首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Both observations and simulations reveal large inhomogeneities in magnetic field distributions in diffuse plasmas. Incorporating these inhomogeneities into various calculations can significantly change the inferred physical conditions. In extragalactic sources, e.g., these can compromise analyses of spectral ageing, which I will illustrate with some current work on cluster relics. I also briefly re-examine the old issue of how inhomogeneous fields affect particle lifetimes; perhaps not surprisingly, the next generation of radio telescopes are unlikely to find many sources that can extend their lifetimes from putting relativistic electrons into a low-field ‘freezer’. Finally, I preview some new EVLA results on the complex relic in Abell 2256, with implications for the interspersing of its relativistic and thermal plasmas.  相似文献   

2.
Alfvénic waves are thought to play an important role in coronal heating and solar wind acceleration. Recent observations by Hinode/SOT showed that the spicules mostly exhibit upward propagating high frequency waves. Here we investigate the dissipation of such waves due to phase mixing in stratified environment of solar spicules. Since they are highly dynamic structures with speeds at about significant fractions of the Alfvén phase speed, we take into account the effects of steady flows. Our numerical simulations show that in the presence of stratification due to gravity, damping takes place in space than in time. The exponential damping low, \operatornameexp(-\operatornameAt3)\operatorname{exp}(-\operatorname{At}^{3}), is valid under spicule conditions, however the calculated damping time is much longer than the reported spicule lifetimes from observations.  相似文献   

3.
Gadun  A.S.  Solanki  S.K.  Sheminova  V.A.  Ploner  S.R.O. 《Solar physics》2001,203(1):1-7
We present 2-D, fully compressible radiation-MHD simulations of the solar photospheric and subphotospheric layers that run for 2 hours of solar time starting from a magnetic configuration with mixed polarities. In the atmospheric layers the simulation reveals a correlation between field strength and inclination, with a nearly vertical strong-field magnetic component and a more horizontal weak-field component, in agreement with the observations. Our simulation also shows that magnetic flux is converted from one of these states to the other. In particular, magnetic flux sheets can also be formed when a new downflow lane starts due to granule fragmentation. The dynamics of the granulation and field-line reconnection are found to play a role in the initial stages of a magnetic element's formation. The simulation predicts that during or shortly after their formation magnetic elements could be associated with oppositely polarized flux at a small spatial scale.  相似文献   

4.
Space-time variations of pressure in the solar photosphere are reproduced based on the results of observations in the Fe I line. Local internal gravity waves (IGWs) are isolated by means of proper filtering. A method of determination of the phase velocities of IGWs based on 1D observations is developed. Horizontal and vertical projections of the phase velocities of isolated IGWs with different periods are determined. It is shown that the phase velocity of an IGW decreases significantly with a decrease in oscillation frequency. The horizontal wavelengths of gravity waves with periods ranging from 5 to 60 minutes are commensurable with the granulation scales. The dispersive properties of gravity waves are studied.  相似文献   

5.
R. Muller 《Solar physics》1985,100(1-2):237-255
The observed properties of the small-scale features visible in the quiet photosphere — the granulation, of convective origin, and the network bright points, associated with kG magnetic fields — are described. The known properties of the magnetic flux tubes associated with network bright points are also presented. Empirical models derived from the observations are discussed, as well as a few theoretical models of particular importance for the understanding of the origin of the small-scale features of the quiet photosphere. Finally, the observational evidences showing that the structure of the granulation and of the photospheric network are varying over the solar cycle are reported.  相似文献   

6.
The decrease in the rms contrast of time-averaged images with the averaging time is compared between four data sets: (1) a series of solar granulation images recorded at La Palma in 1993, (2) a series of artificial granulation images obtained in numerical simulations by Rieutord et al. (Nuovo Cimento 25, 523, 2002), (3) a similar series computed by Steffen and his colleagues (see Wedemeyer et al. in Astron. Astrophys. 44, 1121, 2004), (4) a random field with some parameters typical of the granulation, constructed by Rast (Astron. Astrophys. 392, L13, 2002). In addition, (5) a sequence of images was obtained from real granulation images by using a temporal and spatial shuffling procedure, and the contrast of the average of n images from this sequence as a function of n is analysed. The series (1) of real granulation images exhibits a considerably slower contrast decrease than do both the series (3) of simulated granulation images and the series (4) of random fields. Starting from some relatively short averaging times t, the behaviour of the contrast in series (3) and (4) resembles the t −1/2 statistical law, whereas the shuffled series (5) obeys the n −1/2 law from n=2 on. Series (2) demonstrates a peculiarly slow decline of contrast, which could be attributed to particular properties of the boundary conditions used in the simulations. Comparisons between the analysed contrast-variation laws indicate quite definitely that the brightness field of solar granulation contains a long-lived component, which could be associated with locally persistent dark intergranular holes and/or with the presence of quasi-regular structures. The suggestion that the random field (4) successfully reproduces the contrast-variation law for the real granulation (Rast in Astron. Astrophys. 392, L13, 2002) can be dismissed.  相似文献   

