首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hawaiian volcanoes, dominantly shields of tholeiitic basalt,form as the Pacific Plate migrates over a hotspot in the mantle.As these shields migrate away from the hotspot, highly alkaliclavas, forming the rejuvenated stage of volcanism, may eruptafter an interval of erosion lasting for 0·25–2·5Myr. Alkalic lavas with geochemical characteristics similarto rejuvenated- stage lavas erupted on the sea floor north ofOahu along the Hawaiian Arch. The variable Tb/Yb, Sr/Ce, K/Ce,Rb/La, Ba/La, Ti/Eu and Zr/Sm ratios in lavas forming the NorthArch and the rejuvenated-stage Honolulu Volcanics were controlledduring partial melting by residual garnet, clinopyroxene, Fe–Tioxides and phlogopite. However, the distinctively high Ba/Thand Sr/Nd ratios of lava forming the North Arch and HonoluluVolcanics reflect source characteristics. These characteristicsare also associated with shield tholeiitic basalt; hence theyarise from the Hawaiian hotspot, which is interpreted to bea mantle plume. Inversion of the batch melting equation usingabundances of highly incompatible elements, such as Th and La,requires enriched sources with 10–55% clinopyroxene and5–25% garnet for North Arch lavas. The 87Sr/86Sr and 143Nd/144Ndratios in lavas forming the North Arch and Honolulu Volcanicsare consistent with mixing between the Hawaiian plume and adepleted component related to mid-ocean ridge basalts. Specifically,the enrichment of incompatible elements coupled with low 87Sr/86Srand high 143Nd/144Nd relative to bulk Earth ratios is best explainedby derivation from depleted lithosphere recently metasomatizedby incipient melt (<2% melting) from the Hawaiian plume.In this metasomatized source, the incompatible element abundances,as well as Sr and Nd isotopic ratios, are controlled by incipientmelts. In contrast, the large range of published 187Os/188Osdata (0·134–0·176) reflects heterogeneitycaused by various proportions of pyroxenite veins residing ina depleted peridotite matrix. KEY WORDS: Hawaiian plume; Honolulu Volcanics; North Arch; plume–lithosphere interaction; rejuvenated stage; trace element geochemistry; alkalic lavas  相似文献   

2.
We present major and trace element and Sr–Nd–Pb–Hf–Osisotopic data for the 76–58 Ma Western Cape melilititeprovince, an age-progressive magmatic lineation in which primitiveolivine melilitite intrusives and alkali basalt lavas have beenemplaced on the southwestern margin of South Africa. The magmasrange from alkali basalts with strong HIMU isotopic and traceelement affinities on the continental shelf to melilitites withkimberlite-like incompatible element compositions and EM 1 isotopicaffinities on thick Proterozoic lithosphere (i.e. 87Sr/86Sri= 0·7029–0·7043,  相似文献   

3.
We report Sr, Nd, and Pb isotope compositions for 17 bulk-rocksamples from the submarine Hana Ridge, Haleakala volcano, Hawaii,collected by three dives by ROV Kaiko during a joint Japan–USHawaiian cruise in 2001. The Sr, Nd, and Pb isotope ratios forthe submarine Hana Ridge lavas are similar to those of Kilauealavas. This contrasts with the isotope ratios from the subaerialHonomanu lavas of the Haleakala shield, which are similar toMauna Loa lavas or intermediate between the Kilauea and MaunaLoa fields. The observation that both the Kea and Loa componentscoexist in individual shields is inconsistent with the interpretationthat the location of volcanoes within the Hawaiian chain controlsthe geographical distribution of the Loa and Kea trend geochemicalcharacteristics. Isotopic and trace element ratios in Haleakalashield lavas suggest that a recycled oceanic crustal gabbroiccomponent is present in the mantle source. The geochemical characteristicsof the lavas combined with petrological modeling calculationsusing trace element inversion and pMELTS suggest that the meltingdepth progressively decreases in the mantle source during shieldgrowth, and that the proportion of the recycled oceanic gabbroiccomponent sampled by the melt is higher in the later stagesof Hawaiian shields as the volcanoes migrate away from the centralaxis of the plume. KEY WORDS: submarine Hana Ridge; isotope composition; melting depth; Hawaiian mantle plume  相似文献   

