首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many chloritic minerals in low-grade metamorphic or hydrothermally altered mafic rocks exhibit abnormal optical properties, expand slightly upon glycolation (expandable chlorite) and/or have excess AlVI relative to AlIV, as well as significant Ca, K and Na contents. Chloritic minerals with these properties fill vesicles and interstitial void space in low-grade metabasalt from northern Taiwan and have been studied with a combination of TEM/AEM, EMPA, XRD, and optical microscopy. The chloritic minerals include corrensite, which is an ordered 1:1 mixed-layer chlorite/smectite, and expandable chlorite, which is shown to be a mixed-layer chlorite/corrensite. Corrensite and some mixed-layer chlorite/corrensite occur as rims of vesicles and other cavities, while later-formed mixed-layer chlorite/corrensite occupies the vesicle cores. The TEM observations show that the mixed-layer chlorite/corrensite has ca. 20%, and the corrensite has ca. 50% expandable smectite-like layers, consistent with XRD observations and with their abnormal optical properties. The AEM analyses show that high Si and Ca contents, high AlVI/AlIV and low FeVI/(Fe+Mg)VI ratios of chlorites are correlated with interstratification of corrensite (or smectite-like) layers in chlorite. The AEM analyses obtained from 200–500 Å thick packets of nearly pure corrensite or chlorite layers always show that corrensite has low AlIV/SiIV and low FeVI/(Fe+Mg)VI, while chlorite has high AlIV/SiIV and high FeVI/(Fe+Mg)VI. This implies that the trioctahedral smectite-like component of corrensite has significantly lower AlIV/SiIV and FeVI/(Fe+Mg)VI. The ratios of FeVI/(Fe+Mg)VI and AlIV/SiIV thus decrease in the order chlorite, corrensite, smectite. The proportions of corrensite (or smectite-like) layers relative to chlorite layers in low-grade rocks are inferred to be controlled principally by Fe/Mg ratio in the fluid or the bulk rock and by temperature. Compositional variations of chlorites in low-grade rocks, which appear to correlate with temperature or metamorphic grade, more likely reflect variable proportions of mixed-layered components. The assemblages of trioctahedral phyllosilicates tend to occur as intergrown discrete phases, such as chlorite-corrensite, corrensite-smectite, or chlorite-corrensite-smectite. A model for the corrensite crystal structure suggests that corrensite should be treated as a unique phase rather than as a 1:1 ordered mixed-layer chlorite/smectite.  相似文献   

2.
IIb trioctahedral chlorite in the Barberton greenstone belt (BGB) metavolcanic rocks was formed during pervasive greenschist metamorphism. The chem‐ical composition of the chlorite is highly variable, with the Fe/(Fe+Mg) ratio ranging from 0.12 to 0.8 among 53 samples. The chemical variation of the chlorite results from the chemical diversity of the host rock, especially the MgO content of the rock, but major details of the variation pattern of the chlorite are due to the crystal structure of the chlorite. All major cation abundances in the chlorite are strongly correlated with each other. Sil‐icon increases with Mg and decreases with Fe, while AlIV and AlVI decrease with Mg and increase with Fe2+. A complex exchange vector explains over 90% of the chlorite compositional variation: Mg4SiFe2+ −3AlVI −1 AlIV −1, which has 3 parts Fe-Mg substitution coupled with one part tschermakite substitution. This ratio is required to maintain the charge and site balances and the dimensional fit between the tetrahedral and octahedral sheets. The subtle change in Al substitution in chlorite implies that AlVI is preferentially ordered in the M(4) site, and about 84% of the AlVI present is in the M(4) sites when they are nearly filled with AlVI. Based on 47 analyzed chlorite-bearing rock samples, chlorite (Chl) composition is strongly correlated with the MgO content of the host rock. Calculated correlation coefficients are +0.91 for SiO2Chl-MgORock, −0.87 for Al2O3Chl-MgORock, +0.89 for MgOChl-MgORock, and −0.85 for FeOChl-MgORock. Only weak correlations have been found between chlorite oxides and other oxides of rock (between same oxides in chlorite and rock: SiO2−0.67, Al2O3 + 0.59, FeO −0.41). However, MgOChl is saturated at about 36 wt% in rocks that have MgO above 22 wt%.The MgOChl is about 5 wt% when the host rock approaches 0 wt% of MgO. This implies that Mg substituting into the chlorite is approximately limited to 1.5–9.2 Mg atoms per formula unit and 1.0–3.2 AlIV. Chlorite geothermometers can not be applied to all BGB samples. However, the empirical chlorite geothermometer based on AlIV of chlorite may be applicable to chlorites formed under metamorphic conditions because it can predict the chemical composition of the chlorite from basaltic and dacitic samples in this study. An estimated temperature of about 320°C for the greenschist metamorphism of the greenstone belt through this geothermometer is consistent with that obtained by other geothermometers. Received: 22 January 1996 / Accepted: 15 August 1996  相似文献   

