首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flume experiments were performed to study the flow properties and depositional characteristics of high‐density turbidity currents that were depletive and quasi‐steady to waning for periods of several tens of seconds. Such currents may serve as an analogue for rapidly expanding flows at the mouth of submarine channels. The turbidity currents carried up to 35 vol.% of fine‐grained natural sand, very fine sand‐sized glass beads or coarse silt‐sized glass beads. Data analysis focused on: (1) depositional processes related to flow expansion; (2) geometry of sediment bodies generated by the depletive flows; (3) vertical and horizontal sequences of sedimentary structures within the sediment bodies; and (4) spatial trends in grain‐size distribution within the deposits. The experimental turbidity currents formed distinct fan‐shaped sediment bodies within a wide basin. Most fans consisted of a proximal channel‐levee system connected in the downstream direction to a lobe. This basic geometry was independent of flow density, flow velocity, flow volume and sediment type, in spite of the fact that the turbidity currents of relatively high density were different from those of relatively low density in that they exhibited two‐layer flow, with a low‐density turbulent layer moving on top of a dense layer with visibly suppressed large‐scale turbulence. Yet, the geometry of individual morphological elements appeared to relate closely to initial flow conditions and grain size of suspended sediment. Notably, the fans changed from circular to elongate, and lobe and levee thickness increased with increasing grain size and flow velocity. Erosion was confined to the proximal part of the leveed channel. Erosive capacity increased with increasing flow velocity, but appeared to be constant for turbidity currents of different grain size and similar density. Structureless sediment filled the channel during the waning stages of the turbidity currents laden with fine sand. The adjacent levee sands were laminated. The massive character of the channel fills is attributed to rapid settling of suspension load and associated suppression of tractional transport. Sediment bypassing prevailed in fan channels composed of very fine sand and coarse silt, because channel floors remained fully exposed until the end of the experiments. Lobe deposits, formed by the fine sand‐laden, high‐density turbidity currents, contained massive sand in the central part grading to plane parallel‐laminated sand towards the fringes. The depletive flows produced a radial decrease in mean grain size in the lobe deposits of all fans. Vertical trends in grain size comprised inverse‐to‐normal grading in the levees and in the thickest part of the lobes, and normal grading in the channel and fringes of the fine sandy fans. The inverse grading is attributed to a process involving headward‐directed transport of relatively fine‐grained and low‐concentrated fluid at the level of the velocity maximum of the turbidity current. The normal grading is inferred to denote the waning stage of turbidity‐current transport.  相似文献   

2.
Turbidity currents are turbulent, sediment‐laden gravity currents which can be generated in relatively shallow shelf settings and travel downslope before spreading out across deep‐water abyssal plains. Because of the natural stratification of the oceans and/or fresh water river inputs to the source area, the interstitial fluid within which the particles are suspended will often be less dense than the deep‐water ambient fluid. Consequently, a turbidity current may initially be denser than the ambient sea water and propagate as a ground‐hugging flow, but later reverse in buoyancy as its bulk density decreases through sedimentation to become lower than that of the ambient sea water. When this occurs, all or part of the turbidity current lofts to form a buoyant sediment‐laden cloud from which further deposition occurs. Deposition from such lofting turbidity currents, containing a mixture of fine and coarse sediment suspended in light interstitial fluid, is explored through analogue laboratory experiments complemented by theoretical analysis using a ‘box and cloud’ model. Particular attention is paid to the overall deposit geometry and to the distributions of fine and coarse material within the deposit. A range of beds can be deposited by bimodal lofting turbidity currents. Lofting may encourage the formation of tabular beds with a rapid pinch‐out rather than the gradually tapering beds more typical of waning turbidity currents. Lofting may also decouple the fates of the finer and coarser sediment: depending on the initial flow composition, the coarse fraction can be deposited prior to or during buoyancy reversal, while the fine fraction can be swept upwards and away by the lofting cloud. An important feature of the results is the non‐uniqueness of the deposit architecture: different initial current compositions can generate deposits with very similar bed profiles and grading characteristics, highlighting the difficulty of reconstructing the nature of the parent flow from field data. It is proposed that deposit emplacement by lofting turbidity currents is common in the geological record and may explain a range of features observed in deep‐water massive sands, thinly bedded turbidite sequences and linked debrites, depending on the parent flow and its subsequent development. For example, a lofting flow may lead to a well sorted, largely ungraded or weakly graded bed if the fines are transported away by the cloud. However, a poorly sorted, largely ungraded region may form if, during buoyancy reversal, high local concentrations and associated hindered settling effects develop at the base of the cloud.  相似文献   

