首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Geometric parameters are useful for characterizing earthquake-triggered landslides. This paper presents a detailed statistical analysis on this issue using the landslide inventory of the 2013, Minxian, China Mw 5.9 earthquake. Based on GIS software and a 5-m resolution DEM, geometric parameters of 635 coseismic landslides (with areas larger than 500 m2) were obtained, including height, length, width, reach angle (arc tangent of the height-length ratio), and aspect ratio (length-width ratio). The fitting relationship of height and length from these data is H = 0.6164L + 0.4589, with an average reach angle of 31.65°. The landslide aspect ratios concentrate in the range of 1.4~2.6, with an average of 2.11. According to the plane geometric shapes and aspect ratios, the landslides are classified into four categories: transverse landslide (LA1, L/W ≤ 0.8), isometric landslide (LA2, 0.8 < L/W ≤ 1.2), longitudinal landslide (LA3, 1.2 < L/W ≤ 3), and elongated landslide (LA4, L/W > 3). Statistics of these four types of landslides versus ten classified control factors (elevation, slope angle, slope aspect, curvature, slope position, distance to drainages, lithology, seismic intensity, peak ground acceleration, and distance to seismogenic fault) are used to examine their possible correlations and the landslide-prone areas, which would be helpful to the landslide disaster mitigation in the affected area.  相似文献   

2.
This study aimed to develop a low-cost and effective clay liner material for solid waste landfills in Sri Lanka. A locally available clayey soil and its admixtures with 5 and 10% bentonite were examined for this purpose. Laboratory experiments to determine soil plasticity and swell index were carried out on the tested samples. Hydraulic conductivity (k) tests were carried out in the laboratory using water and an aqueous solution of CaCl2 on unconsolidated samples prepared by either dry or slurry packing and pre-consolidated samples with five different consolidation pressures (p) from 10 to 200 kPa. Measured liquid limits for tested admixtures increased with increasing bentonite contents and correlated well with measured values of the swell index. The difference in permeant solutions had little effect on measured k values for both unconsolidated and pre-consolidated samples. The hydraulic conductivities were highly affected by changing p, i.e., the k values decreased on two orders of magnitude as p increased from 10 to 200 kPa. The Kozeny–Carman equation, a theoretical permeability model that expresses the k-porosity relationship, was applied to measured data including reported values. Results showed the Kozeny–Carman equation captured well the porosity-dependent k values for tested soils and their admixtures with bentonite under a wide range of void ratios, suggesting that the Kozeny–Carman equation is a useful tool to estimate the magnitude of k values for differently compacted soil and its bentonite admixtures.  相似文献   

3.
This paper examines the influence of porous media deformation on water-table wave dispersion in an unconfined aquifer using a numerical model which couples Richards’ equation to the poro-elastic model. The study was motivated by the findings of Shoushtari et al. (J Hydrol 533:412–440, 2016) who were unable to reproduce the observed wave dispersion in their sand flume data with either numerical Richards’ equation models (assuming rigid porous media) or existing analytic solutions. The water-table wave dispersion is quantified via the complex wave number extracted from the predicted amplitude and phase profiles. A sensitivity analysis was performed to establish the influence of the main parameters in the poro-elastic model, namely Young’s modulus (E) and Poisson’s ratio (ν). For a short oscillation period (T?=?16.4 s), the phase lag increase rate (k i) is sensitive to the chosen values of E and ν, demonstrating an inverse relationship with both parameters. Changes in the amplitude decay rate (k r), however, were negligible. For a longer oscillation period (T?=?908.6 s), variations in the values of E and ν resulted in only small changes in both k r and k i. In both the short and long period cases, the poro-elastic model is unable to reproduce the observed wave dispersion in the existing laboratory data. Hence porous media deformation cannot explain the additional energy dissipation in the laboratory data. Shoushtari SMH, Cartwright N, Perrochet P, Nielsen P (2016) The effects of oscillation period on groundwater wave dispersion in a sandy unconfined aquifer: sand flume experiments and modelling. J Hydrol 533:412–440.  相似文献   

