首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When asteroids are in the secular resonance 6, the variation of the eccentricity becomes very large. In this paper, the dynamics of this secular resonance 6 is investigated by a simple analytical model, in which the third degree terms of the eccentricity and inclination are taken into account. The eccentricity variations of asteroids located near this resonance are represented clearly by the diagrams of equi-Hamiltonian curves on the plane of versuse ( the longitude of perihelion of asteroids and Saturn,e: the eccentricity of asteroids). These diagrams predict that the eccentricity of these asteroids suffers a large increase or decrease, and that the secular resonance argument librates about 0° and 180°. In order to confirm these predictions, numerical integrations are carried out over one million years. By these integrations, it is found that the eccentricity of secular resonant asteroids becomes more than 0.8, and that the libration about 0° also exists, as well as the libration about 180°. The strongly depopulated region in the asteroidal belt, which corresponds to the position of the secular resonance 6, is also explained well by this analytical model.  相似文献   

2.
Expansions of the functions (r/a)cos jv and (r/a)m sin jv of the elliptic motion are extended to highly eccentric orbits, 0.6627 ... <e<1. The new expansions are developed in powers of (e–e*), wheree* is a fixed value of the eccentricity. The coefficients of these expansions are expressed in terms of the derivatives of Hansen's coefficients with respect to the eccentricity. The new expansions are convergent for values of the eccentricity such that |e–e*|<(e*), where the radius of convergence (e*) is the same of the extended solution of Kepler's equation. The new expansions are intrinsically related to Lagrange's series.  相似文献   

3.
The non-linear differential equation , wherep(t) is a periodic square wave function of time with period , has been integrated by using a table of Jacobian elliptic functions. In the neighborhood of a typical elliptic fixed point, namely that for 11, 12-decimal accuracy has been used to determine a region which is stable.  相似文献   

4.
A problem of stability of odd 2-periodic oscillations of a satellite in the plane of an elliptic orbit of arbitrary eccentricity is considered. The motion is supposed to be only under the influence of gravitational torques.Stability of plane oscillations was investigated earlier (Zlatoustovet al., 1964) in linear approximation. In the present paper a problem of stability is solved in the non-linear mode. Terms up to the forth order inclusive are taken into consideration in expansion of Hamiltonian in a series.It is shown that necessary conditions of stability obtained in linear approximation coincide with sufficient conditions for almost all values of parameters ande (inertial characteristics of the satellite and eccentricity of the orbit). Exceptions represent either values of the parameters ,e when a problem of stability cannot be solved in a strict manner by non-linear approximation under consideration, or values of the parameters which correspond to resonances of the third and fourth orders. At the resonance of the third order oscillations are unstable, but at the resonance of the fourth order both unstability and stability of the satellite's oscillations take place depending on the values of the parameters ,e.  相似文献   

5.
This work considers periodic solutions, arc-solutions (solutions with consecutive collisions) and double collision orbits of the plane elliptic restricted problem of three bodies for =0 when the eccentricity of the primaries,e p , varies from 0 to 1. Characteristic curves of these three kinds of solutions are given.  相似文献   

6.
This study presents a method of obtaining asymptotic approximations for motions near a Lagrange point in the planar, elliptic, restricted three-body problem by using a von Zeipel-type method. The calculations are carried out for a second-order escape solution in the proximity of the equilateral Lagrange point, L 4, where the primaries' orbital eccentricity is taken as the small parameter .  相似文献   

7.
Some classic expansions of the elliptic motion — cosmE and sinmE — in powers of the eccentricity are extended to highly eccentric orbits, 0.6627...<e<1. The new expansions are developed in powers of (ee*), wheree* is a fixed value of the eccentricity. The coefficients are given in terms of the derivatives of Bessel functions with respect to the eccentricity. The expansions have the same radius of convergence (e*) of the extended solution of Kepler's equation, previously derived by the author. Some other simple expansions — (a/r), (r/a), (r/a) sinv, ..., — derived straightforward from the expansions ofE, cosE and sinE are also presented.  相似文献   

8.
We study the linear stability of the triangular points in the elliptic restricted problem by determining the characteristic exponents with a convergent method of iteration which in essence was introduced by Cesari (1940). We obtain the general term of such exponents as a power series in the eccentricity of the primaries, valid for sufficiently small and at all values of except one in the interval of stability of the circular problem.  相似文献   

9.
Analytical techniques are employed to demonstrate certain invariant properties of families of moon-to-earth trajectories. The analytical expressions which demonstrate these properties have been derived from an earlier analytical solution of the restricted three-body problem which was developed by the method of matched asymptotic expansions. These expressions are given explicitly to orderµ 1/2 where is the dimensionless mass of the moon. It is also shown that the inclusion of higher order corrections does not affect the nature of the invariant properties but only increases the accuracy of the analytic expressions.The results are compared with the work of Hoelker, Braud, and Herring who first discovered invariant properties of earth-to-moon trajectories by exact numerical integration of the equations of motion. (Similar properties for moon-to-earth trajectories follow from the principle of reflection). In each instance the analytical expressions result in properties which are equivalent, to orderµ 1/2, with those found by numerical integration. Some quantitative comparisons are presented which show the analytical expressions to be quite accurate for calculating particular geometrical characteristics.