3.
Granitic rocks deformed by cataclasis and mylonitization on macro- (a few meters) and micro- (thin section) scales are found at depths down to 6.6km in the Siljan impact structure in central Sweden. Granites near fault planes exhibit: (1) fracturing, kinking, fragmentation, and recrystallization of feldspars into pure K and Na endmember varieties, (2) fragmentation, polygonization and development of undulose extinction in quartz, and (3) kinking, appearance of wavy extinction and alteration of biotite, chlorite, amphibole, and alteration of ilmenite and magnetite. Whole-rock chemical analyses of deformed and undeformed rocks show that deformed rocks are enriched in SiO2 (by about 5 wt.%) and depleted in other oxides by variable percentages. Apart from Rb and Co, the concentrations of other trace elements (including Ba, Sr, Zn, Zr, Pb, Cd, Cu, Cr, Ni, V, U, Th, La, and Li) are lower in deformed relative to undeformed rocks. Mass-balance calculations for a 1000 cm3 model granite which were based on modal mineralogy, whole-rock chemistry, and mineral analyses suggest that the break down of primary biotite, chlorite, and amphibole in deformed zones released elements to circulating fluids. These calculations also indicate liberation of water and a doubling of porosity (from 1 to 2%) during the deformation episodes. Later precipitation of minerals in shear and tension fractures reduced this porosity. Within the upper 2000 m of the Gravberg-1 well, the formation of fracture-filling minerals (smectite, calcite, hematite, chlorite, and albite) is impact-related, and was favored by active circulation of meteoric water. Fracture-filling minerals in the upper 2000 m of the borehole formed at temperatures of 70° to 200°C. Between depths of 2000 and 3500 m, fracture-filling mineral assemblages (dominated by Fe–Mg chlorite, sphene and epidote) suggest formation temperatures in the range of 150° to 300°C. Occurrence of pumpellyite and prehnite in some altered biotite and chlorite of the deformed zones between 3500 and 5500 m suggest preimpact metamorphism and formation temperature above 150°C. Below 5500 m, the mineral assemblages in the fractures are dominated by quartz, sphene, epidote, and some muscovite and chlorite, indicating a temperature range between 300° and 450°C. One of the possible origins for the CH4 and H2 gases detected in the Gravberg-1 well is a combination of hydrogen ions released by decomposition of hydrated silicates (biotite, chlorite, hornblende) with carbon. The presence of iron in the deformed granitic rocks prevented the resulting CH4 from being oxidized.  相似文献   

4.
In the Slave Craton, meta-sediments commonly exhibit broad, Abukuma-type metamorphic aureoles round late, potassic plutons. The rocks are divided into low and medium metamorphic grades by sharply-defined cordierite isograds. Comparison of mineral assemblages above and below one such isograd indicates that chlorite and muscovite were reactants. Biotite is present below the isograd, and textural relations suggest that it participated in the reaction. Micro-probe analyses of biotites in cordierite-free and cordieritebearing rocks, considered in the light of established pro-grade compositional changes, indicate that the biotite changed in composition during the reaction, supplying Si in exchange for AlIV, Fe and Mg in exchange for AlVI, and K in exchange for Na. The reaction can be balanced in a fashion consistent with all the observable evidence. The balancing operation indicates that abundant quartz and traces of albite and ilmenite also reacted, and that biotite became more abundant during the reaction. Thus the complex reaction can be approximated by the formula Chl+Musc+Biot(1)+Qtz [+Albite+Ilm] →Cord+Biot(2)+Water It is of a type extensively studied in experimental haplo-pelitic systems but was modified in the natural system mainly because additional phases participated. In particular, pre-existing biotite was compositionally modified and increased in amount during the reaction.  相似文献   

