weakening friction law is incorporated into a depth-averaged landslide model for explaining the higher mobility mechanism of landslides. In order to improve the precision of the calculation, a coupled numerical method based on the finite volume method is proposed to solve the model equations. Finally, several numerical tests are performed to verify the stability of the algorithm and reliability of the model. The comparison between numerical results and experimental data indicates that the presented model can predict the movement of landslide accurately. Considering the effect of velocity-weakening friction law, the presented model can better reflect the hypermobility of landslide than the conventional Mohr–Coulomb friction model. This work shows that the application of a universal velocity-weakening friction law is effective in describing the hypermobility of landslide and predicting the extent of landslides.  相似文献   

5.
Subaerial landslides falling into confined water bodies often generate impulsive waves. Damaging landslide tsunamis in Three Gorges Reservoir, China, have struck several times in the last 15 years. On June 24, 2015, a 23?×?104 m3 slope failure occurred on the east bank of the Daning River opposite Wushan Town. The sliding mass intruded into the Three Gorges Reservoir and initiated a reservoir tsunami that resulted in two deaths and significant damage to shipping facilities. A post-event survey revealed the landslide geometry and wave run-up distribution, while an eyewitness video captured most of the landslide motion. Employing these firm constraints, we applied the Tsunami Squares method to simulate the 2015 Hongyanzi landslide and tsunami. The simulation revealed that the landslide experienced a progressive failure in the first few seconds and impacted the water with a maximum velocity of ~?16 m/s. The initial wave propagated to the opposite shore in an arch shape, and the water surface reached a maximum amplitude of ~?11 m near the landslide. Wave amplitude-time curves at four points on the river cross section show that the initial wave reached Wushan town in about 50 s with an average wave velocity of ~?30 m/s. The maximum wave run-ups on the shoreline opposite the landslide are around 6 m and attenuate to less than 1 m beyond 2-km distance. The landslide simulation matches the observed geological profile and the eyewitness video, and the numerical results coincide with the observed wave run-up heights. Nearly 80% of landslide energy is lost due to frictional resistances, but the remaining fraction imparted to the tsunami carried catastrophic consequences to a large region. The numerical results emphasize the efficiency and accuracy of Tsunami Squares method for a “Quick Look” simulation of a potential landslide.  相似文献   

6.
The 2008 Ms 8.0 Wenchuan earthquake triggered a large number of extensive landslides. It also affected geologic properties of the mountains such that large-scale landslides followed the earthquake, resulting in the formation of a disaster chain. On 10 July 2013, a catastrophic landslide–debris flow suddenly occurred in the Dujiangyan area of Sichuan Province in southeast China. This caused the deaths of 166 people and the burying or damage of 11 buildings along the runout path. The landslide involved the failure of ≈1.47 million m3, and the displaced material from the source area was ≈0.3 million m3. This landslide displayed shear failure at a high level under the effects of a rainstorm, which impacted and scraped an accumulated layer underneath and a heavily weathered rock layer during the release of potential and kinetic energies. The landslide body entrained a large volume of surface residual diluvial soil, and then moved downstream along a gully to produce a debris flow disaster. This was determined to be a typical landslide–debris flow disaster type. The runout of displaced material had a horizontal extent of 1200 m and a vertical extent of 400 m. This was equivalent to the angle of reach (fahrböschung angle) of 19° and covered an area of 0.2 km2. The background and motion of the landslide are described in this study. On the basis of the above analysis, dynamic simulation software (DAN3D) and rheological models were used to simulate the runout behavior of the displaced landslide materials in order to provide information for the hazard zonation of similar types of potential landslide–debris flows in southeast China following the Wenchuan earthquake. The simulation results of the Sanxicun landslide revealed that the frictional model had the best performance for the source area, while the Voellmy model was most suitable for the scraping and accumulation areas. The simulations estimated that the motion could last for ≈70 s, with a maximum speed of 47.7 m/s.  相似文献   