4.
A pyroxene with composition LiNiSi2O6 was synthesized at T = 1,473 K and P = 2.0 GPa; the cell parameters at T = 298 K are a = 9.4169(6) Å, b = 8.4465(7) Å, c = 5.2464(3) Å, β = 110.534(6)°, V = 390.78(3) Å3. TEM examination of the LiNiSi2O6 pyroxene showed the presence of h + k odd reflections indicative of a primitive lattice, and of antiphase domains obtained by dark field imaging of the h + k odd reflections. A HT in situ investigation was performed by examining TEM selected area diffraction patterns collected at high temperature and synchrotron radiation powder diffraction. In HTTEM the LiNiSi2O6 was examined together with LiCrSi2O6 pyroxene. In LiCrSi2O6 the h + k odd critical reflections disappear at about 340 K; they are sharp up to the transition temperature and do not change their shape until they disappear. In LiNiSi2O6 the h + k odd reflections are present up to sample deterioration at 650 K. A high temperature synchrotron radiation powder diffraction investigation was performed on LiNiSi2O6 between 298 and 773 K. The analysis of critical reflections and of changes in cell parameters shows that the space group is P-centred up to the highest temperature. The comparative analysis of the thermal and spontaneous strain contributions in P21/c and C2/c pyroxenes indicates that the high temperature strain in P-LiNiSi2O6 is very similar to that due to thermal strain only in C2/c spodumene and that a spontaneous strain contribution related to pre-transition features is not apparent in LiNiSi2O6. A different high-temperature behaviour in LiNiSi2O6 with respect to other pyroxenes is suggested, possibly in relation with the presence of Jahn–Teller distortion of the M1 polyhedron centred by low-spin Ni3+.  相似文献   

5.
Hydraulic Conductivity of Fly Ash-Amended Mine Tailings   总被引:1,自引:1,他引:0  
The objective of this study was to evaluate the effect of fly ash addition on hydraulic conductivity (k) of mine tailings. Mine tailings used in this study were categorized as synthetic tailings and natural tailings; two synthetic tailings were developed via blending commercially-available soils and natural tailings were collected from a garnet mine located in the U.S. Two fly ashes were used that had sufficient calcium oxide (CaO) content (17 and 18.9 %) to generate pozzolanic activity. Hydraulic conductivity was measured on pure tailings and fly ash-amended tailings in flexible-wall permeameters. Fly ash was added to mine tailings to constitute 10 % dry mass of the mixture, and specimens were cured for 7 and 28 days. The influence of fly ash-amendment on k of mine tailings was attributed to (1) molding water content and (2) plasticity of the mine tailings. Tailings that classified as low-plasticity silts with clay contents less than 15 % exhibited a decrease in k when amended with fly ash and prepared wet of optimum water content (w opt ). Tailings that classified as low-plasticity clay exhibited a one-order magnitude increase in k with addition of fly ash for materials prepared dry or near w opt . The decrease in k for silty tailings was attributed to formation of cementitious bonds that obstructed flow paths, whereas the increase in k for clayey tailings was attributed to agglomeration of clay particles and an overall increase in average pore size. The results also indicated that the effect of curing time on k is more pronounced during the early stages of curing (≤7 days), as there was negligible difference between k for 7 and 28-days cured specimens.  相似文献   

6.
The South Jingyang Plateau, with a total area of 70 km2, is located in Shaanxi Province, China. Since 1976, more than 50 landslides of different types have occurred repeatedly on the edge slopes of the plateau due to the start of diversion irrigation on the plateau, resulting in great loss of lives and property. To better understand the initiation and movement mechanisms of these loess landslides, we surveyed them and carried out a detailed investigation of a large landslide in the Xihetan area. Our field survey results revealed that although most of these landslides had a long runout with high mobility, most of the landslide materials originating from the edge slopes may have been in an unsaturated state when the landslide occurred. This suggests that the materials at the toe of the edge slope as well as on the travel path along the river terrace might have played a key role in landslide movement. To examine how the materials on the travel path were involved in the landsliding, we used a multichannel surface wave technique and surveyed shear wave velocity (V s ) profiles of the landslide deposits. We also examined the internal geometry of the deposits that outcropped on the right-side slope of the landslide foot. The longitudinal profile of V s along the direction of movement showed that terrace deposits near the toe of the edge slope may have been sheared upward, indicating that at the toe, the surface of rupture might be located inside the terrace deposits. The V s contours showed an A-shaped fold within the landslide deposits in the middle part of the travel path and became greater in the most distal toe part. The V s profile across the deposits showed a U-shaped belt, in which the soil layers have smaller V s . This belt may be the boundary between the sliding landslide debris and terrace deposits. The observed internal geometry of the landslide deposits indicates that a sliding surface developed within the sandy layer underlying the gravel layer. Therefore, we inferred that after failure, the displaced landslide materials overrode and sheared the terrace deposits along its main sliding direction, resulting in the formation of thrust folds within the terrace deposits, and greater V s on the distal toe part of the landslide.  相似文献   