5.
Barium-, Cl- and Ti-rich biotite occurs together with garnet, plagioclase and amphibole within narrow shear zones in 1800 Ma old noritic granulites in the Flakstadøy Basic Complex, Lofoten, north Norway. The granulite facies assemblage, plagioclase, clinopyroxene, orthopyroxene, biotite and ilmenite, was replaced by an amphibolite facies mineral assemblage including Ba-, Cl- and Ti-rich biotite during ductile deformation. Biotite shows complex compositional variations with respect to the contents of Ba, K, Cl, Ti, Al, Fe, Mg and Si. There are correlations between Si, AlIV, K, Ba and Cl and between AlVI and Ti. Titanium and Cl are uncorrelated. The Fe and Mg are correlated to both Cl and Ti. Multivariate analysis shows that most of the compositional variation of biotite can be described by two exchange reactions. This indicates that most of the variation in biotite composition was controlled by two chemical variables of the system. The content of the first exchange component (Ti1.0 Fe0.6 Al -1.1 VI Mg-0.8) in biotite can be related to the original distribution of Ti-bearing minerals in the igneous protolith. The content of the second exchange component (Al 0.4 IV Fe0.8 Ba0.5 Cl1.0 Si-0.4 Mg-1.0 K-0.5 OH-1.0) is related to compositional variations of an externally derived Ba- and Cl-bearing fluid in equilibrium with biotite.The initially low Cl-content of the externally derived fluid was increasing during bioite forming reactions, because OH was preferentially incorporated, relative to Cl, into biotite. Continued hydration/chloridisation reactions resulted in a gradual consumption of the free fluid phase, resulting in local fluid-absent conditions. The composition of biotite reflects the composition of the last fluid in equilibrium with the mineral, i.e. the composition of the fluid immediately before the grain boundaries were fluid-undersaturated. Thus, the variations in biotite composition reflect how the fluid was gradually consumed throughout the shear zone rock. The correlations between Fe, Mg, Ba, K and Cl can be attributed to differences between the structure of the crystal lattices and the sizes of the cation sites of OH-phlogopite and Cl-annite. The dependency of the Fe/Mg ratios of biotite on the Cl-and Ti-content has a strong effect on the Fe–Mg partitioning between biotite and garnet. The relationship between lnKD, X Ti Bt and X Cl Bt can be expressed by the regression equation: lnK D =-1.82+2.60X Ti Bt +5.67X Cl Bt  相似文献   

6.
《Sedimentary Geology》1999,123(1-2):129-146
The succession of sandstone cements in chert and volcanic lithic arenites and wackes from the northern Bowser Basin of British Columbia comprises a record of diagenesis in shallow marine, deltaic, and coastal plain siliciclastic sediments that pass through the oil window and reach temperatures near the onset of metamorphism. The succession of cements is consistent with seawater in the sandstones mixing with acid waters derived from dewatering of interbedded organic rich muds. Sandstone cement paragenesis includes seven discrete cement stages. From earliest to latest the cement stages are: (1) pore-lining chlorite; (2) pore-lining to pore-filling illite; (3) pore-filling kaolinite; (4) oil migration through some of the remaining connected pores; (5) chlorite dissolution; (6) quartz cement; and (7) calcite cement. These seven cement stages are interpreted as a record of the evolution of pore waters circulating through the sandstones after burial. The earliest cement stages, as well as the depositional environments, are compatible with seawater as the initial pore fluid. Seawater composition changed during transport through the sandstones, first by loss of Mg2+ and Fe2+ during chlorite precipitation (stage 1). Dewatering of interbedded organic-rich mudstones probably added Mg2+ and Fe2+ to partially buffer the loss of these cations to chlorite. Acids produced during breakdown of organic matter are presumed to have mixed into sandstone pore fluids due to further compaction of the muds, leading to reduction of initial alkalinity. Reduction in alkalinity, in turn, favours change from chlorite to illite precipitation (stage 2), and finally to kaolinite (stage 3). Pore waters likely reached their peak acidity at the time of oil migration (stage 4). Chlorite dissolution (stage 5) and quartz precipitation (stage 6) occurred when pores were filled by these hydrocarbon-bearing and presumably acidic fluids. Fluid inclusions in fracture-filling quartz cements contain petroleum, high-pressure methane, and methane-rich aqueous solutions. Homogenization temperatures from primary two-phase inclusions are consistent with quartz cementation during progressive heating between approximately 100 and 200°C. Following quartz precipitation, alkaline pore waters were re-established, as evidenced by late-stage calcite cement (stage 7).  相似文献   

