首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
It is shown that the power ε generated by the solar wind-magnetosphere dynamo is transmitted to the convective motion of magnetospheric plasma. This convective motion generates what we may call the “Pedersen counterpart currents” in the magnetosphere and drives a large part of the “region 1 and 2” field-aligned currents which are closed by the Pedersen currents in the ionosphere. These results are based on a self-consistent set of the ionospheric current and potential distribution patterns obtained from a study of the International Magnetosphere Study Alaska meridian chain data.  相似文献   

2.
We discuss the high energy electron absorption signatures at Titan during the Cassini dayside magnetospheric encounters. We use the electron measurements of the Low Energy Measurement System of the Magnetospheric Imaging Instrument. We also examine the mass loading boundary based on the ion data of the Ion Mass Spectrometer sensor of the Cassini Plasma Spectrometer. The dynamic motion of the Kronian magnetopause and the periodic charged particle flux and magnetic field variations – associated with the magnetodisk of Saturn – of the subcorotating magnetospheric plasma creates a unique and complex environment at Titan. Most of the analysed flybys (like T25–T33 and T35–T51) cluster at similar Saturn Local Time positions. However the instantaneous direction of the incoming magnetospheric particles may change significantly from flyby to flyby due to the very different magnetospheric field conditions which are found upstream of Titan within the sets of encounters.The energetic magnetospheric electrons gyrate along the magnetic field lines of Saturn, and at the same time bounce between the mirror points of the magnetosphere. This motion is combined with the drift of the magnetic field lines. When these flux tubes interact with the upper atmosphere of Titan, their content is depleted over approximately an electron bounce period. These depletion signatures are observed as sudden drop-outs of the electron fluxes. We examined the altitude distribution of these drop-outs and concluded that these mostly detected in the exo-ionosphere of Titan and sometimes within the ionosphere.However there is a relatively significant scatter in the orbit to orbit data, which can be attributed to the which can be attributed to the variability of the plasma environment and as a consequence, the induced magnetosphere of Titan. A weak trend between the incoming electron fluxes and the measured drop-out altitudes has also been observed.  相似文献   

3.
For low velocities of convection, the normal component of the current near the magnetopause is calculated in a case when the magnetopause is a tangential discontinuity. It is shown that for the great pressure of the magnetospheric plasma this component of the current, closing through the ionosphere, create the global system of field-aligned currents which is consistent with the Triad data on the value, the direction and the distribution with the local time.  相似文献   

4.
Dynamic behavior of the coupled ionosphere-protonosphere system in the magnetospheric convection electric field has been theoretically studied for two plasmasphere models. In the first model, it is assumed that the whole plasmasphere is in equilibrium with the underlying ionosphere in a diurnal average sense. The result for this model shows that the plasma flow between the ionosphere and the protonosphere is strongly affected by the convection electric field as a result of changes in the volume of magnetic flux tubes associated with the convective cross-L motion. Since the convection electric field is assumed to be directed from dawn to dusk, magnetic flux tubes expand on the dusk side and contract on the dawn side when rotating around the earth. The expansion of magnetic flux tubes on the dusk side causes the enhancement of the upward H+ flow, whereas the contraction on the dawn side causes the enhancement of the downward H+ flow. Consequently, the H+ density decreases on the dusk side and increases on the dawn side. It is also found that significant latitudinal variations in the ionospheric structures result from the L-dependency of these effects. In particular, the H+ density at 1000 km level becomes very low in the region of the plasmasphere bulge on the dusk side. In the second model, it is assumed that the outer portion of the plasmasphere is in the recovery state after depletions during geomagnetically disturbed periods. The result for this model shows that the upward H+ flux increases with latitude and consequently the H+ density decreases with latitude in the region of the outer plasmasphere. In summary, the present theoretical study provides a basis for comparison between the equatorial plasmapause and the trough features in the topside ionosphere.  相似文献   