4.
Several spinel peridotite xenoliths from Spitsbergen have Sr–Ndisotopic compositions that plot to the right of the ‘mantlearray’ defined by oceanic basalts and the DM end-member(depleted mantle, with low 87Sr/86Sr and high 143Nd/144Nd).These xenoliths also show strong fractionation of elements withsimilar compatibility (e.g. high La/Ce), which cannot be producedby simple mixing of light rare earth element-depleted peridotiteswith ocean island basalt-type or other enriched mantle melts.Numerical simulations of porous melt flow in spinel peridotitesapplied to Sr–Nd isotope compositions indicate that thesefeatures of the Spitsbergen peridotites can be explained bychemical fractionation during metasomatism in the mantle. ‘Chromatographic’effects of melt percolation create a transient zone where thehost depleted peridotites have experienced enrichment in Sr(with a radiogenic isotope composition) but not in Nd, thusproducing Sr–Nd decoupling mainly controlled by partitioncoefficients and abundances of Sr and Nd in the melt and theperidotite. Therefore, Sr–Nd isotope decoupling, earlierreported for some other mantle peridotites worldwide, may bea signature of metasomatic processes rather than a source-relatedcharacteristic, contrary to models that invoke mixing with hypotheticalSr-rich fluids derived from subducted oceanic lithosphere. Pbisotope compositions of the Spitsbergen xenoliths do not appearto be consistently affected by the metasomatism. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; radiogenic isotopes; theoretical modelling  相似文献   

5.
Stratigraphically well-constrained sequences of late shield-buildingstage lavas from West Maui volcano, Hawaii, show age-dependentcompositional variability distinct from that seen in shield-stagelavas from any other Hawaiian volcano. These distinctions aredefined by 206Pb/204Pb–208Pb/204Pb variation as well as87Sr/86Sr correlation with 206Pb/204Pb and trace element compositions.The West Maui lavas from stratigraphically higher in the sequencehave major and trace element and Sr–Pb–Hf–Ndisotopic compositions similar to Kea-type lavas sampled at theyounger Mauna Kea and Kilauea volcanoes, indicating that theKea compositional end-member of Hawaiian lavas has remainedhomogeneous over  相似文献   

6.
Miocene to Recent volcanism in northwestern Arabia producedthe largest intraplate volcanic field on the Arabian plate (HarratAsh Shaam, Jordan). The chemically and isotopically diversevolcanic field comprises mafic alkali basalts and basanites.The magmas underwent limited fractional crystallization of ol± cpx ± plag and rare samples have assimilatedup to 20% of Late Proterozoic crust en route to the surface.However, there are subtle Sr–Nd–Pb isotopic variations(87Sr/86Sr = 0·70305–0·70377, 143Nd/144Nd= 0·51297–0·51285, 206Pb/204Pb = 18·8–19·2),which exhibit marked correlations with major elements, incompatibletrace element ratios and abundances in relatively primitivebasalts (MgO >8·5 wt %), and cannot be explained byfractional crystallization and crustal contamination alone.Instead, the data require polybaric melting of heterogeneoussources. Semi-quantitative melt modelling suggests that thisheterogeneity is the result of small degree melts (2–5%)from spinel- and garnet-facies mantle, inferred to be shallowArabian lithosphere, that mixed with smaller degree melts (<1%)from a predominantly deep garnet-bearing asthenospheric(?) sourcewith ocean island basalt characteristics. The latter may bea ubiquitous part of the asthenosphere but is preferentiallytapped at small degrees of partial melting. Volcanism in Jordanappears to be the result of melting lithospheric mantle in responseto lithospheric extension. With time, thinning of the lithosphereallowed progressively deeper mantle (asthenosphere?) to be activatedand melts from this to mix with the shallower lithospheric mantlemelts. Although Jordanian intraplate volcanism is isotopicallysimilar to examples of Late Cenozoic volcanism throughout theArabian peninsula (Israel, Saudi Arabia), subtle chemical andisotopic differences between Yemen and Jordan intraplate volcanismsuggest that the Afar plume has not been channelled northwestwardsbeneath the Arabian plate and played no role in producing thenorthern Saudi Arabian and Jordan intraplate volcanic fields. KEY WORDS: asthenosphere; intraplate volcanism; Jordan; lithospheric mantle; Sr–Nd–Pb isotopes  相似文献   