3.
The settling behaviour of particulate suspensions and their deposits has been documented using a series of settling tube experiments. Suspensions comprised saline solution and noncohesive glass‐ballotini sand of particle size 35·5 μm < d < 250 μm and volume fractions, φs, up to 0·6 and cohesive kaolinite clay of particle size d < 35·5 μm and volume fractions, φm, up to 0·15. Five texturally distinct deposits were found, associated with different settling regimes: (I) clean, graded sand beds produced by incremental deposition under unhindered or hindered settling conditions; (II) partially graded, clean sand beds with an ungraded base and a graded top, produced by incremental deposition under hindered settling conditions; (III) graded muddy sands produced by compaction with significant particle sorting by elutriation; (IV) ungraded clean sand produced by compaction and (V) ungraded muddy sand produced by compaction. A transition from particle size segregation (regime I) to suppressed size segregation (regime II or III) to virtually no size segregation (IV or V) occurred as sediment concentration was increased. In noncohesive particulate suspensions, segregation was initially suppressed at φs ~ 0·2 and entirely inhibited at φs ≥ 0·6. In noncohesive and cohesive mixtures with low sand concentrations (φs < 0·2), particle segregation was initially suppressed at φm ~ 0·07 and entirely suppressed at φm ≥ 0·13. The experimental results have a number of implications for the depositional dynamics of submarine sediment gravity flows and other particulate flows that carry sand and mud; because the influence of moving flow is ignored in these experiments, the results will only be applicable to flows in which settling processes, in the depositional boundary, dominate over shear‐flow processes, as might be the case for rapidly decelerating currents with high suspended load fallout rates. The ‘abrupt’ change in settling regimes between regime I and V, over a relatively small change in mud concentration (<5% by volume), favours the development of either mud‐poor, graded sandy deposits or mud‐rich, ungraded sandy deposits. This may explain the bimodality in sediment texture (clean ‘turbidite’ or muddy ‘debrite’ sand or sandstone) found in some turbidite systems. Furthermore, it supports the notion that distal ‘linked’ debrites could form because of a relatively small increase in the mud concentration of turbidity currents, perhaps associated with erosion of a muddy sea floor. Ungraded, clean sand deposits were formed by noncohesive suspensions with concentrations 0·2 ≤ φs ≤ 0·4. Hydrodynamic sorting is interpreted as being suppressed in this case by relatively high bed aggradation rates which could also occur in association with sustained, stratified turbidity currents or noncohesive debris flows with relatively high near‐bed sediment concentrations.  相似文献   

4.
Clean basal and capping argillaceous sandstone couplets in deep water settings have been previously interpreted as the result of spatially segregated turbidity currents and debris flows or spatio-temporal transitioning of a turbulent flow to a transitional/laminar state. However, this paper presents three-dimensional laboratory experiments demonstrating that a single sediment-gravity flow can develop sand–mud couplets by autogenic remobilization of sediments that are still in the process of being deposited. This remobilization appears common to flows composed of mixtures of sand and mud with viscosities and strengths measurably greater than water, but not so high as to fully suppress the settling of sand through the depositional current. Dewatering in the early sand deposit acts to lubricate the basal portion of the increasingly muddy upper division of the flow, causing it to accelerate downslope, triggering a secondary flow with a sediment composition distinct from the original mixture. Sediment deposition and remobilization processes in a single sediment-gravity flow and their resultant deposit were imaged acoustically and cored at representative locations within the deposit. The acoustic data and cores show sand–mud couplets that are qualitatively similar to interpreted turbidite–debrite-like couplets in natural systems.  相似文献   