5.
Magnetospheric substorm in the magnetotail region is studied numerically by means of a three-dimensional MHD code. The analytic solution for the quiet magnetotail is emloyed as an initial configuration. The localized solar wind is modeled to enter the simulation domain through the boundaries located in the magnetotail lobe region. As a result of the interaction between the solar wind and the magnetosphere, the magnetic field lines are stretched, and the plasma sheet becomes thinner and thinner. When the current-driven resistivity is generated, magnetic reconnection is triggered by this resistivity. The resulting plasma jetting is found to be super-magnetosonic. Although the plasmoid formation and its tailward motion is not quite clear as in the two-dimensional simulation, which is mainly because of the numerical model chosen for the present simulation, the rarification of the plasmas near thex-point is observed. Field-aligned currents are observed in the late expansive stage of the magnetospheric substorm. These field-aligned currents flow from the tail toward the ionosphere on the dawn side and from the ionosphere toward the tail on the dusk side, namely in the same sence of the region 1 current. As the field-aligned currents develop, it is found that the cross-tail current in the Earthside midnight section of the magneticx-point is reduced.  相似文献   

6.
Plasma irregularities present in the solar wind are plasmoids, i.e. plasma-magnetic field entities. These actual plasmoids differ from ideal magnetohydrodynamic (MHD) filaments. Indeed, (1) their “skin” is not infinitely thin but has a physical thickness which is determined by the gyromotion of the thermal ions and electrons, (2) they are of finite extent and their magnetic flux is interconnected with the interplanetary magnetic flux, (3) when they penetrate into the magnetosphere their magnetic field lines become rooted in the ionosphere (i.e. in a medium with finite transverse conductivity), (4) the external Lorentz force acting on their boundary surface depends on the orientation of their magnetic moment with respect to the external magnetic field, (5) when their mechanical equilibrium is disturbed, hydromagnetic oscillations can be generated. It is also suggested that the front side of all solar wind plasmoids which have penetrated into the magnetosphere is the inner edge of the magnetospheric boundary layer while the magnetopause is considered to be the surface where the magnetospheric plasma ceases to have a trapped pitch angle distribution.  相似文献   

7.
Thermal H+ distributions have been measured as the European Space Agency GEOS-1 satellite passed through the late morning equatorial magnetosphere, plasmapause and plasmasphere. The unique capabilities of the on-board Supralhermal Plasma Analysers (SPA) have been used to overcome the retarding floating potential of the satellite and measure the velocity distribution of the cold protons. In the magnetosphere an enhanced source cone of such ions with a temperature of ~ 0.5 eV is a signature of the filling process occurring outside the plasmapause where flux tubes are relatively empty. In the plasmasphere the thermal H+ is essentially isotropic with a temperature less than 0.5 eV but the motion of the satellite introduces apparent drift.These measurements of cold proton velocity distribution now permit a reappraisal of the definition of the “plasmapause”. It becomes inappropriate to use an arbitrary empirical density, e.g. the conventional 10 cm ?3, in order to establish a boundary. It is now possible to identify a plasmapause interaction region where the two cold proton populations co-exist. This region generally lies Earthward of the 10 cm ?3 density level, has a width which is strongly dependent on magnetic activity and the temperature is typically between 0.5 and 1.5 eV. The change from “filled” to “unfilled” flux tubes relates to the physical processes which are occurring and the controlling electric field configuration; in particular, the last closed equipotential. Throughout this region, in going from the plasmasphere to the magnetosphere, the plasma drift motion is expected to change from corotation to a convection which is controlled by E ×B, and is predominantly Sunward due to the dawn-dusk electric field. Crossing the plasmapause on the morning side, little change in drift direction should occur but subtle variations in the ionic velocity distribution do reflect the change in the degree of flux tube density equilibrium.Our first direct measurement of the magnetospheric E × B drift has been reported previously but here measurements from a selected six day period show how the plasma in the plasmapause region responds to changing magnetospheric activity. The drift velocities cannot he derived with high accuracy but the analysis shows that the technique can provide a valid mapping of the magnelospheric electric field. In addition, since the magnetospheric cold plasma distribution is observed after it has come from the ionosphere, a distance of many Earth radii, the scattering and accelerating mechanisms along the flux tube can be studied. For this particular data-set taken in the late morning, the maximum potential drops along the flux tubes were less than a volt. The ionospheric proton source cone is observed to be broad, pitch angle scattering persists up to 40 or even 70°.Although these results throw new light on the plasmaspheric filling process one must recognise that, however the plasmapause is defined, it is not a simple matter to map this boundary from the equatorial plane down to low altitudes and the mid-latitude trough.  相似文献   