7.
Neogene plateau lavas in Patagonia, southern Argentina, eastof the volcanic gap between the Southern and Austral VolcanicZones at 46·5° and 49·5°S are linked withasthenospheric slab window processes associated with the collisionof a Chile Ridge segment with the Chile Trench at 12 Ma. Thestrong ocean-island basalt (OIB)-like geochemical signatures(La/Ta <20; Ba/La <20; 87Sr/86Sr = 0·7035–0·7046;143Nd/144Nd = 0·51290–0·51261; 206Pb/204Pb= 18·3–18·8; 207Pb/204Pb = 15·57–15·65;208Pb/204Pb = 38·4–38·7) of these Patagonianslab window lavas contrast with the mid-ocean ridge basalt (MORB)-like,depleted mantle signatures of slab window lavas elsewhere inthe Cordillera (e.g. Antarctic Peninsula; Baja California).The Patagonian lavas can be divided into a voluminous  相似文献   

8.
This paper presents field, geochemical and isotopic (Sr, Nd,Pb) results on basalts from the Antipodes, Campbell and ChathamIslands, New Zealand. New 40Ar/39Ar age determinations alongwith previous K–Ar dates reveal three major episodes ofvolcanic activity on Chatham Island (85–82, 41–35,5 Ma). Chatham and Antipodes samples comprise basanite, alkaliand transitional basalts that have HIMU-like isotopic (206Pb/204Pb>20·3–20·8, 87Sr/86Sr <0·7033,143Nd/144Nd >0·5128) and trace element affinities(Ce/Pb 28–36, Nb/U 34–66, Ba/Nb 4–7). Thegeochemistry of transitional to Q-normative samples from CampbellIsland is explained by interaction with continental crust. Thevolcanism is part of a long-lived (100 Myr), low-volume, diffusealkaline magmatic province that includes deposits on the Northand South Islands of New Zealand as well as portions of WestAntarctica and SE Australia. All of these continental areaswere juxtaposed on the eastern margin of Gondwanaland at >83Ma. A ubiquitous feature of mafic alkaline rocks from this regionis their depletion in K and Pb relative to other highly incompatibleelements when normalized to primitive mantle values. The inversionof trace element data indicates enriched mantle sources thatcontain variable proportions of hydrous minerals. We proposethat the mantle sources represent continental lithosphere thathost amphibole/phlogopite-rich veins formed by plume- and/orsubduction-related metasomatism between 500 and 100 Ma. Thestrong HIMU signature (206Pb/204Pb >20·5) is consideredto be an in-grown feature generated by partial dehydration andloss of hydrophile elements (Pb, Rb, K) relative to more magmaphileelements (Th, U, Sr) during short-term storage at the base ofthe lithosphere. KEY WORDS: continental alkaline basalts; lithospheric mantle, mantle metasomatism; New Zealand; OIB, HIMU; Sr, Nd and Pb isotopes; West Antarctica  相似文献   

