首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The interaction of X-rays with interstellar dust leads to small angle scattering. X-ray sources behind sufficiently dense dust columns are therefore surrounded by haloes of faint and diffuse X-ray emission. Since these X-ray sources are also highly absorbed, X-ray observations offer the unique opportunity to measure both components of interstellar extinction simultaneously. This method provides an excellent means of determining interstellar gas to dust ratios, a differentiation between interstellar and circumstellar matter, and, last but not least, a clue to the physical nature of dust itself. In particular we have a plausible explanation why the supernova- explosion in Cassiopaea 300 years ago, of which we know today the remnant Cas A, has not been seen. Furthermore, we find that dust grains must be ‘fluffy’ or porous with voids up to 70%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
3.
Free-space equilibrium temperatures for porous interstellar grains are computed for different dust sizes and are compared to those expected for homogeneous normal grains for two material candidates: graphite and a lunar silicate. Relevant differences are found with the former, but are essentially negligible with the latter. The results are discussed in terms of the different optical properties produced by the porosity of the grains. The possible astrophysical implications of these findings are also mentioned.  相似文献   

4.
Using the recently available exact computations of the scattering efficiencies of spheroidal particles numerical calculations of the extinction and polarization curves have been made for a distribution of particle sizes, shapes and orientations. The results are presented and compared with the observed interstellar extinction and polarization. Possible models for interstellar dust with nonspherical grains have been discussed.  相似文献   

5.
Interstellar extinction curves obtained from the ‘extinction without standard’ method were used to constrain the dust characteristics in the mean ISM (R V = 3.1), along the lines of sight through a high latitude diffuse molecular cloud towards HD 210121 (R V = 2.1) and in a dense interstellar environment towards the cluster NGC 1977 (R V = 6.42). We have used three-component dust models comprising silicate, graphite and very small carbonaceous grains (polycyclic aromatic hydrocarbons) following the grain size distributions introduced by Li & Draine in 2001. It is shown that oxygen, carbon and silicon abundances derived from our models are closer with the available elemental abundances for the dust grains in the ISM if F & G type stars atmospheric abundances are taken for the ISM than the solar. The importance of very small grains in modelling the variation of interstellar extinction curves has been investigated. Grain size distributions and elemental abundances locked up in dust are studied and compared at different interstellar environments using these three extinction curves. We present the albedo and the scattering asymmetry parameter evaluated from optical to extreme-UV wavelengths for the proposed dust models.  相似文献   

6.
We present photometric evolution models of galaxies, in which, in addition to the stellar component, the effects of an evolving dusty interstellar medium have been included with particular care. Starting from the work of Calura et al., in which chemical evolution models have been used to study the evolution of both the gas and dust components of the interstellar medium in the solar neighbourhood, elliptical and irregular galaxies, it has been possible to combine these models with a spectrophotometric stellar code that includes dust reprocessing ( grasil ) to analyse the evolution of the spectral energy distributions (SEDs) of these galaxies. We test our models against observed SEDs both in the local universe and at high redshift, and use them to predict how the percentage of reprocessed starlight evolves for each type of galaxy. The importance of following the dust evolution is investigated by comparing our results with those obtained by adopting simple assumptions to treat this component.  相似文献   

7.
The scientific community has expressed strong interest to re-fly Stardust-like missions with improved instrumentation. We propose a new mission concept, SARIM, that collects interstellar and interplanetary dust particles and returns them to Earth. SARIM is optimised for the collection and discrimination of interstellar dust grains. Improved active dust collectors on-board allow us to perform in-situ determination of individual dust impacts and their impact location. This will provide important constraints for subsequent laboratory analysis. The SARIM spacecraft will be placed at the L2 libration point of the Sun–Earth system, outside the Earth’s debris belts and inside the solar-wind charging environment. SARIM is three-axes stabilised and collects interstellar grains between July and October when the relative encounter speeds with interstellar dust grains are lowest (4 to 20 km/s). During a 3-year dust collection period several hundred interstellar and several thousand interplanetary grains will be collected by a total sensitive area of 1 m2. At the end of the collection phase seven collector modules are stored and sealed in a MIRKA-type sample return capsule. SARIM will return the capsule containing the stardust to Earth to allow for an extraction and investigation of interstellar samples by latest laboratory technologies.  相似文献   