Nomenclature

Orbital Elements near the Moon energy - angular momentum - semi-major axis - eccentricity - inclination - argument of node - argument of pericynthion Orbital Elements near the Earth h e energy - l e angular momentum - i inclination - argument of node - argument of perigee - t f time of flight Other symbols parameters used in matehing - U a function of the energy near the earth - a function of the angular momentum near the earth - r p perigee radius - perincynthion radius - radius at node near moon - true anomaly of node near moon - initial angle between node near moon and earth-moon line - a function ofU, , andi - earth phase angle - dimensionless mass of the moon - U 0, U1 U=U 0+U 1 - i 0, i1/2, i1 i=i 0+µ 1/2 i 1/2+µ i 1 - 0, 1/2, 1 = 0+µ 1/2 i 1/2+µ i 1 - p longitude of vertex line - n latitude of vertex line - R o ,S o ,N o functions ofU 0 and - a function ofU 0, and   相似文献   

10.
We present numerical results of the so-called Sitnikov-problem, a special case of the three-dimensional elliptic restricted three-body problem. Here the two primaries have equal masses and the third body moves perpendicular to the plane of the primaries' orbit through their barycenter. The circular problem is integrable through elliptic integrals; the elliptic case offers a surprisingly great variety of motions which are until now not very well known. Very interesting work was done by J. Moser in connection with the original Sitnikov-paper itself, but the results are only valid for special types of orbits. As the perturbation approach needs to have small parameters in the system we took in our experiments as initial conditions for the work moderate eccentricities for the primaries' orbit (0.33e primaries 0.66) and also a range of initial conditions for the distance of the 3 rd body (= the planet) from very close to the primaries orbital plane of motion up to distance 2 times the semi-major axes of their orbit. To visualize the complexity of motions we present some special orbits and show also the development of Poincaré surfaces of section with the eccentricity as a parameter. Finally a table shows the structure of phase space for these moderately chosen eccentricities.  相似文献   

11.
A mapping model is constructed to describe asteroid motion near the 3 : 1 mean motion resonance with Jupiter, in the plane. The topology of the phase space of this mapping coincides with that of the real system, which is considered to be the elliptic restricted three body problem with the Sun and Jupiter as primaries. This model is valid for all values of the eccentricity. This is achieved by the introduction of a correcting term to the averaged Hamiltonian which is valid for small values of the ecentricity.We start with a two dimensional mapping which represents the circular restricted three body problem. This provides the basic framework for the complete model, but cannot explain the generation of a gap in the distribution of the asteroids at this resonance. The next approximation is a four dimensional mapping, corresponding to the elliptic restricted problem. It is found that chaotic regions exist near the 3 : 1 resonance, due to the interaction between the two degrees of freedom, for initial conditions close to a critical curve of the circular model. As a consequence of the chaotic motion, the eccentricity of the asteroid jumps to high values and close encounters with Mars and even Earth may occur, thus generating a gap. It is found that the generation of chaos depends also on the phase (i.e. the angles andv) and as a consequence, there exist islands of ordered motion inside the sea of chaotic motion near the 3 : 1 resonance. Thus, the model of the elliptic restricted three body problem cannot explain completely the generation of a gap, although the density in the distribution of the asteroids will be much less than far from the resonance. Finally, we take into account the effect of the gravitational attraction of Saturn on Jupiter's orbit, and in particular the variation of the eccentricity and the argument of perihelion. This generates a mixing of the phases and as a consequence the whole phase space near the 3 : 1 resonance becomes chaotic. This chaotic zone is in good agreement with the observations.  相似文献   

12.
The orbits of Titan and Hyperion represent an interesting case of orbital resonance of order one (ratio of periods 3/4), which can be studied within a reasonable accuracy by means of the planar restricted three-body problem. The behaviour of this resonance has been investigated by numerical integrations, of which we show the results in terms of the Poincaré mapping in the plane of the coordinates = [(2L – 2G)] cos ( H – t)and = –,[(2L – 2G)] sin ( H t)keeping a constant value of the Jacobi integral throughout all integrations. We find the numerical invariant curves corresponding to low and high eccentricity resonance locking (which seem stable, at least during the limited time span of our experiments) and show that the observed libration of Hyperion's pericenter about the conjunction lies inside the stable high eccentricity region. If initial conditions are chosen outside the stable zones, we have no more stable librations, but a chaotic behaviour causing successive close approaches to Titan.We discuss these results both from the point of view of the mathematical theory of invariant curves, and with the aim of understanding the origin of the resonance locking in this case. The tidal evolution theory cannot be rigorously tested by such experiments (because of the dissipative terms which change the Jacobi constant); however, we note that the time scale of chaotic evolution is by many orders of magnitude smaller than the tidal dissipation time scale, so that the chaotic regions of the phase space cannot be crossed by a slow and smooth evolution. Therefore, our results seem to favour the hypothesis that Hyperion was formed via accumulation of the planetesimals originally inside a stable island of libration, while Titan was depleting by collisions or ejections the zones where the bodies could not escape the chaotic behaviour.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