9.
A group of oceanic islands and/or seamounts (hereafter, paleoseamounts) was produced by oceanic hot-spot magmatism in the Late Proterozoic-Early Cambrian in the southwestern margin of the Paleo-Asian Ocean. They were accreted to the Kuznetsk-Altai island arc in the Late Cambrian and were subsequently incorporated during the closing of the paleocean into the accretionary complexes of the western part of the Altai-Sayan area (southwestern Siberia, Russia). The major-and trace-element compositions and Sr and Nd isotopic systematics of pillow lavas and basalt flows from the Kurai (600 Ma) and Katun’ (550–530 Ma) paleoseamounts of Gorny Altai characterize the evolution of Hawaiian-type magmatism in the Paleo-Asian Ocean during that period. The obtained data show a significant change in lava composition between 600 and 550–530 Ma. The tholeiitic basalts of the Kurai Paleoseamount (600 Ma) from the southern part of Gorny Altai have lower incompatible element contents and higher 147Sm/144Nd values compared with the younger tholeiitic and alkali basalts of the Katun’ Paleoseamount (550–530 Ma), whose rocks are exposed in northern Gorny Altai. The trace-element compositions of the Katun’ lavas are similar to those of the Hawaiian tholeiites, and their 147Sm/144Nd ratios are lower than those of the Kurai basalts. It was suggested that the older Kurai Paleoseamount was formed above a thinner oceanic lithosphere, i.e., closer to a paleospreading axis compared with the younger Katun’ Paleoseamount. The observed temporal variations in the chemical and isotopic characteristics of lavas are probably related to differences in the degree of melting of the heterogeneous mantle owing to the different thickness of the oceanic lithosphere above which the Kurai and Katun’ paleoseamounts were formed. During the Ediacaran, a plume developed beneath the younger and, consequently, thinner lithosphere of the Paleo-Asian Ocean. The higher degree of melting in the mantle column resulted in a more considerable contribution from the refractory depleted material of the upper mantle. After 50–70 Ma, i.e., in the Early Cambrian, the plume affected a thicker lithosphere, its mantle column became shorter, and the degree of melting was lower. Owing to this, the basaltic melt was more contributed by incompatible element enriched less refractory material of the lower mantle.  相似文献   

10.
Lavas from Heard Island, located on the Kerguelen Plateau inthe southern Indian Ocean, exhibit the largest range (e.g.,87Sr/86Sr=0.7047–0.7079) of isotopic compositions yetobserved on a single oceanic island. Isotopic compositions arewell correlated and are accompanied by systematic changes inincompatible trace element ratios, particularly those involvingNb. These variations are interpreted as resulting from mixingbetween two components. One is characterized by high 87Sr/86Sr,low 206Pb/204Pb and 143Nd/144Nd ratios, and negative Nb andEu anomalies, and is derived ultimately from the upper continentalcrust. The other has lower 87Sr/86Sr, and higher 206Pb/204Pband 143Nd/144Nd ratios, and lacks the depletions in Nb and Eu.Two possible compositions are considered for the low-87Sr/86Srcomponent of the source. The first is at the low-87Sr/86Sr endof the Heard Island data array, represented most closely bylavas from the Laurens Peninsula. However, trace element variationssuggest that these lavas might not be representive of the Heardplume. The second is close to the low-87Sr/86Sr end of the isotopicarray for lavas from the main volcano. In this case a lithosphericmantle origin is suggested for the Laurens Peninsula lavas.The relationships between isotopic data, major element compositions,and incompatible trace element ratios indicate that the continent-derivedmaterial is probably present in the mantle source, where itmakes a maximum contribution of <4 wt.% for all but one HeardIsland sample. However, if the Kerguelen Plateau is a submergedcontinental block, shallow-level contamination cannot be ruledout. The binary mixing model developed to explain the Heard Islandgeochemical variations is extended to include other Indian Oceanoceanic island and mid-ocean ridge basalts (OIB and MORB). Weshow that isotopic compositions of Indian Ocean OIB are consistentwith sampling of a regional reservoir in which the same twocomponents exist in variable proportions (generally 1–5wt.% of the continent-derived component). The distinctive isotopiccompositions of Indian Ocean MORB are consistent with mixingof a similar component into an Atlantic-or Pacific-like MORBmantle source. The relatively unradiogenic 206Pb/204Pb isotopiccompositions of these ‘enriched’ Indian Ocean mantlecomponents are unlike any present-day marine sediments and indicatethat their source has had 238U/204Pb ratios (µ) much lowerthan typical upper continental crust for > 1 Ga. These agespre-date the formation of Gondwana (600-130 Ma) and thereforedo not support sediment subduction beneath Gondwana as the causeof enrichment in the sub-Indian Ocean mantle. We propose thatthe enrichment of Indian Ocean OIB sources was due to subductionof upper-crustal material beneath a Proterozoic precursor ofGondwana at 1–2 Ga. The enrichment of the Indian OceanMORB sources could have had a similar origin, or could havebeen derived from sub-continental lithospheric mantle returnedto the asthenospheric mantle, perhaps during the break-up ofGondwana (200–130 Ma).  相似文献   