8.
DuneXpress     
The DuneXpress observatory will characterize interstellar and interplanetary dust in-situ, in order to provide crucial information not achievable with remote sensing astronomical methods. Galactic interstellar dust constitutes the solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with DuneXpress in Earth orbit will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Hence DuneXpress will provide insights into the physical conditions during planetary system formation. This comparison of interstellar and interplanetary dust addresses directly themes of highest priority in astrophysics and solar system science, which are described in ESA’s Cosmic Vision. The discoveries of interstellar dust in the outer and inner solar system during the last decade suggest an innovative approach to the characterization of cosmic dust. DuneXpress establishes the next logical step beyond NASA’s Stardust mission, with four major advancements in cosmic dust research: (1) analysis of the elemental and isotopic composition of individual interstellar grains passing through the solar system, (2) determination of the size distribution of interstellar dust at 1 AU from 10 − 14 to 10 − 9 g, (3) characterization of the interstellar dust flow through the planetary system, (4) establish the interrelation of interplanetary dust with comets and asteroids. Additionally, in supporting the dust science objectives, DuneXpress will characterize dust charging in the solar wind and in the Earth’s magnetotail. The science payload consists of two dust telescopes of a total of 0.1 m2 sensitive area, three dust cameras totaling 0.4 m2 sensitive area, and a nano-dust detector. The dust telescopes measure high-resolution mass spectra of both positive and negative ions released upon impact of dust particles. The dust cameras employ different detection methods and are optimized for (1) large area impact detection and trajectory analysis of submicron sized and larger dust grains, (2) the determination of physical properties, such as flux, mass, speed, and electrical charge. A nano-dust detector searches for nanometer-sized dust particles in interplanetary space. A plasma monitor supports the dust charge measurements, thereby, providing additional information on the dust particles. About 1,000 grains are expected to be recorded by this payload every year, with 20% of these grains providing elemental composition. During the mission submicron to micron-sized interstellar grains are expected to be recorded in statistically significant numbers. DuneXpress will open a new window to dusty universe that will provide unprecedented information on cosmic dust and on the objects from which it is derived.  相似文献   

9.
Kimura  H.  Mann  I.  Wehry  A. 《Astrophysics and Space Science》1998,264(1-4):213-218
We deduce the mass distribution and total mass density of interstellar dust streaming into the solar system and compare the results to the conditions of the very local interstellar medium (VLISM). The mass distribution derived from in situ measurements shows a gentler slope and includes larger grains, compared to a model distribution proposed for the wavelength dependence of the interstellar extinction. The mass density of grains in the solar system is consistent with that expected from measurements of the visible interstellar extinction and the abundance constraints of elements in the diffuse interstellar medium (ISM), instead of those in the VLISM. This may imply that interstellar dust grains are not associated with the VLISM and that the conditions of the grains are better represented by the ones expected in the diffuse ISM. If this is the case, then the flatter slope in the mass distribution and the detection of larger interstellar grains in the solar system may even indicate that coagulation growth of dust in the diffuse ISM is more effective than previously inferred. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The Ulysses spacecraft orbits the Sun on a highly inclined orbit, and the impact ionization dust detector on board continuously measures interstellar dust grains with masses up to , penetrating deep into the Solar System. The flow direction is close to the mean apex of the Sun's motion through the local interstellar cloud (LIC), and the grains act as tracers of the physical conditions in the LIC. Previous analysis gave a velocity dispersion of up to 40° for the interstellar grains. We partially re-analyzed the Ulysses interstellar dust data set, taking into account the detector's inner side walls. As the side walls have a sensitivity for dust impact detection almost identical to that of the instrument's target area, wall impactors must be taken into account for estimating the intrinsic velocity dispersion of the interstellar impactors and the interstellar dust flux value. Neglect of the sensor side walls overestimates the interstellar dust stream velocity dispersion by about 30% and the interstellar dust flux by about 20%.  相似文献   

11.
Abstract– We present initial results from hydrocode modeling of impacts on Al‐1100 foils, undertaken to aid the interstellar preliminary examination (ISPE) phase for the NASA Stardust mission interstellar dust collector tray. We used Ansys’ AUTODYN to model impacts of micrometer‐scale, and smaller projectiles onto Stardust foil (100 μm thick Al‐1100) at velocities up to 300 km s?1. It is thought that impacts onto the interstellar dust collector foils may have been made by a combination of interstellar dust particles (ISP), interplanetary dust particles (IDP) on comet, and asteroid derived orbits, β micrometeoroids, nanometer dust in the solar wind, and spacecraft derived secondary ejecta. The characteristic velocity of the potential impactors thus ranges from <<1 to a few km s?1 (secondary ejecta), approximately 4–25 km s?1 for ISP and IDP, up to hundreds of km s?1 for the nanoscale dust reported by Meyer‐Vernet et al. (2009) . There are currently no extensive experimental calibrations for the higher velocity conditions, and the main focus of this work was therefore to use hydrocode models to investigate the morphometry of impact craters, as a means to determine an approximate impactor speed, and thus origin. The model was validated against existing experimental data for impact speeds up to approximately 30 km s?1 for particles ranging in density from 2.4 kg m?3 (glass) to 7.8 kg m?3 (iron). Interpolation equations are given to predict the crater depth and diameter for a solid impactor with any diameter between 100 nm and 4 μm and density between 2.4 and 7.8 kg m?3.  相似文献   

12.
《Planetary and Space Science》1999,47(6-7):787-795
The infrared emission of various comets can be matched within the framework that all comets are made of aggregated interstellar dust. This is demonstrated by comparing results on Halley (a periodic comet), Borrelly (a Jupiter family short period comet), Hale-Bopp (a long period comet), and extra-solar comets in the β Pictoris disk. Attempts have been made to generalize the chemical composition of comet nuclei based on the observation of cometary dust and volatiles and the interstellar dust model. Finally, we deduce some of the expected dust and surface properties of comet Wirtanen from the interstellar dust model as applied to other comets.  相似文献   