7.
混凝土面板堆石坝应力变形长期性状有限元模拟   总被引:1,自引:0,他引:1  
刘萌成  高玉峰  刘汉龙 《岩土力学》2010,31(Z1):412-418
为了获得混凝土面板堆石坝长期力学行为(尤其流变变形对混凝土面板堆石坝工作性状的影响)定量分析成果,运用ABAQUS有限元对国内某抽水蓄能电站混凝土面板堆石坝进行了数值模拟。采用考虑非线性强度的改进双屈服面流变模型描述堆石料长期力学性能,其中瞬时塑性变形采用改进双屈服面模型确定,而黏塑性流变变形采用指数衰减函数定义。有限元分析获得坝体、单元和面板在填筑期、蓄水期与运行期的应力与变形一般规律。结果表明:运行阶段堆石流变变形对混凝土面板堆石坝应力、变形性状产生显著影响。研究结论有益于进一步了解和合理预测混凝土面板的长期性能。  相似文献   

8.
滑坡形成是一个典型的岩土变形破坏时效过程,低速滑坡时效过程尤为显著。基于流变理论,建立反映滑坡变形破坏发展过程的本构模型、预测滑坡活动趋势,一直是国内外滑坡研究的基本途径和难点问题之一。然而,目前国内外已有的多数流变模型仅能反映滑坡岩土蠕变的第一、第二阶段,不能刻画滑坡岩土蠕变的第三阶段(加速蠕变阶段)。本文基于滑带在滑坡中的作用以及滑带岩土剪切蠕变发展的累进性和非线性特征,借助损伤理论,在FLAC3D内置的CVISC流变本构模型中引入非线性损伤黏塑性元件,构建了可描述滑坡加速蠕变过程的非线性损伤流变本构模型,依据类比原理建立了改进的CVISC三维差分模型,通过FLAC3D开放的用户接口实现了本构模型的二次开发,并将改进的CVISC模型用于长期缓慢滑移、伴随间歇性剧烈活动的甘肃舟曲泄流坡数值模拟中。模拟结果显示,该模型不仅呈现了滑坡的加速蠕变特征,而且揭示的滑坡活动特征与其曾经出现的活动特征基本一致,从而证实基于非线性损伤理论的改进CVISC模型具有较好的有效性。  相似文献   

9.
Coupled theory of mixtures for clayey soils   总被引:4,自引:0,他引:4  
In this work, elasto-plastic coupled equations are formulated in order to describe the time-dependent deformation of saturated cohesive soils (two-phase state). Formulation of these equations is based on the principle of virtual work and the theory of mixtures for inelastic porous media. The theory of mixtures for a linear elastic porous skeleton was first developed by Biot (Theory of elasticity and consolidation for a porous anisotropic solid, Journal of Applied Physics, 1955, 26, 188–185). An extension of Biot's theory into a nonlinear inelastic media was performed by Prevost (Mechanics of continuous porous media, International Journal of Engineering Science, 1980, 18, 787–800). The saturated soil is considered as a mixture of two deformable media, the solid grains and the water. Each medium is regarded as a continuum and follows its own motion. The flow of pore-water through the voids is assumed to follow Darcy's law. The coupled equations are developed for large deformations with finite strains in an updated Lagrangian reference frame. The coupled behavior of the two-phase materials (soil-water state) is implemented in a finite element program. A modified Cam-clay model is adopted and implemented in the finite element program in order to describe the plastic behavior of clayey soils. Penetration of a piezocone penetrometer in soil is numerically simulated and implemented into a finite element program. The piezocone penetrometer is assumed to be infinitely stiff. The continuous penetration of the cone is simulated by applying an incremental vertical movement of the cone tip boundary. Results of the finite element numerical simulation are compared with experimental measurements conducted at Louisiana State University using the calibration chamber. The numerical simulation is carried out for two cases. In the first case, the interface friction between the soil and the piezocone penetrometer is neglected. In the second case, interface friction is assumed between the soil and the piezocone. The results of the numerical simulations are compared with experimental laboratory measurements.  相似文献   