7.
The radiative lifetimes of cometary OH are calculated as a function of the heliocentric velocity of the comet and the velocity distributions of the product atoms are determined. At a distance of 1 AU from the Sun, the lifetimes vary between 1.2×105 and 1.9×105 sec at solar minimum and between 1.0×105 and 1.4×105 sec at solar maximum, depending upon velocity. Continuous absorption into the repulsive 12Σ- state is major destruction path. The calculated lifetimes are generally consistent with the lifetimes inferred from observations, but suggest some elaboration of the models is necessary. Photodissociation of OH produces a low-velocity component of hydrogen atoms at 8 km sec?1 relative to the parent OH molecule and a high-velocity component between 17 and 27 km sec?1. Photodissociation of OH leads to metastable O(1D) and O(1S) and is an additional source of the red and green line emission of atomic oxygen. The lifetime of OD is estimated to be about 4.3× 105 sec at solar minimum and 2.6×105 sec at solar maximum so that the OD/OH ratio in comets is enhanced relative to the HDO/H2O production ratio by a factor between 2 and 3. Photodissociation of OD produces only high-velocity D atoms with a mean value of 17 km sec?1.  相似文献   

8.
The presence of solar coronal holes can be inferred from one-dimensional east-west scans at 692 and 1415 MHz. The scans indicate that coronal holes are stable structures with low-emissive characteristics and with lifetimes which can span several solar rotations, in agreement with observations using other techniques. This work focuses on the first half of 1973. The 1415 MHz data presented for this period show the radio analogues of two coronal holes, commonly referred to as CH1 and CH3. These holes were observed at soft X-ray and XUV wavelengths with the Skylab satellite and at EUV with the OSO-7 satellite. The analysis is then extended to cover the period from 1968 to 1974 with a central meridian passage date and a subjective classification being assigned to each coronal hole observation. This information is tabulated and provides a consistent set of coronal hole observations during the maximum and declining phases of solar cycle 20.  相似文献   

9.
Quantitative helioseismology and asteroseismology require very precise measurements of the frequencies, amplitudes, and lifetimes of the global modes of stellar oscillation. The precision of these measurements depends on the total length (T), quality, and completeness of the observations. Except in a few simple cases, the effect of gaps in the data on measurement precision is poorly understood, in particular in Fourier space where the convolution of the observable with the observation window introduces correlations between different frequencies. Here we describe and implement a rather general method to retrieve maximum likelihood estimates of the oscillation parameters, taking into account the proper statistics of the observations. Our fitting method applies in complex Fourier space and exploits the phase information. We consider both solar-like stochastic oscillations and long-lived harmonic oscillations, plus random noise. Using numerical simulations, we demonstrate the existence of cases for which our improved fitting method is less biased and has a greater precision than when the frequency correlations are ignored. This is especially true of low signal-to-noise solar-like oscillations. For example, we discuss a case where the precision of the mode frequency estimate is increased by a factor of five, for a duty cycle of 15%. In the case of long-lived sinusoidal oscillations, a proper treatment of the frequency correlations does not provide any significant improvement; nevertheless, we confirm that the mode frequency can be measured from gapped data with a much better precision than the 1/T Rayleigh resolution.  相似文献   

10.
J. D. Bohlin 《Solar physics》1977,51(2):377-398
The disk boundaries of coronal holes have been systematically determined from XUV observations taken during the manned Skylab missions (June 1973–January 1974). The resulting Atlas was used to find the sizes, global distributions, differential rotation rates, growth/decay rates and lifetimes of holes during this period. The polar cap holes together covered 15% of the Sun's total surface area, a number which remained surprisingly constant throughout Skylab despite the fact that each pole was independently evolving in time. Lower latitude holes contributed another 2 to 5%. The anomalous differential rotation law derived for a large north-south hole by Timothy et al. (1975) has been confirmed. However, other Skylab holes were too low in latitude to demonstrate the generality of this result. The average growth/decay rate for holes was 1.5 × 104 km2 s-1, in excellent agreement with the value used by Leighton (1964) for his successful treatment of the surface transport of solar magnetic fields. The lifetimes of lower-latitude holes are found to regularly exceed 5 solar rotations, in good agreement with the lifetimes of recurrent geomagnetic storms with which holes are now known to be associated.  相似文献   