11.
The bimodal NW Etendeka province is located at the continentalend of the Tristan plume trace in coastal Namibia. It comprisesa high-Ti (Khumib type) and three low-Ti basalt (Tafelberg,Kuidas and Esmeralda types) suites, with, at stratigraphicallyhigher level, interstratified high-Ti latites (three units)and quartz latites (five units), and one low-Ti quartz latite.Khumib basalts are enriched in high field strength elementsand light rare earth elements relative to low-Ti types and exhibittrace element affinities with Tristan da Cunha lavas. The unradiogenic206Pb/204Pb ratios of Khumib basalts are distinctive, most plottingto the left of the 132 Ma Geochron, together with elevated 207Pb/204Pbratios, and Sr–Nd isotopic compositions plotting in thelower 143Nd/144Nd part of mantle array (EM1-like). The low-Tibasalts have less coherent trace element patterns and variable,radiogenic initial Sr (  相似文献   

12.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

13.
New mineral and bulk-rock analyses, as well as Nd, Sr and Pbisotope compositions are presented for lavas from Grande Comore,Moheli and Mayotte, thru of the four main islands of the ComoresArchipelago in the western Indian Ocean, and these data an usedto evaluate the petrogenesis, evolution and mantle source regioncharacteristics of Comorean lavas. The typically silica-undersaturated,alkaline lavas from all three islands can be grouped into twodistinct types: La Grille-type (LGT) lavas, which display strongrelative depletions in K, and Karthala-type (KT) lavas, whichdo not. With the exception of the lavas erupted by La Grillevolcano on Grande Comore, which exhibit the petrographic andgeochemical characteristics expected of primary mantle-derivedmagmas, all Comorean lavas analysed have experienced compositionalmodifications after they segregated from their source regions.Much of this variation can be explained quantitatively by fractionalcrystallization processes dominated by the fractionation ofolivineand clinopyroxene. Semi-quantitative modelling shows that theconsistent and fundamental difference in composition betweenK-depleted LGT lavas and normal KT lavas can be attributed topartial melting processes, provided amphibole is a residualmantle phase after extraction of LGT magmas at low degrees ofmelting. Low absolute abundances of the heavy rare earth elementsin LGT magmas are interpreted to reflect partial melting withinthe garnet stability field In contrast, KT magmas, which donot show relative K depletions, are considered to be the productsof somewhat larger degrees of partial melting of an amphibolefreesource at comparatively shallower depths. Whereas the Nd andSr isotopic compositions of Comorean lavas (which show a significantrange: 87Sr/86Sr = 0.70319–0.70393; 143Nd/Nd = 0.51263–0.51288)bear evidence for a time-averaged depletion in incompatibleelements, the high incompatible element abundances of the lavasare interpreted to reflect the effects of a recent mantle enrichmentevent. At depths well within the garnet stability field thismantle enrichment is interpreted to have taken the form of modalmetasomatism with the introduction of amphibole (giving riseto the source of LGT magmas), whereas cryptic metasomatism tookplace at shallower levels (giving rise to the source of KT lavas).The Nd, Sr and Pb isotope signature of the majority of Comoreanlavas (both LGT and KT) is proposed to be the result of predominant4contributions from a somewhat heterogeneous source4 4 4 presentativeof the ambient sub-Comorean mantle, comprising a mixture betweena HIMU component and a component on the depleted portion ofthe mantle array (possibly the source of Indian Ocean MORB),with only limited contributions from an EM I plume component.The lavas erupted by Karthala volcano (the youngest Comoreanlavas), however, have significantly different isotopic compositionsfrom all other Comorean lavas (lower 143Nd/144Nd and higher87Sr/86Sr), suggesting increased contributions from the EM Icomponent. KEY WORDS: basalt petrogenesis; Comores; mantle geochemistry; ocean island basalts *Telephone: 27-21-6502921. Fax: 27-21-6503781 e-mail: alr{at}geology.uct.ac.za.  相似文献   

