首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed tectonic analysis demonstrates that the present observed regional tectonic configuration of the ultrahigh-pressure metamorphic terrane in the Dabie massif was mainly formed by the extension processes of the post-Indosinian continent-continent oblique collision between the Sino-Korean and Yangtze cratons and ultrahigh-pressure metamorphism (UHPM). The configuration is characterized by a regional tectonic pattern similar to metamorphic core complexes and by the development of multi-layered detachment zones. On the basis of the identification of compressional and extensional fabrics, it is indicated that the exhumation and uplift of ultrahigh-pressure (UHP) metamorphic rocks from the mantle depth to the surface can be divided into at least three different decompression retrogressive metamorphism and tectonic deformation stages, in which the subhorizontal crustal-scale extensional flow in the middle-lower crust under amphibolite facies conditions is an important geodynamic process in the exhumation of UHP metamorphic rocks. Moreover, the extensional flow is probably driven by delamination and magmatic underplating of thickened lithospheric mantle following the continental oblique collision.  相似文献   

2.
Flat and steep subduction are end-member modes of oceanic subduction zones with flat subduction occurring at about 10% of the modern convergent margins and mainly around the Pacific. Continental (margin) subduction normally follows oceanic subduction with the remarkable event of formation and exhumation of high- to ultrahigh-pressure (HP–UHP) metamorphic rocks in the continental subduction/collision zones. We used 2D thermo-mechanical numerical models to study the contrasting subduction/collision styles as well as the formation and exhumation of HP–UHP rocks in both flat and steep subduction modes. In the reference flat subduction model, the two plates are highly coupled and only HP metamorphic rocks are formed and exhumed. In contrast, the two plates are less coupled and UHP rocks are formed and exhumed in the reference steep subduction model. In addition, faster convergence of the reference flat subduction model produces extrusion of UHP rocks. Slower convergence of the reference flat subduction model results in two-sided subduction/collision. The higher/lower convergence velocities of the reference steep subduction model can both produce exhumation of UHP rocks. A comparison of our numerical results with the Himalayan collisional belt suggests two possible scenarios: (1) A spatially differential subduction/collision model, which indicates that steep subduction dominates in the western Himalaya, while flat subduction dominates in the extensional central Himalaya; and (2) A temporally differential subduction/collision model, which favors earlier continental plate (flat) subduction with high convergence velocity in the western Himalaya, and later (flat) subduction with relatively low convergence velocity in the central Himalaya.  相似文献   

3.
Major and trace element zonation patterns were determined in ultrahigh-pressure eclogite garnets from the Western Gneiss Region (Norway). All investigated garnets show multiple growth zones and preserve complex growth zonation patterns with respect to both major and rare earth elements (REE). Due to chemical differences of the host rocks two types of major element compositional zonation patterns occur: (1) abrupt, step-like compositional changes corresponding with the growth zones and (2) compositionally homogeneous interiors, independent of growth zones, followed by abrupt chemical changes towards the rims. Despite differences in major element zonation, the REE patterns are almost identical in all garnets and can be divided into four distinct zones with characteristic patterns.In order to interpret the major and trace element distribution and zoning patterns in terms of the subduction history of the rocks, we combined thermodynamic forward models for appropriate bulk rock compositions to yield molar proportions and major element compositions of stable phases along the inferred pressure-temperature path with a mass balance distribution of REEs among the calculated stable phases during high pressure metamorphism. Our thermodynamic forward models reproduce the complex major element zonation patterns and growth zones in the natural garnets, with garnet growth predicted during four different reaction stages: (1) chlorite breakdown, (2) epidote breakdown, (3) amphibole breakdown and (4) reduction in molar clinopyroxene at ultrahigh-pressure conditions.Mass-balance of the rare earth element distribution among the modelled stable phases yielded characteristic zonation patterns in garnet that closely resemble those in the natural samples. Garnet growth and trace element incorporation occurred in near thermodynamic equilibrium with matrix phases during subduction. The rare earth element patterns in garnet exhibit distinct enrichment zones that fingerprint the minerals involved in the garnet-forming reactions as well as local peaks that can be explained by fractionation effects and changes in the mineral assemblage.  相似文献   