5.
The late Quaternary development of part of the lower continental rise off Western Sahara has been determined from an investigation of short (< 2 m) gravity cores collected from a deep-sea channel, the interchannel areas and an abyssal hill, between 30 and 33°N. Stratigraphic analysis is based on systematic variations in abundances of particular coccolith species and pelagic sediment types, referenced to the oxygen isotope time-scale. During the last 73 000 years deposition in the channel has included volcaniclastic sand/silt turbidites and minor marl turbidites as well as pelagic sediments. The interchannel area has fewer turbidites, and the sands present were probably deposited from turbidity currents which spilt over the channel sides. The last‘event’ to give rise to sands in the channel and interchannel area occurred about 45 000 years ago. Although the channel has been inactive as an area of turbidity current deposition for the last 20 000 years, sands were deposited elsewhere on the lower rise, indicating that turbidity current transport routes have varied in time. Turbidity current deposition on the abyssal plain and low-lying continental rise appears to be related to distinct sliding events involving transport of material from various sources. Thin marl turbidites are interbedded with pelagic sediments in the area of sediment drape. There is a strong correlation between these and the thick marl turbidites on the abyssal plain, suggesting that the same turbidity current‘events’, occurring about once every 25 000 years, gave rise to both sets of deposits. The thinner units probably represent deposition from the outer parts or tails of the large turbidity flows. The turbidites occur at glacial/interglacial transitions, suggesting that the slides that created them were triggered by mechanisms related to climatic change. Several volcaniclastic sand/silt units within the channel and in interchannel areas occupy mid-stage stratigraphic positions, perhaps indicating a different triggering mechanism for slides around volcanic islands. A debris flow deposit (debrite), between 30°N, 21°W and 31°N, 24°W, is related to the Saharan Sediment Slide, a major mass movement feature on the continental slope over 1000 km to the southeast. Stratigraphic correlations indicate that this slide produced a large turbidity current as well as a debris flow.  相似文献   

6.
Shallow marine sediments of the Broughton Formation are dominated by immature volcanic debris of intermediate to basic composition, generated in an adjacent subaerial environment by volcanism responsible for the nine shoshonite units intercalated within sediments of the Kiama region. Sediment was supplied to the offshore environment via periodic storm‐generated, expanded high density turbidity currents. Initial deposition, represented by the Westley Park Sandstone Member, was below storm wave base, during which time the depositional surface was subjected to post‐depositional tractional reworking by northerly directed, tidally influenced bottom currents. The resulting positive‐relief sand bodies on the seafloor contain tractional sedimentary structures (the ‘tractional facies association'). Areas of the substrate between these sand bodies retained their turbidite bedding structure (the ‘rhythmically bedded facies association') but were extensively bioturbated by a diverse deposit‐feeding biomass.

Upon emplacement of the lowest of the nine shoshonite units as a tri‐composite, locally intrusive lava flow, the depositional surface was elevated, transgressing storm wave base. The body of the shoshonite flow also shielded the substrate from the northerly directed tractional currents, allowing the development and preservation of the hummocky cross‐stratified sandstone facies in the Kiama Sandstone Member. Following burial of the shoshonite flow by continued deposition, this local shielding effect was overcome and tractional currents again reworked the entire depositional surface.  相似文献   

7.
Abstract Natural, moderately loosely packed sands can only erode from the surface of the bed after an increase in pore volume. Because of this shear dilatancy, negative pore pressures are generated in the bed. In cases of low permeability, these negative pressures are released relatively slowly, which retards the maximum rate of erosion. This effect is incorporated in a new, analytically derived, pick‐up function that can explain the observation of gradual retrogressive failure of very steep subaqueous slopes, sometimes more than 5 m high, in fine non‐cohesive sands. This process, termed ‘breaching’ in the field of sediment dredging, may produce large failures in sand bars or river banks. The analytical function that describes the breaching process in fine sand is incorporated in a one‐dimensional, steady‐state numerical model of turbidity currents describing the spatial development of flow. This model is applied to simulate a large ‘flushing’ event in Scripps Submarine Canyon, Pacific coast of California. Breach retrogradation and the successive evolution in time of the resulting turbidity current in the canyon are predicted in a sequence of discrete steps. Predicted velocities are compared with values measured during a flushing event. Implications for the interpretation of deep‐water massive sands are discussed.  相似文献   

8.
The Marnoso‐arenacea Formation in the Italian Apennines is the only ancient rock sequence where individual submarine sediment density flow deposits have been mapped out in detail for over 100 km. Bed correlations provide new insight into how submarine flows deposit sand, because bed architecture and sandstone shape provide an independent test of depositional process models. This test is important because it can be difficult or impossible to infer depositional process unambiguously from characteristics seen at just one outcrop, especially for massive clean‐sandstone intervals whose origin has been controversial. Beds have three different types of geometries (facies tracts) in downflow oriented transects. Facies tracts 1 and 2 contain clean graded and ungraded massive sandstone deposited incrementally by turbidity currents, and these intervals taper relatively gradually downflow. Mud‐rich sand deposited by cohesive debris flow occurs in the distal part of Facies tract 2. Facies tract 3 contains clean sandstone with a distinctive swirly fabric formed by patches of coarser and better‐sorted grains that most likely records pervasive liquefaction. This type of clean sandstone can extend for up to 30 km before pinching out relatively abruptly. This abrupt pinch out suggests that this clean sand was deposited by debris flow. In some beds there are downflow transitions from turbidite sandstone into clean debrite sandstone, suggesting that debris flows formed by transformation from high‐density turbidity currents. However, outsize clasts in one particular debrite are too large and dense to have been carried by an initial turbidity current, suggesting that this debris flow ran out for at least 15 km. Field data indicate that liquefied debris flows can sometimes deposit clean sand over large (10 to 30 km) expanses of sea floor, and that these clean debrite sand layers can terminate abruptly.  相似文献   