10.
双相介质中纵波方程的高阶有限差分解法   总被引:6,自引:0,他引:6  
张会星  何兵寿  宁书年 《物探与化探》2004,28(4):307-309,313
从双相介质中的纵波方程出发,导出了求解双相各向同性介质中纵波方程的高阶差分格式,给出了吸收边界条件和稳定性条件,在此基础上实现了双相各向同性介质中纵波方程的高阶有限差分法正演模拟,数值模拟结果表明,这种算法能在少量增加计算量的前提下大大提高精度,算法可同时应用于叠前和叠后的数值模拟。  相似文献   

11.
On 11 January 2013, a catastrophic landslide of ~0.2 million m3 due to a prolonged low-intensity rainfall occurred in Zhenxiong, Yunnan, southwestern China. This landslide destroyed the village of Zhaojiagou and killed 46 people in the distal part of its path. The displaced landslide material traveled a horizontal distance of ~800 m with a vertical drop of ~280 m and stopped at 1520 m a.s.l. To examine the possible mechanism and behavior of the landslide from initiation to runout, the shear behavior of soil samples collected from the sliding surface and runout path was examined by means of ring shear tests. The test results show that the shear strength of sample from the sliding surface is less affected by shear rate while the shear rate has a negative effect on the shear strength of runout path material. It is suggested that the source and runout path materials follow the frictional and Voellmy rheology, respectively. Post-failure behavior of the landslide was modeled by using a DAN-W model, and the numerical results show that the selected rheological relationships and parameters based on the results of ring shear tests may provide good performance in modeling the Zhenxiong landslide.  相似文献   

12.
A mechanism for fracture generation and for triggering land subsidence is presented. Infiltration through a pre-existing fracture zone into a two-layered system, as well as the deformation of unconsolidated sediments on the land surface, was numerically investigated. The numerical simulation of infiltration is based on a two-phase flow-model concept for porous media, and for the deformation, it is based on a Mohr-Coulomb model concept. Different studies with variations of the fracture parameter and infiltration conditions have been carried out. The infiltration results show that fast infiltration in a partially saturated aquifer leads to land subsidence, extension of pre-existing fractured zones and the generation of new cracks. If the water column is only on the fracture, the clay layer acts like a barrier and inhibits the infiltration through the fracture. If the water column covers the entire surface, the barrier effect is overcome; the infiltration intensity depends on the height of the water column, the fracture permeability and the fracture width. The deformation results show that a strong rainfall event of 2 h leads to deformations that are about 30 % of the vertical and 70 % of the horizontal annual land-subsidence rates.  相似文献   

13.
An extreme rainfall event on August 9, 2009, which was close to setting a world record for 48-h accumulated rainfall, induced the Xiaolin deep-seated landslide, which was located in southwestern Taiwan and had volume of 27.6?×?106?m3, and caused the formation of a landslide dam. The landslide dam burst in a very short time, and little information remained afterward. We reconstructed the process of formation and failure of the Xiaolin landslide dam and also inferred the area of the impoundment and topographic changes. A 5?×?5-m digital elevation model, the recorded water stage of the Qishan River, and data from field investigation were used for analysis. The spectral magnitude of the seismic signals induced by the Xiaolin landslide and flooding due to failure of the landslide dam were analyzed to estimate the timing of the dam breach and the peak discharge of the subsequent flood. The Xiaolin landslide dam failure resulted from overtopping. We verified the longevity of the Xiaolin landslide dam at about 2 h relying on seismic signals and water level records. In addition, the inundated area, volume of the impoundment behind the Xiaolin landslide dam, and peak discharge of the flood were estimated at 92.3 ha, 19.5?×?106?m3, and 17?×?103?m3/s, respectively. The mean velocity of the flood-recession wave front due to the dam blockage was estimated at 28 km/h, and the peak flooding velocity after failure of the dam was estimated at 23 km/h. The Xiaolin landslide provides an invaluable opportunity for understanding the mechanism of deep-seated landslides and flooding processes following a landslide dam failure.  相似文献   