4.
The present paper examines a kinetic model of the coesite–quartz transition under an elastic field. This model is applied to discuss the possible exhumation path of ultrahigh-pressure (UHP) metamorphic rocks. By incorporating the model of transition kinetics into a three-shelled composite sphere model in linear elasticity, the internal stresses in coesite, quartz, and garnet shells were calculated for given external pressure ( P )–temperature ( T ) paths. The occurrence of rupture provides a constraint on the temperature and the amount of quartz inverted from coesite at the rupture for each P–T path. Comparison of calculated results and the natural occurrence of coesite inclusion from the Dora Maira Massif, containing ∼ 27% quartz at the rupture, enables us to constrain the possible exhumation path and possible transition kinetics. A steep decompression path with slow transition kinetics is most favorable, which is consistent with the estimated P–T path during exhumation for most UHP metamorphic rocks.  相似文献   

5.
Gaseous components of gas inclusions in deep carbonate rocks (>5700 m) from the Tacan 1 well were analyzed by online mass spectrometry by means of either the stepwise heating technique or vacuum electromagnetism crushing. The carbon isotopic compositions of gases released by vacuum electromagnetism crushing were also measured. Although the molecular compositions of gas inclusions show differences between the two methods, the overall characteristics are that gas inclusions mainly contain CO2, whilst hydrocarbon gases, such as CH4, C2H6 and C3H8, are less abundant. The content of CO is higher in the stepwise heating experiment than that in the method of vacuum electromagnetism crushing, and there are only minor amounts of N2, H2 and O2 in gas inclusions. Methane δ13C values of gas inclusions in Lower Ordovician and Upper Cambrian rocks (from 5713.7 to 6422 m; -52‰-63‰) are similar to those of bacterial methane, but their chemical compositions do not exhibit the dry character in comparison with biogenic gases. These characteristics of deep gas inclusions may be related to the migration fractionation. Some deep natural gases with light carbon isotopic characteristics in the Tazhong Uplift may have a similar origin. The δ13C1 values of gas inclusions in Lower Cambrian rocks (7117-7124 m) are heavier (-39‰), consistent with highly mature natural gases. Carbon isotopic compositions of CO2 in the gas inclusions of deep carbonate rocks are similar (from -4‰ to -13‰) to those of deep natural gases, indicating predominantly an inorganic origin.  相似文献   

6.
West Yunnan is made of the Yangtze Craton, theSouth China Block, the Indochina Block and severalother micro-terranes formed at different times. It iscross-cut by the NW-SE-trending Ailao Shan-RedRiver (ASRR) fault, which runs over 1000 km fromthe eastern margin of the Qinghai-Tibet Plateau,through Vietnam and to the North Gulf (fig. 1). TheASRR fault is an important geological and topog-raphic boundary in East Asia. The sinistral movementof the Indochina Block along this fault ev…  相似文献   

7.
Tomoaki  Morishita  Shoji  Arai  Yoshito  Ishida 《Island Arc》2007,16(1):40-56
Abstract   Trace-element compositions of jadeite (±omphacite) in jadeitites from the Itoigawa-Ohmi district of Japan, analyzed by a laser-ablation inductively coupled plasma mass spectrometry technique showed chemical zoning within individual grains and variations within each sample and between different samples. Primitive mantle-normalized patterns of jadeite in the samples generally showed high large-ion lithophile element contents, high light rare earth element/heavy rare earth element ratios and positive anomalies of high field strength elements. The studied jadeitites have no signatures of the protolith texture or mineralogy. Shapes and distributions of minerals coupled with chemical zoning within grains suggest that the jadeitites were formed by direct precipitation of minerals from aqueous fluids or complete metasomatic modification of the precursor rocks by fluids. In either case, the geochemical characteristics of jadeite are highly affected by fluids enriched in both large-ion lithophile elements and high field strength elements. The specific fluids responsible for the formation of jadeitites are related to serpentinization by slab-derived fluids in subduction zones. This process is followed by dissolving high field strength elements in the subducting crust as the fluids continue to circulate into the subducting crusts and serpentinized peridotites. The fluids have variations in chemical compositions corresponding to various degrees of water–rock interactions.  相似文献   