8.
The effect of parallel electrostatic field on the amplification of whistler mode waves in an anisotropic bi-Maxwellian weakly ionized plasma for Jovian magnetospheric conditions has been carried out. The growth rate for different Jovian magnetospheric plasma parameters forL = 5.6R j has been computed with the help of general dispersion relation for the whistler mode electromagnetic wave of a drifted bi-Maxwellian distribution function. It is observed that the growth or damping of whistler mode waves in Jovian magnetosphere is possible when the wave vector is parallel or antiparallel to the static magnetic field and the effect of this field is more pronounced at low frequency wave spectrum.  相似文献   

9.
The ionosphere of Jupiter's satellite Io, discovered by the Pioneer 10 radio-occultation experiment, cannot easily be understood in terms of a model of a gravitationally bound, Earth-like ionosphere. Io's gravitational field is so weak that a gravitationally bound ionosphere would probably be blown away by the ram force of the Jovian magnetospheric wind — i.e., the plasma corotating in the Jovian magnetosphere. We propose here a model in which the material for Io's atmosphere and ionosphere is drawn from the ionosphere of Jupiter through a Birkeland current system that is driven by the potential induced across Io by the Jovian corotation electric field. We argue that the ionization near Io is caused by a comet-like interaction between the corotating plasma and Io's atmosphere. The initial interaction employs the critical velocity phenomenon proposed many years ago by Alfvén. Further ionization is produced by the impact of Jovian trapped energetic electrons, and the ionization thus created is swept out ahead of Io in its orbit. Thus, we suggest that what has been reported as a day-night ionospheric asymmetry is in fact an upstream-downstream asymmetry caused by the Jovian magnetospheric wind.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30th May, 1978.  相似文献   

10.
It is shown that Birkeland current and vorticity in the magnetosphere are intimately related, suggesting the importance of taking explicit account of vorticity, particularly velocity shear, when considering magnetospheric motions. An equation of motion for the magnetosphere coupled to the ionosphere is derived. It is suggested that experience with MHD fluids generally might fruitfully be brought to bear on certain problems in the magnetosphere to answer the question, not ‘why a sheet of Birkeland current,’ but rather ‘why a localised velocity shear.’  相似文献   

11.
When a highly conducting magnetized plasma passes an object with lower conductivity, or a body with inhomogeneous conductivity, 2-D structures are formed, the so-called `Alfvén wings'. These structures may arise, for example, at a Jovian moon without an intrinsic magnetic field (Callisto). In this case, Alfvén wings could be generated in the magnetized Jovian magnetospheric plasma flow owing to the in homogeneity of the moon's ionosphere/atmosphere conductivity. Such Alfvén wings may be considered as a satellite magnetosphere; the satellite magnetospheric magnetic field is a disturbed field of the Jovian magnetospheric plasma flow. An analytical solution is obtained in a simple proposed model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
During a long series of recordings of the Doppler shift of signals from NLK, Seattle, which have propagated in ducts in the whistler mode, a number of occasions have been noted where the duct has been acted on by the electric field of micropulsation events in the Pc4–5 range. Large oscillations are produced in the Doppler shift of the received VLF signal.It is shown that the field line has an antinode of motion in the equatorial plane, and that the Doppler shift is responding almost entirely to the radial component of the duct motion. The latter enables a comparison to be made between the magnetic disturbance in the magnetosphere and that seen on the ground. Some support is given to the prediction of Hughes (1974) and Inoue (1973) that the magnetospheric disturbance vector when seen on the ground is rotated 90° by the currents induced in the ionosphere. Models of the oscillating field line enable an estimate to be made of the azimuthal component of the electric field in the equatorial plane. This is typically 1 mVm. The model also predicts the north-south magnetic field strength of the transverse standing wave at the base of the magnetosphere, and this value may be compared with that seen on the ground. Values of the order 1–2 times the ground H-component or 5–10 times the ground D-component were found.  相似文献   

13.
A theory of geomagnetic storms, auroras and associated effects is further developed. It depends on motions in the Earth's exosphere or magnetosphere initiated by a combination of pressure and frictional drag of the solar wind and modified and extended by electric fields and currents in the ionosphere. Motion may be non-divergent, streamline flow opposed only by Lorentz forces in the ionosphere and not propagating to Earth, or divergent, non-streamline motion opposed by Lorentz forces in the Earth. The two types of motion are coupled in the E region where the former is identified with free flow of Hall current and the generation of non-streamline motion. The latter is identified with blockage of Hall current, the creation of a polarization field and hence the generation of streamline motion.