9.
Trapping of sustained turbidity currents by intraslope minibasins   总被引:1,自引:0,他引:1  
Depositional turbidity currents have filled many intraslope minibasins with sediment creating targets for petroleum exploration. The dynamics of sustained turbidity currents and their depositional characteristics are investigated in a scaled physical model of a minibasin. Each turbidity current deposited a downstream thinning wedge of sediment near the inlet. Farther downstream the turbidity current was ponded by a barrier. The ponded part of the turbidity current was separated from the sediment‐free water above by a relatively sharp, horizontal settling interface indicating highly Froude‐subcritical flow. The very slow moving flow within the ponded zone created conditions for the passive rainout of suspended sediment onto the bed. In the lower part of the ponded zone, the concentration and mean grain‐size of the sediment in suspension tended to be relatively uniform in both the vertical and streamwise directions. As a result, the deposit emplaced in the ponded zone showed only a weak tendency toward downstream fining and was passively draped over the bed in such a way that irregularities in the inerodible bed were accurately reflected. The discharge of suspended sediment overflowing the downstream end of the minibasin was significantly less than the inflow discharge, resulting in basin sediment trapping efficiencies >95%. A simple model is developed to predict the trapping of sediment within the basin based on the relative magnitudes of the input discharge of turbid water and the detrainment discharge of water across the settling interface. This model shows a limiting case in which an intraslope basin captures 100% of the sediment from a ponded turbidity current, even through a succession of sustained flow events, until sediment deposition raises the settling interface above the downstream lip of the minibasin. This same process defines one of the mechanisms for minibasin filling in nature, and, when this mechanism is operative, the trap efficiency of sediment can be expected to be high until the minibasin is substantially filled with sediment.  相似文献   

10.
利用岩心、粒度、测井信息和重力流沉积理论,系统研究了南堡凹陷东部洼陷带东营组重力流沉积特征和沉积模式。该区重力流沉积砂岩常夹于灰色、灰黑色泥岩中,砂岩相发育,其中正递变层理(含砾)中-细砂岩相(S-3)、粉砂岩相(S-4)和块状层理中-细砂岩相(S-2)发育层数最多,块状层理含砾砂岩相(S-1)次之;S-2沉积厚度最大,S-1和S-3次之。按支撑和沉积机制,将本区重力流分为浊流、砂质碎屑流、颗粒流和液化流,其中砂质碎屑流以基质支撑、冻结块状沉积为特征。不同重力流发育程度有明显差异。从砂岩层数看,浊流最多,砂质碎屑流次之,颗粒流和液化流最少;从单期沉积厚度看,砂质碎屑流最大,平均为1.17m,浊流沉积最小,仅平均为0.25m。为了回避取心的局限性、弱化重力流成因,突出具有油气储集意义的砂层概念,开展了测井岩性解释,结果表明该区重力流沉积为细砂岩或粉砂岩,单层平均厚度2.94m,最大厚度可达9.5m,其中单井中厚度在3m以上的砂体可达22层、累积达107.5m。本区重力流沉积为滑塌成因,除了(扇)三角洲前缘斜坡的自然滑塌外,断层(地震)活动或间歇式火山喷发是其关键的触发机制;断层活动除了提供滑塌的动力外,还影响着其堆积场所和沉积的结构。  相似文献   

11.
Facies bodies in geostatistical models of deep-water depositional environments generally represent channel-levee-overbank-lobe morphologies. Such models adequately capture one set of the erosional and depositional processes resulting from turbidity currents traveling downslope to the ocean basin floor. However, depositional morphologies diverge from the straight forward channel-levee-overbank-lobe paradigm when the topography of the slope or the shape of the basin impacts the timing and magnitude of turbidity current deposition. Subaqueous mass-transport-deposits (MTDs) present the need for an exception to the channel-levee-overbank-lobe archetype. Irregular surface topography of subaqueous MTDs can play a primary role in controlling sand deposition from turbidity currents. MTD topography creates mini-basins in which sand accumulates in irregularly-shaped deposits. These accumulations are difficult to laterally correlate using well-log data due to their variable and unpredictable shape and size. Prediction is further complicated because sandstone bodies typical of this setting are difficult to resolve in seismic-reflection data. An event-based model is presented, called DFTopoSim, which simulates debris flows and turbidity currents. The accommodation space on top of and between debris flow lobes is filled in by sand from turbidity currents. When applied to a subsurface case in the Molasse Basin of Upper Austria, DFTopoSim predicts sand packages consistent with observations from core, well, and seismic data and the interpretation of the sedimentologic processes. DFTopoSim expands the set of available geostatistical deep-water depositional models beyond the standard channel-levee-overbank-lobe model.  相似文献   