7.
The revised representatives of ammonite genera Malbosiceras and Pomeliceras from the Berriasian of the Crimean Mountains are classed with seven species, four of the first genus [M. malbosi (Pictet), M. chaperi (Pictet), M. broussei (Mazenot), M. pictetiforme Tavera] and three of the second one [P. aff. boisseti Nikolov, P. breveti (Pomel), P. (?) funduklense Lysenko et Arkadiev sp. nov.]. The identified species are described. The genus Mazenoticeras is considered as synonym of Malbosiceras. The above species prove that all the Berriasian zones (jacobi, occitanica and boissieri) are characteristic of corresponding deposits in the Crimean Mountains.  相似文献   

8.
The accumulation efficiency of selected trace elements in the leaves of Melandrium album and Robinia pseudoacacia grown on heavy metal contaminated sites in comparison with a non-contaminated one was evaluated. The study was undertaken to calculate air pollution tolerance index and to determine the contents of selected metabolites: glutathione, non-protein thiols, ascorbic acid, chlorophyll and the activity of antioxidant enzymes: guaiacol peroxidase and superoxide dismutase. Such estimations can be useful in better understanding of plants defense strategies and potential to grow in contaminated environments. The results in the most contaminated site revealed higher contents of metals in M. album leaves, especially Zn, Cd and Pb (3.4, 6 and 2.3 times higher, respectively) in comparison with the R. pseudoacacia. Better accumulation capacity found in M. album was shown by metal accumulation index values. The plants could be used as indicators of Zn, Cd (both species) and Pb (M. album) in the soil. Glutathione content (in both species) and peroxidase activity (in M. album), general markers of heavy metals contamination, were increased in contaminated sites. In most cases in contaminated areas R. pseudoacacia had decreased ascorbic acid and chlorophyll levels. Opposite tendency was recorded in M. album leaves, where similar or higher contents of the above-mentioned metabolites were found. In our study, M. album and R. pseudoacacia proved to be sensitive species with the air pollution tolerance index lower than 11 and can be recommended as bioindicators.  相似文献   

9.
This study analyzed 267 landslide landforms (LLs) in the Kumamoto area of Japan from the database of about 0.4 million LLs for the whole of Japan identified from aerial photos by the National Research Institute for Earth Science and Disaster Resilience of Japan (NIED). Each LL in the inventory is composed of a scarp and a moving mass. Since landslides are prone to reactivation, it is important to evaluate the sliding-recurrence susceptibility of LLs. One possible approach to evaluate the susceptibility of LLs is slope stability analysis. A previous study found a good correlation (R 2 = 0.99) between the safety factor (F s ) and slope angle (α) of F s  = 17.3α ?0.843. We applied the equation to the analysis of F s for 267 LLs in the area affected by the 2016 Kumamoto earthquake (M j  = 7.3). The F s was calculated for the following three cases of failure: scarps only, moving mass only, and scarps and moving mass together. Verification with the 2016 Kumamoto earthquake event shows that the most appropriate method for the evaluation of LLs is to consider the failure of scarps and moving mass together. In addition, by analyzing the relationship between the factors of slope of entire landslide and slope of scarp for LLs and comparing the results with the Aso-ohashi landslide, the largest landslide caused by the 2016 Kumamoto earthquake, we also found that morphometric analysis of LLs is useful for forecasting the travel distance of future landslides.  相似文献   