13.
星际尘埃研究现状与进展   总被引:3,自引:0,他引:3  
由于星际尘埃的广泛存在和其在恒星与行星系统的形成、星系以及整个宇宙演化中的重要作用,星际尘埃的研究成为当今天体物理领域的热点前沿课题。该文从尘埃与电磁场相互作用的观测证据出发,系统地介绍了星际消光(包括吸收和散射)、星际红外辐射、星际偏振等的研究现状,讨论了星际元素减损,以及行星际尘埃和陨石中的前太阳尘埃等问题。从相应的观测证据中,可以得到关于星际尘埃的丰度、化学组成、尺寸和形状的信息。该文还对当前比较流行的三种尘埃模型(硅酸盐-石墨-PAHs模型、硅酸盐核-碳有机耐熔质壳层模型和多孔尘埃模型)进行了讨论与比较,对该研究领域中待解决的问题也作了简要的概括。  相似文献   

14.
The timing and extent to which the initial interstellar material was thermally processed provide fundamental constraints for models of the formation and early evolution of the solar protoplanetary disk. We argue that the nonsolar (solar Δ17O ≈ ?29‰) and near‐terrestrial (Δ17O ≈ 0‰) O‐isotopic compositions of the Earth and most extraterrestrial materials (Moon, Mars, asteroids, and comet dust) were established very early by heating of regions of the disk that were modestly enriched (dust/gas ≥ 5–10 times solar) in primordial silicates (Δ17O ≈ ?29‰) and water‐dominated ice (Δ17O ≈ 24‰) relative to the gas. Such modest enrichments could be achieved by grain growth and settling of dust to the midplane in regions where the levels of turbulence were modest. The episodic heating of the disk associated with FU Orionis outbursts were the likely causes of this early thermal processing of dust. We also estimate that at the time of accretion the CI chondrite and interplanetary dust particle parent bodies were composed of ~5–10% of pristine interstellar material. The matrices of all chondrites included roughly similar interstellar fractions. Whether this interstellar material avoided the thermal processing experienced by most dust during FU Orionis outbursts or was accreted by the disk after the outbursts ceased to be important remains to be established.  相似文献   

15.
We perform numerical simulations of the molecular hydrogen production on the surface of interstellar dust grains and its dissociation by the ultraviolet background in conditions typical for the interstellar medium. The kinetic version of the Monte Carlo method is used for the modeling of the catalytic chemical reactions on the surface of the dust fraction and in the surrounding medium. Our simulations show the importance of the interstellar dust particles for hydrogen chemistry in diffuse molecular clouds.  相似文献   

16.
Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called “Dust Astronomy” which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.  相似文献   

17.
The influence of crystal structure and surface stresses on the spectrum of small interstellar particles has been investigated. Surface effects are predicted to result in the occurrence of pairs of features in the discrete absorption spectrum of interstellar dust. A simple relationship between the energy separation between lines of these pairs and their widths is derived which is tested against recent observational data on the diffuse interstellar band spectrum. Thirty of the diffuse bands can be accounted for on this basis by assuming that interstellar dust consists of a mixture of components of differing chemical composition.  相似文献   

18.
Belheouane  S.  Zaslavsky  A.  Meyer-Vernet  N.  Issautier  K.  Mann  I.  Maksimovic  M. 《Solar physics》2012,281(1):501-506

Most in situ measurements of cosmic dust have been carried out with dedicated dust instruments. However, dust particles can also be detected with radio and plasma wave instruments. The high velocity impact of a dust particle generates a small crater on the spacecraft, and the dust particle and the crater material are vaporised and partly ionised. The resulting electric charge can be detected with plasma instruments designed to measure electric waves. Since 2007 the STEREO/WAVES instrument has recorded a large number of events due to dust impacts. Here we will concentrate on the study of those impacts produced by dust grains originating from the local interstellar cloud. We present these fluxes during five years of the STEREO mission. Based on model calculations, we determine the direction of arrival of interstellar dust. We find that the interstellar dust direction of arrival is ~260°, in agreement with previous studies.

  相似文献   

19.
It is shown that available optical and ultraviolet data relating to the interstellar dust are elegantly explained on the basis of a modified microbal grain model. A model comprised of two biologically derived components, modified under interstellar conditions. Data on interstellar extinction, albedo and polarization may be accounted for by this model.  相似文献   

20.
The production of discrete line and broad-band extinction by small interstellar oxide and silicate particles is discussed quantitatively. Restrictions on particle size and refractive index that are required to produce ‘pure’ absorption features are reviewed. The relationship between optical depth in interstellar extinction and absorption coefficients for bulk materials is used to reach some general conclusions concerning the diffuse interstellar features, VUV extinction and the composition of interstellar dust. It is noted that charge transfer bands of ions such as Fe3+ may be detectable in the VUV spectrum of dust. Several effects that lead to the enhancement of oscillator strength by 103–104 in small particles are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号