11.
Based on Hinode SOT/NFI observations with greatly improved spatial and temporal resolution and polarization sensitivity, the lifestory of the intranetwork (IN) magnetic elements are explored in a solar quiet region. A total of 2282 IN elements are followed from their appearance to disappearance and their fluxes measured. By tracing individual IN elements their lifetimes are obtained, which fall in the range from 1 to 20 min. The average lifetime is 2.9±2.0 min. The observed lifetime distribution is well represented by an exponential function. Therefore, the e-fold characteristic lifetime is determined by a least-square fitting to the observations, which is 2.1±0.3 min. The lifetime of IN elements is correlated closely with their flux. The evolution of IN elements is described according to the forms of their birth and disappearance. Based on the lifetime and flux obtained from the new observations, it is estimated that the IN elements have the capacity of heating the corona with a power of 2.1×1028 erg s−1 for the whole Sun.  相似文献   

12.
We report results of collisional N -body simulations aimed at studying the N dependence of the dynamical evolution of star clusters. Our clusters consist of equal-mass stars and are in virial equilibrium. Clusters moving in external tidal fields and clusters limited by a cut-off radius are simulated. Our main focus is to study the dependence of the lifetimes of the clusters on the number of cluster stars and the chosen escape condition.
We find that star clusters in external tidal fields exhibit a scaling problem in the sense that their lifetimes do not scale with the relaxation time. Isolated clusters show a similar problem if stars are removed only after their distance to the cluster centre exceeds a certain cut-off radius. If stars are removed immediately after their energy exceeds the energy necessary for escape, the scaling problem disappears.
We show that some stars that gain the energy necessary for escape are scattered to lower energies before they can leave the cluster. As the efficiency of this process decreases with increasing particle number, it causes the lifetimes not to scale with the relaxation time. Analytic formulae are derived for the scaling of the lifetimes in the different cases.  相似文献   

13.
Spectrophotometric observations of Comet Austin (1982g) in the bands of CN, C2, and C3 are presented, and fit to a Haser model for the cometary brightness distribution. The lifetimes of the parent and daughter molecules, as well as the velocity of the molecules leaving the cometary surface are determined from the model fit. The absolute production rate of molecules is also determined.  相似文献   

14.
It is suggested here that the laminar character of the large-scale deep convective flows appearing in numerical simulations of the convective envelope of the Sun arises from the effect of turbulent eddy viscosity. Previously, M. Schwarzschild suggested the same idea to explain the observed surface granulation in the Sun.  相似文献   

15.
The Atmospheric Model Intercomparison Project (AMIP) conducted simulations by 30 different atmospheric general circulation models forced by observed sea surface temperatures for the 10-year period, 1979–1988. These models include a variety of different soil moisture parameterizations which influence their simulations of the entire land surface hydrology, including evaporation, soil moisture, and runoff, and their simulations of the energy balance at the surface. Here we compare these parameterizations, and evaluate their simulations of soil moisture by comparing them with actual observations of soil moisture, literally ground truth. We compared model-generated ‘data sets' and simulations of soil moisture with observations from 150 stations in the former Soviet Union for 1979–1985 and Illinois for 1981–1988. The spatial patterns, mean annual cycles, and interannual variations were compared to plant-available soil moisture in the upper 1 m of soil. The model-generated ‘data sets' are quite different from the observations, and from each other in many regions, even though they use the same bucket model calculation method. The AMIP model simulations are also quite different from each other, especially in the tropics. Models with 15-cm field capacities do not capture the observed large high latitude values of soil moisture. In addition, none of the models properly simulate winter soil moisture variations in high latitudes, keeping soil moisture constant, while observations show that soil moisture varies in the winter as much as in other seasons. The observed interannual variations of soil moisture were not captured by any of the AMIP models. Several models have large soil moisture trends during the first year or two of the AMIP simulations, with potentially large impacts on global hydrological cycle trends and on other climate elements. This is because the simulations were begun without spinning up the soil moisture to the model climatology. The length of time it took for each to reach equilibrium depended on the particular parameterization. Although observed temporal autocorrelation time scales are a few months, some models had much longer time scales than that. In particular, the three parameterizations based on the Simple Biosphere model (SiB) had trends in some regions for virtually the entire AMIP simulation period.  相似文献   