12.
Subaqueous sediment density flows: Depositional processes and deposit types   总被引:7,自引:0,他引:7  
Submarine sediment density flows are one of the most important processes for moving sediment across our planet, yet they are extremely difficult to monitor directly. The speed of long run‐out submarine density flows has been measured directly in just five locations worldwide and their sediment concentration has never been measured directly. The only record of most density flows is their sediment deposit. This article summarizes the processes by which density flows deposit sediment and proposes a new single classification for the resulting types of deposit. Colloidal properties of fine cohesive mud ensure that mud deposition is complex, and large volumes of mud can sometimes pond or drain‐back for long distances into basinal lows. Deposition of ungraded mud (TE‐3) most probably finally results from en masse consolidation in relatively thin and dense flows, although initial size sorting of mud indicates earlier stages of dilute and expanded flow. Graded mud (TE‐2) and finely laminated mud (TE‐1) most probably result from floc settling at lower mud concentrations. Grain‐size breaks beneath mud intervals are commonplace, and record bypass of intermediate grain sizes due to colloidal mud behaviour. Planar‐laminated (TD) and ripple cross‐laminated (TC) non‐cohesive silt or fine sand is deposited by dilute flow, and the external deposit shape is consistent with previous models of spatial decelerating (dissipative) dilute flow. A grain‐size break beneath the ripple cross‐laminated (TC) interval is common, and records a period of sediment reworking (sometimes into dunes) or bypass. Finely planar‐laminated sand can be deposited by low‐amplitude bed waves in dilute flow (TB‐1), but it is most likely to be deposited mainly by high‐concentration near‐bed layers beneath high‐density flows (TB‐2). More widely spaced planar lamination (TB‐3) occurs beneath massive clean sand (TA), and is also formed by high‐density turbidity currents. High‐density turbidite deposits (TA, TB‐2 and TB‐3) have a tabular shape consistent with hindered settling, and are typically overlain by a more extensive drape of low‐density turbidite (TD and TC,). This core and drape shape suggests that events sometimes comprise two distinct flow components. Massive clean sand is less commonly deposited en masse by liquefied debris flow (DCS), in which case the clean sand is ungraded or has a patchy grain‐size texture. Clean‐sand debrites can extend for several tens of kilometres before pinching out abruptly. Up‐current transitions suggest that clean‐sand debris flows sometimes form via transformation from high‐density turbidity currents. Cohesive debris flows can deposit three types of ungraded muddy sand that may contain clasts. Thick cohesive debrites tend to occur in more proximal settings and extend from an initial slope failure. Thinner and highly mobile low‐strength cohesive debris flows produce extensive deposits restricted to distal areas. These low‐strength debris flows may contain clasts and travel long distances (DM‐2), or result from more local flow transformation due to turbulence damping by cohesive mud (DM‐1). Mapping of individual flow deposits (beds) emphasizes how a single event can contain several flow types, with transformations between flow types. Flow transformation may be from dilute to dense flow, as well as from dense to dilute flow. Flow state, deposit type and flow transformation are strongly dependent on the volume fraction of cohesive fine mud within a flow. Recent field observations show significant deviations from previous widely cited models, and many hypotheses linking flow type to deposit type are poorly tested. There is much still to learn about these remarkable flows.  相似文献   