A theory of all components of a geomagnetic storm is given in terms of combinations of these motions, and their distant, ionospheric and earth currents. This includes a new theory of the preliminary reverse part of the DS field and the transition from the sudden commencement to the main phase of the DS field. It is extended to introduce briefly a theory of auroras based mainly on ionospheric drifts caused by the magnetospheric motions.  相似文献   


14.
In this paper we offer a model for the Earth's ionosphere and plasmasphere, allowing for the inertia and anisotropic energy distribution of thermal plasma. A procedure for simultaneous solution of equations of continuity and motion for the O+ and H+ ions, subject to inertia terms, is described. The model also includes transfer equations for longitudinal and transversal thermal energies. The system of simulating equations and the kinetic equation for superthermal electron spectra are concordantly solved along geomagnetic field lines. Within the framework of the model we developed a study is made of the dynamics of filling of the evacuated plasmaspheric reservoir after a magnetospheric disturbance. It is shown that the filling of the tubes offorce with L ? 3.5 proceeds with supersonic speeds during the first several days and the character of filling differs very much from a diffusion-equilibrium one. The spatio-temporal behavior of electron and ion temperature anisotropy that is formed in the process of filling, is considered. It is found that the value of electron anisotropy can be large. A brief analysis is made of the causes of electron and ion temperature anisotropy.  相似文献   

15.
The effects of the orientation of the interplanetary magnetic field (IMF) on the structure of the distant magnetotail are studied by superposing a uniform magnetic field on a magnetospheric model. It is shown that a southward component of the IMF alone can reduce the closed field region in the magnetotail, while a northward turning of the IMF can produce a new closed field region. It is suggested that these two effects can explain thinning and thickening, respectively, of the plasma sheet during magnetospheric substorms without invoking internal instabilities.  相似文献   

16.
《Planetary and Space Science》1987,35(8):1009-1020
Latitudinal structures of discrete arcs are modelled as a consequence of the quasi-steady magnetosphere-ionosphere coupling involving viscous interaction between sunward and anti-sunward plasma flows in the magnetosphere. The quasi-steady state in the magnetosphere and ionosphere coupling is described by the magnetospheric and ionospheric current conservation and the field-aligned currentpotential relation assuming adiabatic electron motion along field lines. The upward and downward fieldaligned currents are assumed to be stably maintained by vorticity-induced space charges in the region of plasma flow reversal, where divergence of the magnetospheric electric field E is negative and positive, respectively. By introducing the effective conductance Σdc arising from the anomalous viscosity, a specific relation between the dc field-aligned current density J and the magnetospheric electric field E is derived as J=−ΣdcdivE. Sufficiently large potential drops to accelerate auroral electrons are shown to exist along the auroral field lines originating from the flow reversal region with div E < 0. It is shown that the latitudinal structure of a discrete arc is primarily determined by the magnetospheric potential structure and the characteristic width is on the order of 10 km at the ionospheric altitude.  相似文献   