14.
Preparation of landslide susceptibility maps is considered as the first important step in landslide risk assessments, but these maps are accepted as an end product that can be used for land use planning. The main objective of this study is to explore some new state-of-the-art sophisticated machine learning techniques and introduce a framework for training and validation of shallow landslide susceptibility models by using the latest statistical methods. The Son La hydropower basin (Vietnam) was selected as a case study. First, a landslide inventory map was constructed using the historical landslide locations from two national projects in Vietnam. A total of 12 landslide conditioning factors were then constructed from various data sources. Landslide locations were randomly split into a ratio of 70:30 for training and validating the models. To choose the best subset of conditioning factors, predictive ability of the factors were assessed using the Information Gain Ratio with 10-fold cross-validation technique. Factors with null predictive ability were removed to optimize the models. Subsequently, five landslide models were built using support vector machines (SVM), multi-layer perceptron neural networks (MLP Neural Nets), radial basis function neural networks (RBF Neural Nets), kernel logistic regression (KLR), and logistic model trees (LMT). The resulting models were validated and compared using the receive operating characteristic (ROC), Kappa index, and several statistical evaluation measures. Additionally, Friedman and Wilcoxon signed-rank tests were applied to confirm significant statistical differences among the five machine learning models employed in this study. Overall, the MLP Neural Nets model has the highest prediction capability (90.2 %), followed by the SVM model (88.7 %) and the KLR model (87.9 %), the RBF Neural Nets model (87.1 %), and the LMT model (86.1 %). Results revealed that both the KLR and the LMT models showed promising methods for shallow landslide susceptibility mapping. The result from this study demonstrates the benefit of selecting the optimal machine learning techniques with proper conditioning selection method in shallow landslide susceptibility mapping.  相似文献   

15.
At 6:10 p.m. on September 23, 1991, a catastrophic rock avalanche occurred in Zhaotong, Yunnan, southwestern China. Over 216 people were killed when the Touzhai village was overwhelmed directly in the path of the landslide. The landslide involved the failure of about 12 Mm3 of jointed basaltic rock mass from the source area. The displaced materials ran out a horizontal distance of 3650 m over a vertical distance of 960 m, equivalent to a Fahrböschung of 14.7°, and covered an area of 1.38 km2. To provide information for hazard zonation of similar type of potential landslides in the same area, we used a dynamic model (DAN-W) with three alternative rheological models to simulate the runout behaviour of the displaced landslide materials and found that a combination of the frictional model and Voellmy model could provide the best performance in simulating this landslide. The simulated results indicated that the duration of the movement is estimated at about 175 s for a mean velocity 21 m/s.  相似文献   

16.
一种流动性滑坡涌浪动力学模型   总被引:1,自引:0,他引:1       下载免费PDF全文
滑坡涌浪是入水滑坡引起的一种次生灾害,其致灾范围远大于滑坡的运动区域,准确预测其演化过程是防治这类灾害的关键。现有预测模型多将滑体简化为刚体,而实际滑坡多表现出流态运动的特征。为更合理地描述滑体和涌浪的耦合运动,将滑体视为流态物质,在此基础上推导了滑坡与水体耦合运动的控制方程,利用有限差分法对控制方程求解,建立了一种可模拟流动性滑坡涌浪演化过程的动力学模型。使用该模型对三峡库区的龚家方滑坡涌浪的演化过程进行模拟,将模拟所得河道纵截面处的最大浪高值与实测值进行对比,结果表明最大浪高值出现在滑坡的主滑动方向,且最大浪高沿纵截面两侧快速衰减,模拟结果与实测吻合。  相似文献   

17.
We performed seismic waveform inversions and numerical landslide simulations of deep-seated landslides in Japan to understand the dynamic evolution of friction of the landslides. By comparing the forces obtained from a numerical simulation to those resolved from seismic waveform inversion, the coefficient of friction during sliding was well-constrained between 0.3 and 0.4 for landslides with volumes of 2–8 ×106 m3. We obtained similar coefficients of friction for landslides with similar scale and geology, and they are consistent with the empirical relationship between the volume and dynamic coefficient of friction obtained from the past studies. This hybrid method of the numerical simulation and seismic waveform inversion shows the possibility of reproducing or predicting the movement of a large-scale landslide. Our numerical simulation allows us to estimate the velocity distribution for each time step. The maximum velocity at the center of mass is 12–36 m/s and is proportional to the square root of the elevation change at the center of mass of the landslide body, which suggests that they can be estimated from the initial DEMs. About 20% of the total potential energy is transferred to the kinetic energy in our volume range. The combination of the seismic waveform inversion and the numerical simulation helps to obtain the well-constrained dynamic coefficients of friction and velocity distribution during sliding, which will be used in numerical models to estimate the hazard of potential landslides.  相似文献   