13.
The Lower Cretaceous Britannia Formation (North Sea) includes an assemblage of sandstone beds interpreted here to be the deposits of turbidity currents, debris flows and a spectrum of intermediate flow types termed slurry flows. The term ‘slurry flow’ is used here to refer to watery flows transitional between turbidity currents, in which particles are supported primarily by flow turbulence, and debris flows, in which particles are supported by flow strength. Thick, clean, dish‐structured sandstones and associated thin‐bedded sandstones showing Bouma Tb–e divisions were deposited by high‐ and low‐density turbidity currents respectively. Debris flow deposits are marked by deformed, intraformational mudstone and sandstone masses suspended within a sand‐rich mudstone matrix. Most Britannia slurry‐flow deposits contain 10–35% detrital mud matrix and are grain supported. Individual beds vary in thickness from a few centimetres to over 30 m. Seven sedimentary structure division types are recognized in slurry‐flow beds: (M1) current structured and massive divisions; (M2) banded units; (M3) wispy laminated sandstone; (M4) dish‐structured divisions; (M5) fine‐grained, microbanded to flat‐laminated units; (M6) foundered and mixed layers that were originally laminated to microbanded; and (M7) vertically water‐escape structured divisions. Water‐escape structures are abundant in slurry‐flow deposits, including a variety of vertical to subvertical pipe‐ and sheet‐like fluid‐escape conduits, dish structures and load structures. Structuring of Britannia slurry‐flow beds suggests that most flows began deposition as turbidity currents: fully turbulent flows characterized by turbulent grain suspension and, commonly, bed‐load transport and deposition (M1). Mud was apparently transported largely as hydrodynamically silt‐ to sand‐sized grains. As the flows waned, both mud and mineral grains settled, increasing near‐bed grain concentration and flow density. Low‐density mud grains settling into the denser near‐bed layers were trapped because of their reduced settling velocities, whereas denser quartz and feldspar continued settling to the bed. The result of this kinetic sieving was an increasing mud content and particle concentration in the near‐bed layers. Disaggregation of mud grains in the near‐bed zone as a result of intense shear and abrasion against rigid mineral grains caused a rapid increase in effective clay surface area and, hence, near‐bed cohesion, shear resistance and viscosity. Eventually, turbulence was suppressed in a layer immediately adjacent to the bed, which was transformed into a cohesion‐dominated viscous sublayer. The banding and lamination in M2 are thought to reflect the formation, evolution and deposition of such cohesion‐dominated sublayers. More rapid fallout from suspension in less muddy flows resulted in the development of thin, short‐lived viscous sublayers to form wispy laminated divisions (M3) and, in the least muddy flows with the highest suspended‐load fallout rates, direct suspension sedimentation formed dish‐structured M4 divisions. Markov chain analysis indicates that these divisions are stacked to form a range of bed types: (I) dish‐structured beds; (II) dish‐structured and wispy laminated beds; (III) banded, wispy laminated and/or dish‐structured beds; (IV) predominantly banded beds; and (V) thickly banded and mixed slurried beds. These different bed types form mainly in response to the varying mud contents of the depositing flows and the influence of mud on suspended‐load fallout rates. The Britannia sandstones provide a remarkable and perhaps unique window on the mechanics of sediment‐gravity flows transitional between turbidity currents and debris flows and the textures and structuring of their deposits.  相似文献   

14.
《Sedimentology》2018,65(3):931-951
Submarine leveed channels are sculpted by turbidity currents that are commonly highly stratified. Both the concentration and the grain size decrease upward in the flow, and this is a fundamental factor that affects the location and grain size of deposits around a channel. This study presents laboratory experiments that link the morphological evolution of a progressively developing leveed channel to the suspended sediment structure of the turbidity currents. Previously, it was difficult to link turbidity current structure to channel–levee development because observations from natural systems were limited to the depositional products while experiments did not show realistic morphodynamics due to scaling issues related to the sediment transport. This study uses a novel experimental approach to overcome scaling issues, which results in channel inception and evolution on an initially featureless slope. Depth of the channel increased continuously as a result of levee aggradation combined with varying rates of channel floor aggradation and degradation. The resulting levees are fining upward and the grain‐size trend in the levee matches the upward decrease in grain size in the flow. It is shown that such deposit trends can result from internal channel dynamics and do not have to reflect upstream forcing. The suspended sediment structure can also be linked to the lateral transition from sediment bypass in the channel thalweg to sediment deposition on the levees. The transition occurs because the sediment concentration is below the flow capacity in the channel thalweg, while higher up on the channel walls the concentration exceeds capacity resulting in deposition of the inner levee. Thus, a framework is provided to predict the growth pattern and facies of a levee from the suspended sediment structure in a turbidity current.  相似文献   