10.
Permeability variation in reservoir rocks results from the combined effects of various factors, and makes porosity–permeability (?k) relationships more complex, or, in some cases, non-existent. In this work, the ?k relationship of macroscopically homogeneous glass-bead packs is deduced based on magnetic resonance imaging (MRI) measurement and Kozeny-Carman (K-C) model analysis; these are used as a frame of reference to study permeability of reservoir rocks. The results indicate: (1) most of the commonly used simplified K-C models (e.g. the simplified traditional (omitting specific surface area), high-order, threshold, and fractal models) are suitable for estimating permeability of glass-bead packs. The simplified traditional model does not present obvious dependence on rock samples. Whether for the glass-bead packs or clean natural sandstones, the sample coefficients almost remain invariant. Comparably, the high-order, the fractal, and the threshold models are strongly sample-specific and cannot be extrapolated from the glass-bead packs to natural sandstones; (2) the ?k relationships of quartz sands and silty sandstones resemble those of the glass-bead packs, but they significantly deviate from the K-C models at low porosities due to small pore entry radius; (3) a small amount of intergranular cements (<10%v) does not affect the general variation trend of permeability with porosity but can potentially increase predictive errors of the K-C models, whereas in the case of more cements, the ?k relationships of sandstones become uncertain and cannot be described by any of these K-C models.  相似文献   

11.
Ground vibration resulting from blasting is one of the most important environmental problems at open-cast mines. Therefore, accurately approximating the blast-induced ground vibration is very significant. By reviewing the previous investigations, many attempts have been done to create the empirical models for estimating ground vibration. Nevertheless, the performance of the empirical models is not good enough. In this research work, a new hybrid model of fuzzy system (FS) designed by imperialistic competitive algorithm (ICA) is proposed for approximating ground vibration resulting from blasting at Miduk copper mine, Iran. For comparison aims, various empirical models were also utilized. Results from different predictor models were compared by using coefficient of multiple determination (R 2), variance account for and root-mean-square error between measured and predicted values of the PPVs. Results prove that the FS–ICA model outperforms the other empirical models in terms of the prediction accuracy. In other words, the FS–ICA model with R 2 of 0.942 can forecast PPV better than the USBM with R 2 of 0.634, Ambraseys–Hendron with R 2 of 0.638, Langefors–Kihlstrom with R 2 of 0.637 and Indian Standard with R 2 of 0.519.  相似文献   

12.
This paper presents the numerical simulation of pile installation and the subsequent increase in the pile capacity over time (or setup) after installation that was performed using the finite element software Abaqus. In the first part, pile installation and the following load tests were simulated numerically using the volumetric cavity expansion concept. The anisotropic modified Cam-Clay and Dracker–Prager models were adopted in the FE model to describe the behavior of the clayey and sandy soils, respectively. The proposed FE model proposed was successfully validated through simulating two full-scale instrumented driven pile case studies. In the second part, over 100 different actual properties of individual soil layers distracted from literature were used in the finite element analysis to conduct parametric study and to evaluate the effect of different soil properties on the pile setup behavior. The setup factor A was targeted here to describe the pile setup as a function of time after the end of driving. The selected soil properties in this study to evaluate the setup factor A include: soil plasticity index (PI), undrained shear strength (S u ), vertical coefficient of consolidation (C v ), sensitivity ratio (S r ), and over-consolidation ratio (OCR). The predicted setup factor showed direct proportion with the PI and S r and inverse relation with S u , C v and OCR. These soil properties were selected as independent variables, and nonlinear multivariable regression analysis was performed using Gauss–Newton algorithm to develop appropriate regression models for A. Best models were selected among all based on level of errors of prediction, which were validated with additional nineteen different site information available in the literature. The results indicated that the developed model is able to predict the setup behavior for individual cohesive soil layers, especially for values of setup factor greater than 0.10, which is the most expectable case in nature.  相似文献   