17.
A study of the dawn-dusk asymmetry of the Venus nightside ionosphere is conducted by examining the configuration of the ionospheric trans-terminator flow around Venus and also the dawn-ward displacement of the region where most of the ionospheric holes and the electron density plateau profiles are observed (dawn meaning the west in the retrograde rotation of Venus and that corresponds to the trailing side in its orbital motion). The study describes the position of the holes and the density plateau profiles which occur at neighboring locations in a region that is scanned as the trajectory of the Pioneer Venus Orbiter (PVO) sweeps through the nightside hemisphere with increasing orbit number. The holes are interpreted as crossings through plasma channels that extend downstream from the magnetic polar regions of the Venus ionosphere and the plateau profiles represent cases in which the electron density maintains nearly constant values in the upper ionosphere along the PVO trajectory. From a collection of PVO passes in which these profiles were observed it is found that they appear at neighboring positions of the ionospheric holes in a local solar time (LST) map including cases where only a density plateau profile or an ionospheric hole was detected. It is argued that the ionospheric holes and the density plateau profiles have a common origin at the magnetic polar regions where plasma channels are formed and that the density plateau profiles represent crossings through a friction layer that is adjacent to the plasma channels. It is further suggested that the dawn-dusk asymmetry in the position of both features in the nightside ionosphere results from a fluid dynamic force (Magnus force) that is produced by the combined effects of the trans-terminator flow and the rotational motion of the ionosphere that have been inferred from the PVO measurements.  相似文献   

18.
The dynamics of the high latitude thermosphere are dominated by the ion circulation pattern driven by magnetospheric convection. The reaction of the neutral thermosphere is influenced by both the magnitude of the ion convection velocity and by the conductivity of the thermosphere. Using a threedimensional, time-dependent, thermospheric, neutral model together with different ionospheric models, the effect of changes in conductivity can be assessed. The ion density is described by two models: the first is the empirical model of Chiu (1975) appropriate for very quiet geomagnetic conditions, and the second is a modified version of the theoretical model of Quegan et al. (1982). The differences in the neutral circulation resulting from the use of these two ionospheric models emphasizes the need for realistic high latitude conductivities when attempting to model average or disturbed geomagnetic conditions, and a requirement that models should couple realistically the ionosphere and the neutral thermosphere. An attempt is made to qualitatively interpret some of the features of the neutral circulation produced at high latitudes by magnetospheric processes.  相似文献   

19.
We present a conceptual model of the formation of the plasma sheet and of its dynamical behavior in association with magnetospheric substorms. We assume that plasma mantle particles E×B drift toward the current sheet in the center of the tail where they are accelerated by magnetic-field annihilation to form the plasma sheet. Because of the velocity-dependent access of mantle particles to the current sheet, we argue that the convection electric field and the corresponding rate of field annihilation decrease with increasing radial distance. As a consequence, there exists no steady-state configuration for the plasma sheet, which must instead shrink continuously in thickness until the near-earth portion of the current sheet is disrupted by the formation of a magnetic neutral line. The current-sheet disruption launches a large-amplitude hydromagnetic wave which is largely reflected from the ionosphere. The reflected wave sets the neutral line in motion away from the earth; the neutral line comes to rest at a distance (which we estimate to be a few hundred earth radii) where the incoming mantle particles enter the current sheet at the local Alfvén velocity. At this “Alfvén point” reconnection ceases and the thinning of the plasma sheet begins again. Within this model, the magnetospheric substorm (which is associated with the current-sheet disruption) is a cyclical phenomenon whose frequency is proportional to the rate of convection in the magnetospheric tail.  相似文献   

20.
From the world distribution of geomagnetic disturbance, the connection between the electric current in the ionosphere, the field-aligned current and asymmetric equatorial ringcurrent in the magnetosphere is discussed. The partial ring-current in the afternoon-evening region, whose intensity is closely correlated with the AE-index, usually develops and decays earlier than the symmetric ring-current in the course of magnetic storms. The partial ringcurrent seems to have a direct connection with the positive geomagnetic bay in high latitudes in the evening hours through the ionizing effect of the particles leaking from the partial ringcurrent. The dawn-to-dusk electric field in the magnetospheric tail is transferred to the polar ionosphere, producing there the twin vortex Hall current responsible for polar cap geomagnetic variation. The magnetic effect of the associated Pedersen current in the ionosphere is shown to be small but still worth considering. The electrojet near midnight along the auroral oval is thought to appear when the electric conductivity of the ionosphere is locally increased under the presence of large scale dawn-to-dusk electric field. The occasional appearance of a localized abnormal geomagnetic disturbance with reversed direction near the geomagnetic pole seems to suggest the occasional reversal of electric field near the outer surface of the magnetospheric tail, especially when the interplanetary magnetic field is northward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号