15.
Turbidite muds in cores from the outer Scotian continental margin, off eastern Canada, contain abundant thin silt laminae. Graded laminated units are recognized in parts of this sequence. These represent single depositional events, and show a regular decrease in modal grain size and thickness of the silt laminae through the unit. A similar fining trend is shown by both silt and mud layers over hundreds of kilometres downslope. Textural analysis of individual laminae allows the construction of a dynamically consistent physical model for transport and sorting in muddy turbidity currents. Hydraulic sorting aggregates finer material to the top and tail regions of a large turbidity flow which then overspills its channel banks. Downslope lateral sorting occurs with preferential deposition of coarser silt grains and larger mud flocs. Depositional sorting by increased shear in the boundary layer separates clay flocs from silt grains and results in a regular mud/silt lamination. Estimates can be made of the physical parameters of the turbidity flows involved. They are a minimum of several hundreds of metres thick, have low concentrations (of the order of 10?3 or 2500 mg 1?1), and move downslope at velocities of 10-20 cm s?1. A 5 mm thick, coarse silt lamina takes about 10 h to deposit, and the subsequent mud layer ‘blankets’ very rapidly over this. A complete unit is deposited in 2-6 days which is the time it takes for the turbidity flow to pass a particular point. These thick, dilute, low-velocity flows are significantly different from the ‘classical’ turbidity current. However, there is mounting evidence in support of the new concept from laboratory observations and direct field measurements.  相似文献   

16.
《Sedimentary Geology》2007,193(1-4):105-129
The blocking of major river valleys in the Leinebergland area by the Early Saalian Scandinavian ice sheet led to the formation of a large glacial lake, referred to as “glacial Lake Leine”, where most of the sediment was deposited by meltwater. At the initial stage, the level of glacial Lake Leine was approx. 110 m a.s.l. The lake level then rose by as much as 100 m to a highstand of approx. 200 m a.s.l.Two genetically distinct ice-margin depositional systems are described that formed on the northern margin of glacial Lake Leine in front of the retreating Scandinavian ice sheet. The Bornhausen delta is up to 15 m thick and characterized by a large-scale tangential geometry with dip angles from 10°–28°, reflecting high-angle foreset deposition on a steep delta slope. Foreset beds consist of massive clast-supported gravel and pebbly sand, alternating with planar-parallel stratified pebbly sand, deposited from cohesionless debris flows, sandy debris flows and high-density turbidity flows. The finer-grained sandy material moved further downslope where it was deposited from low-density turbidity currents to form massive or ripple-cross-laminated sand in the toeset area.The Freden ice-margin depositional system shows a more complex architecture, characterized by two laterally stacked sediment bodies. The lower part of the section records deposition on a subaqueous ice-contact fan. The upper part of the Freden section is interpreted to represent delta-slope deposits. Beds display low- to high-angle bedding (3°–30°) and consist of planar and trough cross-stratified pebbly sand and climbing-ripple cross-laminated sand. The supply of meltwater-transported sediment to the delta slope was from steady seasonal flows. During higher energy conditions, 2-D and 3-D dunes formed, migrating downslope and passing into ripples. During lower-energy flow conditions thick climbing-ripple cross-laminated sand beds accumulated also on higher parts of the delta slope.  相似文献   

17.
The Aptian succession on the Vocontian palaeomargin (south-east France) consists of marl and marly calcareous pelagic slope facies together with a range of gravity-driven deposits (slumps, debris-flow deposits, turbidite packages and massive sandstones). The massive sandstones were emplaced by high-density turbidity currents and are associated with extensive clastic sills and dykes. The sedimentology is constrained by a high-resolution bio- and lithostratigraphic framework and permits a detailed analysis of the slope succession including: (1) a sequence stratigraphical analysis of the slope deposits; and (2) lateral tracing of individual sedimentary packages downslope. The resulting model for the Vocontian slope represents an alternative to the ‘classic’ Exxon delta-fed, mud-rich model. Key elements of the Vocontian model are: (1) an emphasis on lowstand slope erosion and complex slope morphology controlled by contemporary tectonism and salt diapirism; (2) slope deposition in confined erosional and structurally controlled conduits rather than the buildout of slope fans/channel-levee complexes; (3) a dominance of large-volume muddy slump and transitional debris-flow deposits, with subordinate sandy turbidites, including significant massive sandstone facies; (4) common sand injections (sills and dykes) associated with the massive sandstone facies; and (5) minimal downslope evolution of the flows, with the nature of the source sediment being the over-riding factor determining flow behaviour and deposit character. The Vocontian system is a rare instance in which large sections of a ‘fossil’ passive margin slope are preserved in the geological record. The slope deposits differ from the classic models of turbidite systems that have mainly been built from peripheral foreland basins, and the new insight makes it possible to compare ancient and present-day passive margin slope systems.  相似文献   

