首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the Everhart radau19 numerical integration method, the orbital evolution of the near-Earth asteroid 2003EH1 is investigated. This asteroid belongs to the Amor group and is moving on a comet-like orbit. The integrations are performed over one cycle of variation of the perihelion argument ω. Over such a cycle, the orbit intersect that of the Earth at eight different values of ω. The orbital parameters are different at each of these intersections and so a meteoroid stream surrounding such an orbit can produce eight different meteor showers, one at each crossing. The geocentric radiants and velocities of the eight theoretical meteor showers associated with these crossing points are determined. Using published data, observed meteor showers are identified with each of the theoretically predicted showers. The character of the orbit and the existence of observed meteor showers associated with 2003EH1 confirm the supposition that this object is an extinct comet.  相似文献   

2.
The meteoroid streams associated to short-period comets 9P/Tempel 1 (the target of the Deep Impact mission). and 67P/Churyumov-Gerasimenko (the target of the Rosetta mission) are studied. Their structure is overwhelmingly under the control of Jupiter and repeated relatively close encounters cause a reversal of the direction of the spatial distribution of the stream relative to the comet* an initial stream trailing the comet as usually seen eventually collapses, becomes a new stream leading the comet and even splits into several components. Although these two comets do not produce meteor showers on Earth, this above feature shows that meteor storms can occur several years before the perihelion passage of a parent body.  相似文献   

3.
The activity of a meteor shower is thought to be proportional to the activities through time of the parent comet. Recent applications of the dust trail theory provide us not only with a new method to forecast the occurrences and intensities of shower activities, but it is also offers a new approach to explore the history of past activities of the parent comet by retro-tracking its associated meteor showers. We introduce the result of an effort for relating meteor shower activities to the parent comet activities for which we chose the October Draconids and comet 21P/Giacobini-Zinner in this paper.  相似文献   

4.
Recent theoretical and observational work has shown that the asteroids belonging to the Taurid meteoroid complex have a cometary nature. If so, then they might possess related meteoroid streams producing meteor showers in the Earth atmosphere. We studied the orbital evolution of ten numbered Taurid complex asteroids by the Halphen-Goryachev method. It turned out that all of these asteroids are quadruple crossers relative to the Earth's orbit. Therefore their proposed meteoroid streams may in theory each produce four meteor showers. The theoretical orbital elements and geocentric radiants of these showers are determined and compared with the available observational data. The existence of the predicted forty meteor showers of the ten Taurid complex asteroids is confirmed by a search of the published catalogues of observed meteor shower radiants and orbits, and of the archives of the IAU Meteor Data Center (Lund). The existence of meteor showers associated with the Taurid Complex Asteroids confirms that, most likely, these asteroids are extinct comets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Object 2003 EH1 was recently identified as the parent body of the Quadrantid meteor shower. The origin of this body is still uncertain. We use data on 51 Quadrantid meteors obtained from double-station video observations as an insight on the parent body properties. A data analysis shows that the Quadrantids are similar to other meteor showers of cometary origin in some aspects, but in others to Geminid meteors. Quadrantid meteoroids have partially lost volatile component, but are not depleted to the same extent as Geminid meteoroids. In consideration of the orbital history of 2003 EH1, these results lead us to the conclusion that the parent body is a dormant comet.  相似文献   

6.
A new meteroid stream—October Ursa Majorids—was announced by Japanese observers on Oct. 14–16, 2006 (Uehara et al. 2006). Its weak manifestation was detected among coincidental major meteor showers (N/S Taurids, Orionids), as its meteors radiated from a higher placed radiant on the northern sky. We have tried to find out previous displays of the stream throughout available meteor orbits databases, and among ancient celestial phenomena records. Although we got no obvious identification, there are some indications that it could be a meteor shower of cometary origin with weak/irregular activity, mostly overlayed by regular coincidental meteor showers. With a procedure based on D-criterion (Southworth and Hawkins 1963) we found a few records in IAU MDC database of meteor photographic orbits which fulfill common similarity limits, for October Ursae Majorids. However, their real association cannot be established, yet. With respect to the mean orbit of this stream, we suggest for its parent body a long-period comet.  相似文献   

7.
D.K. Yeomans 《Icarus》1981,47(3):492-499
The distribution of dust surrounding periodic comet Tempel-Tuttle has been mapped by analyzing the associated Leonid meteor shower data over the 902–1969 interval. The majority of dust ejected from the parent comet evolves to a position lagging the comet and outside the comet's orbit. The outgassing and dust ejection required to explain the parent comet's deviation from pure gravitational motion would preferentially place dust in a position leading the comet and inside the comet's orbit. Hence it appears that radiation pressure and planetary perturbations, rather than ejection processes, control the dynamic evolution of the Leonid particles. Significant Leonid meteor showers are possible roughly 2500 days before or after the parent comet reaches perihelion but only if the comet passes closer than 0.025 AU inside or 0.010 AU outside the Earth's orbit. Although the conditions in 1998–1999 are optimum for a significant Leonid meteor shower, the event is not certain because the dust particle distribution near the comet is far from uniform. As a by-product of this study, the orbit of comet Tempel-Tuttle has been redetermined for the 1366–1966 observed interval.  相似文献   