8.
Piera  Spadea  Massimo  D'Antonio 《Island Arc》2006,15(1):7-25
Abstract The Southern Uralides are a collisional orogen generated in the Late Devonian–Early Carboniferous by the collision of the Magnitogorsk island arc (MA) generated in the Early to Middle Devonian by intra‐oceanic convergence opposite to the continental margin, and the continental margin of the East European craton. A suture zone of the arc to the continental margin, the Main Uralian Fault (MUF), is marked by ophiolites and exhumed high‐pressure–low‐temperature metamorphic rocks of continental origin. The pre‐orogenic events of the Southern Urals and their geodynamic setting are traced by means of fluid‐immobile incompatible trace elements (rare earth elements and high field strength elements) and Sr–Nd–Pb isotope geochemistry of the MA suites, in particular the protoarc suite with boninites and probably ankaramites, and the mature arc comprised of island arc tholeiitic (IAT) suites, transitional IAT to calc‐alkaline (CA), and CA suites. The MA volcanics result in genetically distinct magmatic source components. In particular, depleted normal‐mid‐oceanic ridge basalt‐type mantle sources with various enrichments in a slab‐derived aqueous fluid component are evident. The enriched component is not involved in significant amounts, as testified by the rather radiogenic Nd isotopes and unradiogenic Pb isotopes. Further information on the pre‐orogenic events is provided by the Mindyak Massif metagabbros derived from diverse gabbroic protoliths that were affected by oceanic rodingitization, and subsequently by a high‐temperature (HT) metamorphism related to the development of a metamorphic sole. The HT metamorphism has the same age as the protoarc volcanism, and constrains the initiation of subduction at approximately 410 Ma. Consequently, the maximum timespan between initial intra‐oceanic convergence and final collision is approximately 31 my, a duration consistent with that of present‐day ongoing collisions in the western Pacific. The characteristics of early volcanism and the traces of a metamorphic sole provide useful criteria to attribute most MUF ophiolites to the Tethyan type with a complex pre‐orogenic evolution.  相似文献   

9.
Lithologic data compiled from Deep Sea Drilling Project and Ocean Drilling Program sites, when combined with orthogonal convergence rates at convergent plate boundaries, permit quantification of the mass flux of sediment into subduction zones. We have made such calculations for each major sediment component — terrigenous grains, calcium carbonate, opal, and water — for twelve trench systems. Results show that 1.4 × 1015 g/yr of sediment and 0.9 × 1015 g/yr of water enter the trenches in the oceanic sedimentary layer. Most of the entering sediment, 1.1 × 1015 g/yr, is terrigenous; the remainder is more carbonate than opal. For most of geologic time an order of magnitude more sediment enters the ocean than leaves it via subduction. The global sedimentary cycle need be in balance only over an entire Wilson cycle. Comparison of sediment fluxes into trenches with the magnitude of large earthquakes and with the composition of bulk volcanic rock shows no correlation.  相似文献   

10.
Northeast China is an essential area for studying the strength of East Asian Summer Monsoon(EASM), due to its northernmost location in EASM domain. However, the lack of sufficient modern pollen data in this region hinders an effective interpretation of fossil pollen records and quantitative vegetation/climate reconstructions. Here, 44 surface pollen samples from forest, steppe, and meadow were used to explore pollen-vegetation-climate relationships. Cluster analysis, species indicator analysis, and principal components analysis, were used to identify the discontinuous and continuous trends in pollen dataset. In addition, correlation analysis and boosted regression trees were used to investigate primary explanatory variables, while coinertia analysis and redundancy analysis to examine pollen-vegetation and pollen-climate correlations respectively. Our results show that:(1) vegetation can be well represented by surface pollen assemblages, i.e. forest is characterized by a high proportion of tree pollen(70%) dominated by Betula(40%) along with Alnus, Larix, and Pinus, whereas Steppe by herb pollen(80%),dominated by Artemisia, Chenopodiaceae;(2) significant correlations exist between pollen assemblages and mean annual temperature and then mean annual precipitation;(3) pollen ratios of Artemisia/Chenopodiaceae and arboreal/non-arboreal can respectively be used as good indicators of humidity and temperature in Northeast China.  相似文献   

11.
Fluids in the deep subduction zones play an impor-tant role in the process of crust-mantle interaction. This has been proved by a large number of studies on the geochemistry of island arc volcanic rocks[1―9]. Study on high-pressure metamorphic rocks within orogen shows that the dehydration and devolatilization of subducted oceanic crust and sediments can release amounts of water during progressive metamorph- ism[10―13]. The origin of the fluids in the subduction zones provides important info…  相似文献   