14.
Submarine lavas erupted onto the Hawaiian arch 200–400km north of Oahu show that the areal extent of Hawaiian volcanismis much larger than previously recognized. The North Arch volcanicfield comprises 25 000 km2 of  相似文献   

15.
Mantle xenoliths from Tenerife show evidence of metasomatismand recrystallization overprinting the effects of extensivepartial melting. The evidence includes: recrystallization ofexsolved orthopyroxene porphyroclasts highly depleted in incompatibletrace elements into incompatible-trace-element-enriched, poikiliticorthopyroxene with no visible exsolution lamellae; formationof olivine and REE–Cr-rich, strongly Zr–Hf–Ti-depletedclinopyroxene at the expense of orthopyroxene; the presenceof phlogopite; whole-rock CaO/Al2O3 >> 1 (Ca metasomatism) inrecrystallized rocks; and enrichment in incompatible elementsin recrystallized rocks, relative to rocks showing little evidenceof recrystallization. The ‘higher-than-normal’ degreeof partial melting that preceded the metasomatism probably resultsfrom plume activity during the opening of the Central AtlanticOcean. Sr–Nd isotopic compositions are closely similarto those of Tenerife basalts, indicating resetting from theexpected original mid-ocean ridge basalt composition by themetasomatizing fluids. Metasomatism was caused by silicic carbonatitemelts, and involved open-system processes, such as trappingof elements compatible with newly formed acceptor minerals,leaving residual fluids moving to shallower levels. The compositionsof the metasomatizing fluids changed with time, probably asa result of changing compositions of the melts produced in theCanary Islands plume. Spinel dunites and wehrlites representrocks where all, or most, orthopyroxene has been consumed throughthe metasomatic reactions. KEY WORDS: Canary Islands; Tenerife; mantle xenoliths; geochemistry; Ca metasomatism; open-system processes; lithosphere; ocean islands  相似文献   

16.
The Pb isotope compositions of amphiboles and clinopyroxenesin spinel peridotite and pyroxenite mantle xenoliths from theintra-plate Quaternary volcanic fields of the Eifel province(Germany) are strongly correlated with their Sr–Nd isotopeand trace element compositions. High-temperature anhydrous xenolithsfrom a depth of around 60 km have trace element and Sr–Nd–Pbisotope compositions similar to the depleted source of mid-oceanridge basalts (Depleted MORB Mantle, DMM). Amphibole-bearingxenoliths from shallower depths (<45 km) provide evidencefor three temporally distinct episodes of mantle metasomatismin the subcontinental lithosphere: (1) aqueous fluids from anisotopically enriched (EM-like) mantle reservoir caused amphiboleformation during deformation in the shallow continental lithosphericmantle and may be subduction related, probably associated withthe last major tectonic event that influenced the area (Hercynianorogeny). (2) During a second phase of mantle metasomatism theEM-like lithospheric mantle was affected by melts from an ancient,HIMU-like (high time-integrated µ = 238U/204Pb) mantlesource. The HIMU-like component introduced by these fluids hada much more radiogenic Pb isotope composition than the asthenosphericsource of the widespread Cenozoic magmatism in Europe and maybe linked to reactivation of ancient subducted crustal domainsduring the Hercynian orogeny or to early Cretaceous deep-sourcedmantle plumes. (3) During a brief final stage the heterogeneouslyenriched EM–HIMU subcontinental lithosphere was locallymodified by basaltic melts migrating along fractures and veinsthrough the upper mantle as a consequence of the Cenozoic Eifelvolcanism. Although a DMM component is completely lacking inthe metasomatic fluids of the metasomatic episodes 1 and 2,the vein melts of episode 3 and the Cenozoic Eifel lavas requiremantle sources containing three end-member components (DMM–HIMU–EM).Thus, mobilization of the more depleted mantle material occurredat the earliest in the Tertiary, contemporaneously with thedevelopment of the extensive rift system and main melt generationin Europe. Alternatively, the variety of Sr–Nd–Pbisotope signatures of the metasomatic agents may have been producedby melting of isotopically distinct mantle domains in a heterogeneousuprising mantle plume. KEY WORDS: Eifel; Europe; mantle xenoliths; metasomatism; Pb isotopes  相似文献   