16.
The power spectra of temperature and vertical velocity variations in the solar photosphere are calculated using the data obtained through observations of a nonperturbed region near the solar disk center in the neutral iron line λ ≈ 639.3 nm conducted at the 70 cm German Vacuum Tower Telescope (VTT) located in the Canary Islands (Spain). The variations of these spectra with altitude are analyzed. It is found that the primary power in the lower photosphere is localized in the range of frequencies that correspond to granulation with a peak at the λ ≈ 1.5–2.0 Mm scale and is reduced with altitude, the power spectrum maximum in the upper photospheric layers is shifted towards larger scales (Δλ ≤ 1 Mm), and the power of variations of the vertical supergranulation velocity (λ ≈ 20–30 Mm) virtually does not change with altitude. An isolated mesogranulation regime (λ ≈ 5–12 Mm) is not found at any of the studied altitudes. The obtained results suggest that the convective structure of the solar photosphere at mesogranulation scales behaves like granulation: the mesostructures are a part of an extended distribution of granulation scales. It is shown that the supergranulation flows are stable throughout the entire photosphere and reach much higher altitudes than the granulation flows.  相似文献   

17.
The theory of periodical shear flow is applied for the exploration of the effect of solar granulation on highfrequency waves in the solar photosphere. It is shown that upgoing and downgoing waves are trapped in intergranular spaces and granules, respectively. Upgoing waves in fast downflows are unstable. The theory is in a good agreement with observations.  相似文献   

18.
The radiation field, emergent from an inhomogeneous atmosphere, may differ significantly from that calculated using a mean model for such an atmosphere. In the solar case, horizontal anisotropy of the granulation pattern leads to azimuthal dependence of the emergent intensity, and this appears as a latitude-dependent limb flux which may mimic oblateness. We examine this latitude-dependence for several two and three-dimensional models of the inhomogeneous solar atmosphere, with varying degrees of anisotropy in the granulation pattern. Elongation along an east-west axis of about 7% would yield a signal somewhat imperfectly mimicking an excess oblateness of 4 × 10–5. Using the Babcock-Leighton model of the general solar magnetic field we show that some stretching of granules, of this order of magnitude, should be expected. However, it may vary with the solar activity cycle, and in any case the result is very sensitive to the parameters adopted. Even if study of granulation observations should exclude elongations as high as 7%, smaller essentially undetectable elongations may exist. We find that 1 % elongation can account for 25–50 % of a signal corresponding to excess oblateness 4 × 10–5. We conclude that anisotropy of the granulation pattern may influence oblateness determinations; when this is considered together with other effects, much of the claimed oblateness may be eliminated.  相似文献   

19.
In this paper we analyse the flux emergence that occurred in the following polarity area of an active region on 1 – 2 December 2006. Observations have revealed the existence of fast outflows at the edge of the emerging flux region. We have performed 3-D numerical simulations to study the mechanisms responsible for these flows. The results indicate that these outflows are reconnection jets or pressure-driven outflows, depending on the relative orientation of the magnetic fields in contact (i.e. the emerging flux and the active region’s field which is favourable for reconnection on the west side and nearly parallel with the pre-existing field on the east side of the emerging flux). In the observations, the flows are larger on the west side until late in the flux emergence, when the reverse is true. The simulations show that the flows are faster on the west side, but do not show the east flows increasing with time. There is an asymmetry in the expansion of the emerging flux region, which is also seen in the observations. The west side of the emerging flux region expands faster into the corona than the other side. In the simulations, efficient magnetic reconnection occurs on the west side, with new loops being created containing strong downflows that are clearly seen in the observations. On the other side, the simulations show strong compression as the dominant mechanism for the generation of flows. There is evidence of these flows in the observations, but the flows are stronger than the simulations predict at the later stages. There could be additional small-angle reconnection that adds to the flows from the compression, as well as reconnection occurring in larger loops that lie across the whole active region.  相似文献   

20.
We study the pattern speed of the bar in NGC 7479 by comparing observations with numerical simulations of gas flow in a two-dimensional gravitational potential, derived from observations. The best agreement between the observations and the modelling is achieved for the fast bar pattern speed of 27 km s−1 kpc−1, when the corotation radius is at 50 arcsec, i.e. 1.1 times the radial length of the bar. This result is supported by the gas and dust lane morphologies, star formation distribution, projected velocity field and overall morphology. We find that star formation is most likely to be triggered close to the large-scale shocks and dust lanes in the bar. The net gas inflow rate in the simulations at 1-kpc radius is 4–6 M⊙ yr−1 at intermediate times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号