13.
The Maastrichtian regressive sequence of the Hekimhan-Malatya area in Eastern Turkey consists of dolomitic limestones, limestones and calcareous mudstones which are dominated by rudists and Loftusia (foraminifera) assemblages. Several Loftusia species indicating middle to late Maastrichtian age such as Loftusia anatolica Meriç, L. baykali Meriç, L. coxi Henson, L. harrisoni Cox, L. minor Cox and L. morgani Douvillé have been recorded. Other benthic foraminifers present include Orbitoides medius d’ Archiac, Omphalocyclus macroporus (Lamarck), Laffitteina conica Drooger, Laffitteina mengaudi (Astre) and Laffitteina oeztuerki Inan. The rudists are abundant in the dolomitic limestones in the study area. The genus Miseia Patrulius is dominant and represented by Miseia bilacunosa Özer and Miseia hekimhanensis Karacabey-Öztemür. The Loftusia species and the Rudists assemblage indicates middle to late Maastrichtian age for the formation. The paleobiogeographic distribution of the assemblage has been discussed taking this find into account.  相似文献   

14.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

15.
Understanding the changes in permeability of soil, when soil is subjected to high confining pressure and flow pressure, which may alter the textural and geomechanical characteristics of soil, is of great importance to many geo-engineering activities such as, construction of high-rise buildings near the coast or the water bodies, earthen dams, pavement subgrades, reservoir, and shallow repositories. It is now possible to evaluate the changes in permeability of soil samples under varying conditions of confining pressure and flow pressure using flexible wall permeameter (FWP). In the present study, investigation was carried out on a cylindrical sample of granular soil employing FWP under varied conditions of confining pressure (σ3)—50–300 kPa, which can simulate the stress conditions equivalent to depth of about 20 m under the earth’s crust, and a flow pressure (fp)—20–120 kPa, which is mainly present near the small earthen embankment dams, landfill liners, and slurry walls near the soft granular soil with high groundwater table. The obtained results indicate a linear relationship between hydraulic conductivity (k) with effective confining pressure (σeff.), k, decreasing linearly with an incremental change in σeff.. Further, k increases significantly with an increase in fp corresponding to each σeff., and q increases significantly with increase in the fp corresponding to each (σ3). It was also observed that corresponding to the low fp of 20 kPa, the reduction in k is nonlinear with σ3. The percentage reduction in k is observed to be 9, 13, and 27% corresponding to σ3 of 50–100, 100–200, and 200-300 kPa, respectively.  相似文献   

16.
There is currently limited research available on the secondary metabolites of moulds in workplaces. The aim of this study was to determine the mould contamination in museums (N = 4), composting plants (N = 4) and tanneries (N = 4) and the secondary metabolite profiles of Alternaria, Aspergillus and Penicillium isolates from these workplaces. Alternaria, Aspergillus and Penicillium species were identified using the ITS1/2 sequence of the rDNA region. Mould metabolites were quantitatively analysed on standard laboratory medium and mineral medium containing materials specific to each workplace using liquid chromatography-mass spectrometry. We also examined the cytotoxicity of the moulds using MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assays. Air microbiological contamination analyses showed a number of microorganisms, ranging from 2.4 × 103 CFU m?3 (composting plants) to 6.8 × 104 CFU m?3 (tanneries). We identified high percentages of Alternaria, Aspergillus and Penicillium moulds (air 57–59%, surfaces 10–65%) in all workplaces. The following moulds were the most cytotoxic (>90%): Alternaria alternata, A. limoniasperae, Aspergillus flavus, Penicillium biourgeianum, P. commune and P. spinulosum. The same mould species isolated from different working environments exhibited varying toxigenic and cytotoxic properties. Modifying the culture medium to simulate environmental conditions most often resulted in the inhibition of secondary metabolite production. Moulds isolated from the working environments produced the following mycotoxins (ng g?1): chanoclavines (0.28–204), cyclopiazonic acid (27.1–1045), fumigaclavines (0.33–10,640,000), meleagrin (0.57–13,393), roquefortins (0.01–16,660), rugulovasines (112–220), viridicatin (0.12–957), viridicatol (4.23–2753) and quinocitrinines (0.07–1104), which may have a negative impact on human health.  相似文献   