17.
The Benue Trough is a continental rift related to the openingof the equatorial domain of the South Atlantic which was initiatedin Late Jurassic-Early Cretaceous times. Highly diversifiedand volumetrically restricted Mesozoic to Cenozoic magmaticproducts are scattered throughout the rift. Three periods ofmagmatic activity have been recognized on the basis of 40 Ar-39Ar ages: 147–106 Ma, 97–81 Ma and 68–49 Ma.Trace element and Sr, Nd and Pb isotope determinations, performedon selected basaltic samples, allow two groups of basaltic rocksto be identified: (1) a group with a tholeiitic affinity, withZr/Nb=7–11.1; La/Nb = 0.77–1; 87Sr/86Sr; =0.7042–0.7065143Nd/144Nd;i = 0.5125–0.5127; 206Pb/204Pbi = 17.59–18.48;(2) a group with an alkaline affinity, with Zr/Nb = 3.6–6.8;La/Nb=0.53–0.66; 87Sr/86 Sri=0.7029–0.7037; 143Nd/144Ndi=0.5126–0.5129;206Pb/204Pbi = 18.54–20.42. The geochemical data leadto the conclusion that three types of mantle sources were involvedin the genesis of the Mesozoic to Cenozoic basaltic rocks ofthe Benue, without significant crustal contamination: (1) anenriched subcontinental lithospheric mantle from which the tholeiiticbasalts were derived; (2) a HIMU-type (plume) component fromwhich the alkaline basalticrocks originated; (3) a depletedasthenospheric mantle (N-MORB-type source), which was involvedin the genesis of the alkaline basaltic magmas. According to(1) the postulated location of the St Helena hot spot in theEquatorial Atlantic at about 130 Ma and (2) the isotopic compositionof the alkaline basaltic rocks of the Benue Trough and theirgeochemical similarity with the basalts of St Helena, we concludethat the St Helena plume was involved in the genesis of thealkaline magmatism of the Benue at the time of opening of theEquatorial Atlantic. Moreover, the geochemical similarity betweenthe alkaline magmatism of the Benue Trough and that of the CameroonLine suggests that both magmatic provinces were related to theSt Helena plume. Finally, the temporal change of the mantlesources observed in the Benue Trough can be accounted for bythe recent models of plume dynamics, in the general frameworkof opening of the Equatorial Atlantic. KEY WORDS: Benue Trough; Mesozoic to Cenozoic magmatism; Equatorial Atlantic; mantle sources; St Helena plume *;Corresponding author.  相似文献   

18.
BELL  K.; SIMONETTI  A. 《Journal of Petrology》1996,37(6):1321-1339
New Nd (0.51261–0.51268), Pb (206Pb/204Pb: 19.24–19.26),and Sr (0.70437–0.70446) isotopic compositions from tennatrocarbonatite lavas, collected in June 1993 from OldoinyoLengai, the only known active carbonatite volcano, are relativelyuniform, and are similar to data from the 1960 and 1988 flows.Three of the samples contain silicate spheroids, one of whichhas Nd and Sr isotopic ratios similar to host natrocarbonatite,consistent with an origin by liquid immiscibility or the mixingof melts with similar isotopic compositions. Pb isotope datafor two samples of trona are inconsistent with its involvementin the genesis of natrocarbonatite. New Pb isotope data fromsilicate volcanic and plutonic blocks (ijolite, nephelinite,phonolite, syenite) from Oldoinyo Lengai are highly variable(206Pb/204Pb, 17.75–19.34; 207Pb/204Pb, 15.41–15.67;208Pb/204Pb, 37.79–39.67), and define near-linear arraysin Pb-Pb diagrams. The isotopic data for the silicate rocksfrom Oldoinyo Lengai are best explained by invoking discretepartial melting events which generate undersaturated alkalinesilicate magmas with distinct isotopic ratios. Pb isotope ratiosfrom most ijolites and phonolites are predominantly lower andmore variable than from the natrocarbonatites, and are attributedto interaction between silicate melts involving HIMU and EMIsource components and an additional component, such as lower-crustalgranulites, DMM or PREMA (prevalent mantle). Variations in Nd,Pb and Sr isotope ratios from Oldoinyo Lengai, among the largestyet documented from a single volcano, are attributed to mantlesource heterogeneity involving mainly the mixing of HIMU andEMI mantle components. Based on the new isotopic data from OldoinyoLengai and data from other East African carbonatites, and mantlexenoliths, we propose a two-stage model in an attempt to explainthe isotope variations shown by carbonatites in this area. Themodel involves (I) the release of metasomatizing agents withHIMU-like signatures from upwelling mantle (‘plume’)source, which in turn metasomatize the sub-continental (old,isotopically enriched, EMI-like) lithosphere, and (2) variabledegrees and discrete partial melting of the resulting heterogeneous,metasomatized lithosphere. KEY WORDS: carbonatite; isotopes; Oldoinyo Lengai; mantle plumes *Telephone: (613) 788–2660, ext. 4419. Fax: (613) 788–4490. e-mail: kbell{at}ccs.carleton.ca  相似文献   