8.
In order to assess the possibility of meteoroid streams detectable from the surface of Mars as meteor showers we have derived minimum distances and associated velocities for a large sample of small body orbits relative to the orbits of Mars and the Earth. The population ratio for objects approaching to within 0.2 AU of these two planets is found to be approximately 2:1. The smaller relative velocities in the case of Mars appears to be the main impediment to the detection of meteors in the upper atmosphere of that planet. We identify five bodies, including the unusual object (5335) Damocles and periodic comet 1P/Halley, with relative orbital parameters most suitable to produce prominent meteor showers. We identify specific epochs at which showers related to these bodies are expected to occur. An overview of possible detection methods taking into account the unique characteristics of the Martian environment is presented. We pay particular attention on the effects of such streams on the dust rings believed to be present around Mars.  相似文献   

9.
The process of the transition of a comet from an initial heliocentric parabolic orbit into a heliocentric elliptical (parabolic with different parameters or hyperbolic) trajectory is analyzed in terms of a pairwise three-dimensional two-body problem: Sun-comet and planet-comet. For the first time, analytical formulas are reported for the orbital parameters of the comet after it escapes the sphere of influence of a planet and is captured by the gravitational field of the Sun. The proposed model can explain the origin of the known families of short-period comets and allows for the prediction of the existence of uncatalogued short- and long-period comets and meteor showers. The model is used to localize the space-time domains to search for new comets and meteor showers in the Solar System.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 3, 2005, pp. 281–287.Original Russian Text Copyright © 2005 by Perov.  相似文献   

10.
The prime measurement objective of the Near Earth Object Chemical Analysis Mission (NEOCAM) is to obtain the ultraviolet spectra of meteors entering the terrestrial atmosphere from ∼125 to 300 nm in meteor showers. All of the spectra will be collected using a slitless ultraviolet spectrometer in Earth orbit. Analysis of these spectra will reveal the degree of chemical diversity in the meteors, as observed in a single meteor shower. Such meteors are traceable to a specific parent body and we know exactly when the meteoroids in a particular shower were released from that parent body (Asher, in: Arlt (ed.) Proc. International Meteor Conference, 2000; Lyytinen and van Flandern, Earth Moon Planets 82–83:149–166, 2000). By observing multiple apparitions of meteor showers we can therefore obtain quasi-stratigraphic information on an individual comet or asteroid. We might also be able to measure systematic effects of chemical weathering in meteoroids from specific parent bodies by looking for correlations in the depletions of the more volatile elements as a function of space exposure (Borovička et al., Icarus 174:15–30, 2005). By observing the relation between meteor entry characteristics (such as the rate of deceleration or breakup) and chemistry we can determine if our meteorite collection is deficient in the most volatile-rich samples. Finally, we can obtain a direct measurement of metal deposition into the terrestrial stratosphere that may act to catalyze atmospheric chemical reactions.  相似文献   

11.
Tempel—Tuttle彗星与近年的狮子座流星雨   总被引:1,自引:0,他引:1  
吴光节 《天文学报》2001,42(2):125-133
对狮子座流雨的历史进行了回顾和讨论,并利用“彗星-地球轨道分离(CEOS)及地球滞后彗星时间(TE-C)”统计图进行分析,发现几乎所有的狮子座流星都位于一个倾斜的方框内,而这倾斜方框械右边界的斜率大约为15m/s,方框的宽度大约为4yr,它表明,33年一度的狮子座流星雨一般不会有超过4年的爆发期,更细致的分析表明,最强的流星暴位于一弯曲的细窄条带,在慧星一次回归期,亮流星的比例将年衰减,这些事实,可以用运动,碎裂,扩散和尘埃彗尾模型进行解释,由15m/s速度得到的流星体尺度大小也与事实相容,并且,这表明与地球相遇的流星体粒子是以有限的速度偏离彗星时间(TE-C)就越长,由此倾斜方框的存在,可以对未来狮子座流星雨进行了预报,表明在1998-2000年期间将有较强的狮子座流星雨,中心在1999年,至于2000年以后,要在100多年以后才会有较强的流星暴,而狮子座流星雨的辉煌期可以说已经过去。  相似文献   

12.
Meteors are streaks of light seen in the upper atmosphere when particles from the inter-planetary dust complex collide with the Earth. Meteor showers originate from the impact of a coherent stream of such dust particles, generally assumed to have been recently ejected from a parent comet. The parent comets of these dust particles, or meteoroids, fortunately, for us tend not to collide with the Earth. Hence there has been orbital changes from one to the other so as to cause a relative movement of the nodes of the meteor orbits and that of the comet, implying changes in the energy and/or angular momentum. In this review, we will discuss these changes and their causes and through this place limits on the ejection process. Other forces also come into play in the longer term, for example perturbations from the planets, and the effects of radiation pressure and Poynting–Robertson drag. The effect of these will also be discussed with a view to understanding both the observed evolution in some meteor streams. Finally we will consider the final fate of meteor streams as contributors to the interplanetary dust complex.  相似文献   