17.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

18.
Earthen barriers or clay liners are a major concern in geo-environmental engineering. They are designed to preclude or reduce leachate migration. Hence, a low hydraulic conductivity (k) is an important parameter in the design of clay liners. Materials such as bentonite and lateritic clays, which have a low hydraulic conductivity at high dry densities, are used in the construction of clay liners. Compacted expansive clays which are high in montmorillonite content also have a very low hydraulic conductivity. When expansive clays are blended with fly ash, an industrial waste, the hydraulic conductivity further reduces as the ash-clay blends result in increased dry densities at increased fly ash contents. Hence, fly ash-stabilised expansive clay can also be proposed as an innovative clay liner material. It is, therefore, required to study various physical and engineering properties of this new clay liner material. Liquid limit (LL) and free swell index (FSI) are important index properties to be studied in the case of this clay liner material. The hydraulic conductivity of this new clay liner material depends on the fly ash content in the blend. Further, parameters such as solute concentration and kinematic viscosity also influence hydraulic conductivity of clay liners. This paper presents experimental results obtained on hydraulic conductivity (k) of fly ash-stabilised expansive clay liner at varying fly ash content and solute concentration. The tests were performed with deionised water (DIW), CaCl2, NaCl and KCl as permeating fluids. Fly ash content in the blend was varied as 0, 10, 20 and 30 % by weight of the expansive clay, and the solute concentration was varied as 5 mM (milli molar), 10, 20, 50, 100 and 500. It was found that hydraulic conductivity (k) decreased with increasing fly ash content, solute concentration and kinematic viscosity. Further, hydraulic conductivity (k) was correlated with LL and FSI of the clay liner material for different fly ash contents and solute concentrations. Useful correlations were obtained.  相似文献   

19.
Synthetic CaAlSiO4F, the Al-F analog of titanite, has been investigated using single-crystal synchrotron diffraction experiments at Beamline X06DA (Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland) and Raman spectroscopy. The presented structural model with 40 parameters was refined against 506 unique reflections to a final R o b s of 0.026 (space group A2/a, a = 6.9120(11), b = 8.5010(10), c = 6.435(2) Å, β = 114.670(11)°, and Z = 4) and exhibits less distorted coordination polyhedra than earlier models from powder data. Vibrational spectra were calculated in harmonic approximation at the Γ point from fully relaxed energy optimisations of the crystal structure, using 3D-periodic density functional theory with Gaussian basis sets and the software CRYSTAL06. The lattice parameters of the fully relaxed structure were in good agreement with the experimental values, with the calculated values 0.8 ± 0.4 % too large; the monoclinic angle was calculated 0.4° too large. The agreement of the calculated Raman frequencies with the observed ones was very good, with standard deviation ±3 cm?1 and maximum deviations of ±7 cm?1. Furthermore, a detailed discussion of the atomic displacements associated with each Raman mode is given.  相似文献   

20.
The feeding behavior of three species of mussels, the native Ischadium recurvum and the invasives Mytella charruana and Perna viridis, was studied in an invaded ecosystem in Florida (USA). In situ feeding experiments using the biodeposition method were performed along a salinity gradient in four different locations along the St. Johns River. Water characteristics, such as salinity, temperature, dissolved oxygen, and seston loads, were recorded to identify relationships between these variables and the feeding behavior of the mussels. Feeding behavior of the species varied by study site. Clearance, filtration, organic ingestion, and absorption rates of I. recurvum were negatively affected by salinity. For the invasive mussel, M. charruana, rejection was positively related to salinity while total ingestion, organic ingestion, and absorption rates were positively related to the percentage of organic matter in the seston. For P. viridis, total and organic ingestion rates were negatively affected by salinity but positively affected by total particulate matter. Condition indices for P. viridis and M. charruana were 13.16?±?0.64 and 6.63?±?0.43, respectively, compared to 4.82?±?0.41 for the native species I. recurvum, indicating that these mussels are well adapted to the environmental conditions in the area. This study indicates that the three species have different preferred habitats because of their specific responses to water characteristics. Thus, the invasive mussels will not totally occupy the niche of the native mussel in Florida despite overlapping zones. These data may help identify potential invaded areas and understand the extent of the invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号