13.
A method of general perturbations, based on the use of Lie series to generate approximate canonical transformations, is applied to study the effects of gravity-gradient torque on the rotational motion of a triaxial, rigid satellite. The center of mass of the satellite is constrained to move in an elliptic orbit about an attracting point mass. The orbit, which has a constant inclination, is free to precess and spin. The method of general perturbations is used to obtain the Hamiltonian for the nonresonant secular and long-period rotational motion of the satellite to second order inn/0, wheren is the orbital mean motion of the center of mass and0 is a reference value of the magnitude of the satellite's rotational angular velocity. The differential equations derivable from the transformed Hamiltonian are integrable and the solution for the long-term motion may be expressed in terms of Jacobian elliptic functions and elliptic integrals. Geometrical aspects of the long-term rotational motion are discussed and a comparison of theoretical results with observations is made.  相似文献   

14.
In this paper of the series, literal analytical expressions for the coefficients of the Fourier series representation ofF will be established for anyx i ; withn, N positive integers 1 and | i | fori=1, 2,...n. Moreover, the recurrence formulae satisfied by these coefficients will also be established. Illustrative analytical examples and a full recursive computational algorithm, with its numerical results, are included. The applications of the recurrence formulae are also illustrated by their stencils. As a by-product of the analyses is an integral which we may call a complete elliptic integral of thenth kind, in which the known complete elliptic integrals (1st, 2nd and 3rd kinds) are special cases of it.  相似文献   

15.
Approximation formulas are found for and , wherex(t) satisfies ,x(0)=x 0,x(1)=x 1. The results are applied to an example of two-body motion.  相似文献   

16.
A procedure has been devised to construct a solution of the Clairaut equation in the form of an asymptotic expansion in terms of descending powers of , wherej denotes the order of spherical-harmonic distortion. It has been shown that asj and, therefore increases, the foregoing series approaches asymptotically a solution of our equation. The procedure is similar to the WKB-method of theoretical physics.  相似文献   

17.
In this paper of the series, we arrive at the end of the second step of our regularization approach, and in which, elliptic expansions in terms of the sectorial variables j (i) introduced by the author in Paper IV (Sharaf, 1982b) to regularize the highly oscillating perturbation force of some orbital systems will be established analytically and computationally for the thirteenth, fourteenth, fifteenth, and sixteenth categories according to our adopted scheme of presentation drawn up in Paper V (Sharaf, 1983). For each of the elliptic expansions belonging to a category, literal analytic expressions for the coefficients of its trigonometric series representation are established. Moreover, some recurrence formulae satisfied by these coefficients are also established to facilitate their computations, and numerical results are included to provide test examples for constructing computational algorithms. Finally, the second and the last collection of completed elliptic expansion will be given in Appendix B, such that, the materials of Appendix A of Paper VIII (Sharaf, 1985b) and those of Appendix B of the present paper provide the reader with the elliptic expansions in terms of j (i) so explored for the second step of our regularization approach.  相似文献   

18.
In this paper of the series, elliptic expansions in terms of the sectorial variables j (i) introduced by the author in Paper IV (Sharaf, 1982) to regularize the highly oscillating perturbation force of some orbital systems will be established analytically and computationally for the ninth, tenth, eleventh, and twelfth categories according to our adopted scheme of presentation drawn up in Paper V (Sharaf, 1983). For each of the elliptic expansions belonging to a category, literal analytical expressions for the coefficients of its trigonometric series representation are established. Moreover, some recurrence formulae satisfied by these coefficients are also established to facilitate their computation, and numerical results are included to provide test examples for constructing computational algorithms. Finally, the first collection of completed elliptic expansions in terms of j (i) so explored will be given in Appendix A for the guidance of the reader.  相似文献   

19.
We show that the procedure employed in the circular restricted problem, of tracing families of three-dimensional periodic orbits from vertical self-resonant orbits belonging to plane families, can also be applied in the elliptic problem. A method of determining series of vertical bifurcation orbits in the planar elliptic restricted problem is described, and one such series consisting of vertical-critical orbits (a v=+1) is given for the entire range (0,1/2) of the mass parameter . The initial segments of the families of three-dimensional orbits which bifurcate from two of the orbits belonging to this series are also given.  相似文献   

20.
In this paper of the series, elliptic expansions in terms of the sectorial variables j (i) introduced recently in Paper IV (Sharaf, 1982) to regularize highly oscillating perturbations force of some orbital systems will be established analytically and computationally for the fifth and sixth categories. For each of the elliptic expansions belonging to a category, literal analytical expressions for the coefficients of its trigonometric series representation are established. Moreover, some recurrence formulae satisfied by these coefficients are also established to facilitate their computations; numerical results are included to provide test examples for constructing computational algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号