18.
This study analyzes the mechanism of the landslide event at Hsiaolin Village during Typhoon Morakot in 2009. This landslide event resulted in 400 deaths. The extremely high intensity and accumulative rainfall events may cause large-scale and complex landslide disasters. To study and understand a landslide event, a combination of field investigations and numerical models is used. The landslide area is determined by comparing topographic information from before and after the event. Physiographic parameters are determined from field investigations. These parameters are applied to a numerical model to simulate the landslide process. Due to the high intensity of the rainfall event, 1,675 mm during the 80 h before the landslide event, the water content of soil was rapidly increased causing a landslide to occur. According to the survivors, the total duration of the landslide run out was less than 3 min. Simulation results indicated that the total duration was about 150 s. After the landslide occurrence, the landslide mass separated into two parts by a spur at EL 590 in about 30 to 50 s. One part passed the spur in about 30 to 60 s. One part inundated the Hsiaolin Village and the other deposited at a local river channel and formed a landslide dam. The landslide dam had height between 50 and 60 m and length between 800 and 900 m. The simulation result shows that the proposed model can be used to evaluate the potential areas of landslides induced by extremely high intensity rainfall events.  相似文献   

19.
Rockslides in alpine areas can reach large volumes and, owing to their position along slopes, can either undergo large and rapid evolution originating large rock avalanches or can decelerate and stabilize. As a consequence, in particular when located within large deep-seated deformations, this type of instability requires accurate observation and monitoring. In this paper, the case study of the La Saxe rockslide (ca. 8 × 106 m3), located within a deep-seated deformation, undergoing a major phase of acceleration in the last decade and exposing the valley bottom to a high risk, is discussed. To reach a more complete understanding of the process, in the last 3 years, an intense investigation program has been developed. Boreholes have been drilled, logged, and instrumented (open-pipe piezometers, borehole wire extensometers, inclinometric casings) to assess the landslide volume, the rate of displacement at depth, and the water pressure. Displacement monitoring has been undertaken with optical targets, a GPS network, a ground-based interferometer, and four differential multi-parametric borehole probes. A clear seasonal acceleration is observed related to snow melting periods. Deep displacements are clearly localized at specific depths. The analysis of the piezometric and snowmelt data and the calibration of a 1D block model allows the forecast of the expected displacements. To this purpose, a 1D pseudo-dynamic visco-plastic approach, based on Perzyna’s theory, has been developed. The viscous nucleus has been assumed to be bi-linear: in one case, irreversible deformations develop uniquely for positive yield function values; in a more general case, visco-plastic deformations develop even for negative values. The model has been calibrated and subsequently validated on a long temporal series of monitoring data, and it seems reliable for simulating the in situ data. A 3D simplified approach is suggested by subdividing the landslide mass into distinct interacting blocks.  相似文献   

20.
针对我国西部黄土地区特殊的地形地貌、近地表条件和地下浅层目标体,开展了路基下伏地质缺陷地震探测技术的应用研究。为检验不同地震方法的探测能力,设计了一个综合地质地球物理模型,包含凹陷、断层、地裂缝、地下低速体、软弱夹层及滑坡等典型地质缺陷,利用有限差分波场模拟,计算出多分量反射地震记录和面波地震记录,分别进行了反射波成像和高阶面波反演横波速度成像。数值模拟结果表明,反射波成像和高阶面波反演横波速度成像技术对真实模型中的凹陷、断层、浅层低速体、软弱夹层及滑坡等主要地质缺陷均能清晰成像,验证了地震方法探测路基下伏地质缺陷的可行性。数值计算结果表明,不同的地球物理探测方法对地质缺陷的探测效果和适用范围不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号