13.
Jack D. Drummond 《Icarus》1981,45(3):545-553
A reevaluation of the comet/meteor shower and shower/shower associations suggested by Cook (1973, in Evolutionary and Physical Properties of Meteoroids, U.S. Govt. Printing Office, Washington, D.C., NASA SP-319) is made using two orbital discriminant techniques. Twenty-six of his pairings are confirmed, five are rejected, and one new match is found; Comet Ikeya (1964 VIII) is asserted to be the source of the ? Geminids, bringing to sixteen the number of comets which produce meteor showers in Cook's list. No known asteroid shows a convincing relationship to any of the showers.  相似文献   

14.
Various points are discussed concerning the association of Earth-crossing asteroids (ECAs) with meteoroid streams, including the drawbacks of the techniques used in some previous work. In comparing the theoretical radiants of any ECA (or, indeed, comet) with observed meteor radiants it is necessary that the orbit used be that appropriate for epochs when the ECA has a node at 1 AU; in each precession cycle of the argument of perihelion () there will be four values rendering a node at the Earth's orbit, so that four showers are expected. Precession of the node will result in sets of showers at different times of year from different-precession cycles, whilst for some objects the orbital evolution is more convoluted. For diffuse, low-flux showers a problem is differentiating the meteors associated with any ECA from the sporadic background; a new graphical technique is introduced for illuminating whether such associations exist. A re-evaluation is required of whether ECAs should be thought of as being parent bodies of specific showers. Although this might be the case for some very large ECAs (such as (3200) Phaethon, associated with the Geminid stream), the bodies observed now being extinct or dormant cometary cores, it is suggested that in general the ECAs are better thought of as being large fragments produced in hierarchical cometary disintegrations. That is, some ECAs are just the largest meteoroids in meteoroid streams.  相似文献   

15.
We have simulated the formation and evolution of comet 1P/Halley’s meteoroid stream by ejecting particles from the nucleus 5000 years ago and propagating them forward to the present. Our aim is to determine the existence and characteristics of associated meteor showers at Mars and Venus and compare them with 1P/Halley’s two known showers at the Earth. We find that one shower should be present at Venus and two at Mars. The number of meteors in those atmospheres would, in general, be less than that at the Earth. The descending node branch of the Halley stream at Mars exhibits a clumpy structure. We identified at least one of these clumps as particles trapped in the 7:1 mean motion resonance with Jupiter, potentially capable of producing meteor ourbursts of ZHR∼1000 roughly once per century.  相似文献   

16.
A new scheme for simulating meteor showers is introduced, based on a hybridization of current numerical modelling techniques. It involves an iterative method that generates particles which hit a real-scale Earth, removing the spatial and temporal blurring common to other modelling techniques. The scheme is applied to the activity profile of the Leonids 2001 using three different models of meteoroid ejection velocity and then applied to the Leonids 1998–2000 using the most favourable models. It is shown that to reproduce the observed meteor activity profiles there must be a strong concentration of ejection around perihelion. The modelling also implies that meteoroid density must be towards the higher end of the currently acceptable range, although the derived limits are not independent of the ejection velocity model. We also find that the extreme narrowness of Leonid activity peaks is not easily reproduced with outgassing over the entire day side of the comet but it is fitted well by outgassing in a restricted direction as one would expect from an outgassing jet. In addition, we show that double-peaked features, corresponding to a semihollow meteoroid streamlet, can arise in a meteor shower activity profile from outgassing during a single perihelion passage of the parent comet. It is suggested that this process caused the double-peaked feature in the first maxima of the 2001 Leonids.  相似文献   

17.
The spatial structure of meteor streams, and the activity profiles of their corresponding meteor showers, depend firstly on the distribution of meteoroid orbits soon after ejection from the parent comet nucleus, and secondly on the subsequent dynamical evolution. The latter increases in importance as more time elapses. For younger structures within streams, notably the dust trails that cause sharp meteor outbursts, it is the cometary ejection model (meteoroid production rate as a function of time through the several months of the comet’s perihelion return, and velocity distribution of the meteoroids released) that primarily determines the shape and width of the trail structure. This paper describes how a trail cross section can be calculated once an ejection model has been assumed. Such calculations, if made for a range of ejection model parameters and compared with observed parameters of storms and outbursts, can be used to constrain quantitatively the process of meteoroid ejection from the nucleus, including the mass distribution of ejected meteoroids.  相似文献   

18.
Probably most meteor showers have a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers is necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

19.
Probably most meteor showers have a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers is necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

20.
Probably the majority of meteor showers has a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers are necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号