12.
Abstract The Archean to Paleo–Proterozoic Bundelkhand massif basement of the central Indian shield has been dissected by numerous mafic dykes of Proterozoic age. These dykes are low‐Ti tholeiites, ranging in composition from subalkaline basalt through basaltic‐andesite to dacite. They are enriched in light rare earth elements (LREE), large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE: Nb, P and Ti). Negative Sr anomaly is conspicuous. Nb/La ratios of the dykes are much lower compared with the primitive mantle, not much different from the average crustal values, but quite similar to those of continental and subduction related basaltic rocks. Bulk contamination of the mantle derived magma by crustal material is inadequate to explain the observed geochemical characteristics; instead contamination of the mantle/lithospheric source(s) via subduction of sediment is a better proposition. Thus, in addition to generating juvenile crust along the former island arcs, subduction processes appear to have influence on the development of enriched mantle/lithospheric source(s). The Bundelkhand massif basement is inferred to represent subduction related juvenile crust, that experienced lithospheric extension and rifting possibly in response to mantle plume activities. The latter probably supplied the required heat, material (fluids) and extensional environment to trigger melting in the refractory lithospheric source(s) and emplacement of the mafic dykes. Proterozoic mafic magmatic rocks from Bundelkhand, Aravalli, Singhbhum and Bastar regions of the Indian shield and those from the Garhwal region of the Lesser Himalaya display remarkably similar enriched incompatible trace elements characteristics, although limited chemical variations are observed in all these rocks. This may indicate the existence of a large magmatic province, different parts of which might have experienced similar petrogenetic processes and were probably derived from mantle/lithospheric source(s) with similar trace element characteristics. The minor, less enriched to depleted components of the Jharol Group of the Aravalli terrane and those from the Singhbhum terrane may represent protracted phases of rifting, that probably caused thinning and mobilization of the lithosphere, facilitating the eruption/emplacement of the asthenospheric melts (with N‐ to T‐types mid‐oceanic ridge basalts signatures) and deposition of deep water facies sediments in the younger developing oceanic basins. In contrast, Bundelkhand region did not experience such protracted rifting, although dyke swarms were emplaced and shallow water Bijawar Group and Vindhyan Supergroup sediments were deposited in continental rift basins. All these discrete Proterozoic terranes appear to have experienced similar petrogenetic processes, tectonomagmatic and possibly temporal evolution involving subduction processes, influencing the lithospheric source characteristics, followed by probably mantle plume induced ensialic rifting through to the development of oceanic basins in the Indian shield regions and their extension in the Lesser Himalaya.  相似文献   

13.
We summarize chemical characteristics of chromian spinels from ultramafic to mafic plutonic rocks (lherzolites, harzburgites, dunites, wehrlites, troctolites, olivine gabbros) with regard to three tectonic settings (mid‐ocean ridge, arc, oceanic hotspot). The chemical range of spinels is distinguishable between the three settings in terms of Cr# (= Cr/(Cr + Al) atomic ratio) and Ti content. The relationships are almost parallel with those of chromian spinels in volcanic rocks, but the Ti content is slightly lower in plutonics than in volcanics at a given tectonic environment. The Cr# of spinels in plutonic rocks is highly diverse; its ranges overlap between the three settings, but extend to higher values (up to 0.8) in arc and oceanic hotspot environments. The Ti content of spinels in plutonics increases, for a given lithology, from the arc to oceanic hotspot settings by mid‐ocean ridge on average. This chemical diversity is consistent with that of erupted magmas from the three settings. If we systematically know the chemistry of chromian spinels from a series of plutonic rocks, we can estimate their tectonic environments of formation. The spinel chemistry is especially useful in dunitic rocks, in which chromian spinel is the only discriminating mineral. Applying this, discordant dunites cutting mantle peridotites were possibly precipitated from arc‐related magmas in the Oman ophiolite, and from an intraplate tholeiite in the Lizard ophiolite, Cornwall.  相似文献   