19.
Basanite intrusions from the Early Cretaceous Erongo complex,Namibia, have compositions consistent with near-primary mantlemelts derived from a depth of at least 100 km. These rocks providea key reference for the mantle component(s) involved in breakup-relatedmagmatism in this region. Initial Sr–Nd–Pb isotoperatios of the Erongo basanites and associated tephrites andphonotephrites (87Sr/86Sr = 0·70425–0·70465;  相似文献   

20.
Late Tertiary post-orogenic alkaline basalts erupted in theextensional Pannonian Basin following Eocene-Miocene subductionand its related calc-alkaline volcanism. The alkaline volcaniccentres, dated between 11•7 and 1•4 Ma, are concentratedin several regions of the Pannonian Basin. Some are near thewestern (Graz Basin, Burgenland), northern (Ngrd), and eastern(Transylvania) margins of the basin, but the majority are concentratednear the Central Range (Balaton area and Little Hungarian Plain).Fresh samples from 31 volcanic centres of the extension-relatedlavas range from slightly hy-normative transitional basaltsthrough alkali basalts and basanites to olivine nephelinites.No highly evolved compositions have been encountered. The presenceof peridotite xenoliths, mantle xenocrysts, and high-pressuremegacrysts, even in the slightly more evolved rocks, indicatesthat differentiation took place within the upper mantle. Rare earth elements (REE) and 87Sr/86Sr, 143Nd/144Nd, 18O, D,and Pb isotopic ratios have been determined on a subset of samples,and also on clinopyroxene and amphibole megacrysts. Sr and Ndisotope ratios span the range of Neogene alkali basalts fromwestern and central Europe, and suggest that the magmas of thePannonian Basin were dominantly derived from asthenosphericpartial melting, but Pb isotopes indicate that in most casesthey were modified by melt components from the enriched lithosphericmantle through which they have ascended. 18O values indicatethat the magmas have not been significantly contaminated withcrustal material during ascent, and isotopic and trace-elementratios therefore reflect mantle source characteristics. Incompatible-elementpatterns show that the basic lavas erupted in the Balaton areaand Little Hungarian Plain are relatively homogeneous and areenriched in K, Rb, Ba, Sr, and Pb with respect to average oceanisland basalt, and resemble alkali basalts of Gough Island.In addition, 207Pb/204Pb is enriched relative to 2O6Pb/204Pb.In these respects, the lavas of the Balaton area and the LittleHungarian Plain differ from those of other regions of Neogenealkaline magmatism of Europe. This may be due to the introductionof marine sediments into the mantle during the earlier periodof subduction and metasomatism of the lithosphere by slab-derivedfluids rich in K, Rb, Ba, Pb, and Sr. Lavas erupted in the peripheralareas have incompatible-element patterns and isotopic characteristicsdifferent from those of the central areas of the basin, andmore closely resemble Neogene alkaline lavas from areas of westernEurope where recent subduction has not occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号