18.
A detailed survey of the upper and middle Nova Scotian continental slope at 42°50′N and 63°30′W indicates a complex morphology dominated by mass movements on various scales and an immature turbidity current channel. The range of sediment facies is diverse including hemipelagic and turbidite muds, turbidite sands and gravelly sandy muds of debris flow origin. Deformed units, interpreted as slump deposits are also observed. Several facies associations, related to discrete morphological environments, are recognized. Thick turbidite sand units with minor intervening mud beds are characteristic of the high-relief uppermost slope and channel margin. Thinner turbidite sands, deformed slump beds and various mud facies are associated with small-scale, hummocky mid-slope topography. Sand beds are more abundant in the depressions than on intervening hummocks indicating the preferred transport paths of small turbidity currents. At the lower end of the main turbidity current channel, frequent turbidite sand beds with relatively minor mud beds are deposited on a depositional lobe. In areas unaffected by mass movements, alternating bioturbated mud and sandy muds make up the core sequences. A local model of sedimentation is proposed for this area and illustrates that simple models of continental slope sedimentation only apply to a limited range of settings.  相似文献   

19.
Turbidity currents, initiated from spring runoffs of an influent river, were observed in the upper region of a reservoir in Hokkaido, Japan, by measuring water temperature, velocity and suspended-sediment concentration. Their profiles offer some physical parameters for the sedimentary conditions, assuming the turbidity currents to be quasi-uniform. The bottom sediment deposited by the turbidity currents was then collected by a portable core sampler. The bottom sediment consists of more than 90% silt and clay, and thus offers a hydraulically smooth bed for shear flow; a plane bed as a bed configuration was formed on the reservoir bed, probably because of the low shear velocity and small grain size of sediment. Using a graphic method with log-normal probability paper, the bottom sediment is divided into several overlapping log-normal subpopulations. Grain-size analysis indicates that the bottom sediment may be regarded as cohesionless; criteria for ‘complete deposition’ of transported grains can then be incorporated into the ‘extended Shields diagram’ giving the minimum shear stress to erode bottom sediment. Applying the new diagram to the grain size distribution of the bottom sediment, it is suggested that each of the log-normal subpopulations was deposited in each of four different ‘modes of deposition’, i.e. ‘traction’, ‘saltation (or intermittent suspension)’, ‘suspension’ and ‘suspension under equilibrium’. The last mode may be observed under a sedimentary condition where upward flux of suspended sediment by eddy diffusion is almost equal to its depositional flux due to gravity. The mean and critical grain sizes for bottom sediment and each of the corresponding subpopulations decrease consistently with an increase of Ψ=Fd2 log10Re (Fd is the densimetric Froude number and Re is the flow Reynolds number). Ψ correlates inversely with shear velocity, which bears a linear relationship to mean velocity. These results lead to the conclusion that relatively fine suspended sediment is deposited as a result of decreasing bottom friction with a relative decrease of turbulent energy.  相似文献   

20.
Status and Trends in Research on Deep-Water Gravity Flow Deposits   总被引:3,自引:0,他引:3  
Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study,significant achievements have been made in terms of classification schemes,genetic mechanisms,and depositional models of deep-water gravity flows. The research history of deep-water gravity flows can be divided into five stages: incipience of turbidity current theory; formation of turbidity current theory; development of deep-water gravity flow theory; improvement and perfection of deep-water gravity flow theory; and comprehensive development of deep-water gravity flow theory. Currently,three primary classification schemes based on the sediment support mechanism,the rheology and transportation process,and the integration of sediment support mechanisms,rheology,sedimentary characteristics,and flow state are commonly used.Different types of deep-water gravity flow events form different types of gravity flow deposits. Sediment slump retransportation mainly forms muddy debris flows,sandy debris flows,and surge-like turbidity currents. Resuspension of deposits by storms leads to quasi-steady hyperpycnal turbidity currents(hyperpycnal flows). Sustainable sediment supplies mainly generate muddy debris flows,sandy debris flows,and hyperpycnal flows. Deep-water fans,which are commonly controlled by debris flows and hyperpycnal flows,are triggered by sustainable sediment supply; in contrast,deep-water slope sedimentary deposits consist mainly of debris flows that are triggered by the retransportation of sediment slumps and deep-water fine-grained sedimentary deposits are derived primarily from finegrained hyperpycnal flows that are triggered by the resuspension of storm deposits. Harmonization of classification schemes,transformation between different types of gravity flow deposit,and monitoring and reproduction of the sedimentary processes of deep-water gravity flows as well as a source-to-sink approach to document the evolution and deposition of deep-water gravity flows are the most important research aspects for future studies of deep-water gravity flows study in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号