14.
Blocks and tectonic slices within the Mersin Mélange (southern Turkey), which are of Northern Neotethyan origin (Izmir–Ankara–Erzincan Ocean (IAE)), were studied in detail by using radiolarian, conodont, and foraminiferal assemblages on six different stratigraphic sections with well‐preserved Permian succesions. The basal part of the Permian sequence, composed of alternating chert and mudstone with basic volcanics, is assigned to the late Asselian (Early Permian) based on radiolarians. The next basaltic interval in the sequence is dated as Kungurian. The highly alkaline basic volcanics in the sequence are extremely enriched, similar to kimberlitic/lamprophyric magmas generated at continental intraplate settings. Trace element systematics suggest that these lavas were generated in a continental margin involving a metasomatized subcontinental lithospheric mantle source (SCLM). The middle part of the Permian sequences, dated by benthic foraminifera and conodont assemblages, includes detrital limestones with chert interlayers and neptunian dykes of middle Wordian to earliest Wuchiapingian age. Higher in the sequence, detrital limestones are overlain by alternating chert and mudstone with intermittent microbrecciated beds of early Wuchiapingian to middle Changhsingian (Late Permian) age based on the radiolarians. A large negative shift at the base of the Lopingian at the upper part of section is correlated to negative shifts at the Guadalupian/Lopingian boundary associated with the end‐Guadalupian mass extinction event. All these findings indicate that a continental rift system associated with a possible mantle plume existed during the late Early to Late Permian period. This event was responsible for the rupturing of the northern Gondwanan margin related to the opening of the IAE Ocean. When the deep basinal features of the Early Permian volcano‐sedimentary sequence are considered, the proto IAE oceanic crust formed possibly before the end of the Permian. This, in turn, suggests that the opening of the IAE Ocean dates back to as early as the Permian.  相似文献   

15.
New geochemical and 40Ar/39Ar age data are presented from the Neogene volcanic units of the Karaburun Peninsula, the westernmost part of Western Anatolia. The volcanic rocks in the region are associated with Neogene lacustrine deposition and are characterized by (1) olivine-bearing basaltic-andesites to shoshonites (Karaburun volcanics), high-K calc-alkaline andesites, dacites and latites (Yaylaköy, Arma?anda? and Kocada? volcanics) of ~ 16–18 Ma, and (2) mildly-alkaline basalts (Ovac?k basalt) and rhyolites (Urla volcanics) of ~ 11–12 Ma. The first group of rocks is enriched in LILE and LREE with respect to the HREE and HFSE on N-MORB-normalised REE and multi-element spider diagrams. They are comparable geochemically with volcanic rocks in the surrounding regions such as Chios Island and other localities in Western Anatolia. The Ovac?k basalt is geochemically similar to the first stage early–middle Miocene volcanic rocks but differs from NW Anatolian late Miocene alkali basalts.  相似文献   

16.
The late Cenozoic geohistory of the Ryukyu arc is closely related to the rifting history of the Okinawa Trough. The submarine geology and stratigraphy of areas around Kume Island, which is situated near the eastern rifted margin of the middle Okinawa Trough, provide key constraints to understand the timing and mode of Okinawa Trough rifting. Here we report the lithology of sedimentary rocks dredged along slopes of ~1000-m-deep sea knolls located north and northwest off Kume Island, and their depositional ages determined by calcareous nannofossils and strontium (Sr) isotope analyses. Various types of sedimentary rocks, such as siltstone, very fine-grained sandstone, medium-grained sandstone, fossiliferous coarse-grained sandstone, and tuffaceous sandstone, were recovered at two dredge sites. These sedimentary rocks are lithologically similar to those in the Aka Formation and a part of the Maja Formation of the Shimajiri Group in nearby Kume Island. Calcareous nannofossils and Sr isotope analyses indicate their depositional ages from the early Pliocene to the early Pleistocene, which are generally consistent with those of the Aka Formation. The finding of the dredged rocks similar in lithology and ages to the Aka Formation indicates that marine deltaic area continued toward north and northwest from Kume Island during these periods. The presence of the Shimajiri Group equivalent sedimentary rocks at the dredge sites are likely related to the main rifting of the Okinawa Trough after ca. 2 Ma in the central Ryukyus.  相似文献   

17.
佳木斯地块和松嫩地块是东北地区两个十分重要的地质构造单元,由于二者之间发育一套含有蓝片岩的俯冲增生杂岩-黑龙江杂岩(原称黑龙江群), 其地质构造意义长期为人们所关注.巴彦—桦南深反射地震剖面揭示,佳木斯地块与松嫩地块之间存在明显向西俯冲的深反射信息,以壳内和幔内向西倾伏的楔状反射区为特征.壳内楔状反射区东与浅表层出露的黑龙江杂岩相连,向西倾伏延深至莫霍面,是俯冲增生杂岩在地壳深部的反映;幔内楔状反射区东起小兴安岭之下的莫霍面,向西倾伏延深至松辽盆地东缘,尖灭深度约78 km,与多种方法得出的该区现今的岩石圈厚度(75~80 km)基本一致.这一证据充分说明佳木斯地块的岩石圈地幔向西俯冲到松嫩地块岩石圈地幔之下.  相似文献   

18.
We discuss the chemical compositions of rhyolites from three distinct tectonic settings: (i) the continental rift from Ethiopia (both Oligocene–Miocene and Quaternary rhyolites); (ii) the early Miocene continental arc of Japan (the Mt Wasso rhyolites related to the rifting of the Japan Sea); and (iii) the oceanic Izu–Bonin Island Arc. The comparison reveals that the oceanic island arc rhyolites have high contents of CaO, Al2O3, and Sr, and extremely low abundance of trace elements including K2O. In contrast, the Ethiopian continental rift rhyolites are characterized by low contents of CaO, Al2O3, and Sr, and high contents of K2O, and are enriched in the whole range of trace elements. The continental arc Mt Wasso rhyolites are apparently low in Nb content, although they display similar chemical trends to those of the Ethiopian rhyolites. This obvious difference in the chemical signatures of the rhyolites from the three tectonic settings is the consequence of their derivation from different sources. The implication of this result is that fractional crystallization processes were dominant in the rift‐related rhyolites both from continental rift and continental arc regardless of the prevailing tectonic setting and the nature of the crust (age, thickness, composition), whereas the oceanic island arc rhyolites may form through partial melting of young, mafic crust.  相似文献   

19.
Mineralogical and textural characteristics and organic carbon composition of the carbonate concretions from the upper Doushantuo Formation (ca. 551 Ma) in the eastern Yangtze Gorge area reveal their early diagenetic (shallow) growth in organic-rich shale. High organic carbon content (up to 10%) and abundance of framboidal pyrites in the hosting shale suggest an anoxic or euxinic depositional environment. Well-preserved cardhouse clay fabrics in the concretions suggest their formation at 0-3 m burial depth, likely associated with microbial decomposition of organic matter and anaerobic oxidation of methane. Gases through decomposition of organic matter and/or from methanogenesis created bubbles and cavities, and anaerobic methane oxidation at the sulfate reduction zone resulted in carbonate precipitation, filling in bubbles and cavities to form spherical structures of the concretions. Rock pyrolysis analyses show that the carbonate concretions have lower total organic carbon (TOC) content but higher effective carbon than those in the host rocks. This may be caused by enclosed organic matter in pores of the concretions so that organic matter was protected from further modification during deep burial and maintained high hydrocarbon generating potential even in over-matured source rock. As a microbialite sensu latu, concretions have special growth conditions and may provide important information on the microbial activities in depositional and early burial environments.  相似文献   

20.
喜马拉雅山系的崛起、青藏高原的隆升以及与成山、成岩、成盆、成矿和成灾相关的深层过程是东亚乃至全球地球动力学研究中最为重要的科学事件.1958年始在柴达木盆地的地震反射探测与地壳、上地幔精细结构和大陆动力学研究开启了青藏高原地球内部研究的先河,半个世纪以来它影响并引导着我国这一科学领域的发展和前进.本文为纪念地壳与上地幔精细结构和大陆动力学在中国的诞生而作.柴达木盆地壳、幔精细结构地震反射探测结果表明:柴达木盆地的沉积层巨厚可达15~19 km,且存在着迴折波和不同类型与路径的多次波.地壳厚达50~52 km,且存在着高速梯度夹层和低速层.Moho界带为由高、低速相间的薄层束组构,且上地幔顶部纵波速度为8.1 km/s.从这一基点出发,对包括柴达木盆地在内的青藏高原地球深部与地球动力学研究中的几个科学问题进行了思考!为今后青藏高原地球物理深化研究的内涵和布局提出了初步的见解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号