7.
Micas in 17 pelitic (K-feldspar-free) and 8 psammitic (K-feldspar-bearing) rocks from the Wazuka and the Asemi-gawa areas in the Ryoke and the Sanbagawa metamorphic terrains, respectively, were analyzed on an electron-probe microanalyzer. The deficiency of alkali cations in the low- to middle-grade metamorphic micas is ascribed to the illite substitution, KXII+AlIV=XII (vacancy)+SiIV.At the same metamorphic grade, the deficiency of interlayer cations in micas from the pelitic rocks is greater than that from the psammitic rocks. However, it decreases with rising temperature in both rock-types, irrespective of the pressure of metamorphism.K-feldspar and biotite buffer the illite substitution. Two reactions are proposed to explain the decrease of the alkali-cation deficiency in both muscovite and biotite.  相似文献   

8.
Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid–rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6–8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S–C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe–Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S–C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0.05 K0.86 (Al 1.77 Fe0.08 Mg0.15) (Si3.22 Al0.78) O10 (OH)2. They are enriched in Fe and Mg compared to the detrital micas. Newly-formed chlorites are associated with micas along the shear planes. According to microprobe analyses, they present the following structural formula: (Al1,48 Fe2,50 Mg1,84) (Si2,82 Al1,18) O10 (OH)8. All these data suggest that these clay minerals are synkinematic and registered the fault activity. In the gouge samples, illite and chlorite are the major clay minerals; smectite is locally present in some samples.In the foliated sandstones, Kubler Index (KI) ((001) XRD peak width at half height) data and thermodynamic calculations from synkinematic chlorite chemistry suggest that the main fault deformation occurred under temperatures around 220 °C (diagenesis to anchizone boundary). KI measured on pelites and sandstones from the hanging and footwall, display similar values coherent with the maximal burial temperature of the Annot sandstones in this area. The gouge samples have a higher KI index, which could be explained by a reactivation of the fault at lower temperatures during the exhumation of the Annot sandstones formation.  相似文献   

9.
Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz‐adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein‐centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10?3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27–0.06 × 10?3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10?3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks.  相似文献   

10.
During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges.The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite ± illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite ± mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite ± illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite ± chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ∼250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite ± chlorite alteration formed at ∼300°C; (2) chlorite ± illite alteration at 235°C; (3) chlorite ± illite and mixed layer clay alteration; and (4) chlorite ± illite alteration at 220°C.Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples.Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.  相似文献   

11.
The Early Cretaceous Duolong gold‐rich porphyry copper deposit is a newly discovered deposit with proven 5.38 Mt Cu resources of 0.72% Cu and 41 t gold of 0.23 g t?1 in northern Tibet. Granodiorite porphyry and quartz diorite porphyrite are the main ore‐bearing porphyries. A wide range of hydrothermal alteration associated with these porphyries is divided into potassic, argillic and propylitic zones from the ore‐bearing porphyry center outward and upward. In the hydrothermal alteration zones, secondary albite (91.5–99.7% Ab) occurs along the rim of plagioclase phenocryst and fissures. Secondary K‐feldspar (75.1–96.9% Or) replaces plagioclase phenocryst and matrix or occurs in veinlets. Biotite occurs mainly as matrix and veinlet in addition to phenocryst in the potassic zone. The biotite are Mg‐rich and formed under a highly oxidized condition at temperatures ranging from 400°C to 430°C. All the biotites are absent in F, and have high Cl content (0.19–0.26%), with log (XCl/XOH) values of ?2.74 to ?2.88 and IV (Cl) values of ?3.48 to ?3.35, suggesting a significant role of chloride complexes (CuCl2 and AuCl2) in transporting and precipitating copper and gold. Chlorites are present in all alteration zones and correspond mainly to pycnochlorite. They have similar Fe/(Fe+Mg), Mn/(Mn+Mg) ratios, and a formation temperature range of 280–360°C. However, the formation temperature of chlorite in the quartz‐gypsum‐carbonate‐chlorite vein is between 190°C and 220°C, indicating that it may have resulted from a later stage of hydrothermal activity. Fe3+/Fe2+ ratios of chlorites have negative correlation with AlIV, suggesting oxygen fugacity of fluids increases with decreasing temperature. Apatite mineral inclusions in the biotite phenocrysts show high SO3 content (0.44–0.82%) and high Cl content (1–1.37%), indicating the host magma had a high oxidation state and was enriched in S and Cl. The highest Cl content of apatite in the propylitic zone may have resulted from pressure decrease, and the lowest Cl content of apatite in the argillic zone may have been caused by a low Cl content in the fluids. The low concentration of SO3 content in the hydrothermal apatite compared to the magmatic one may have resulted from the decrease of oxygen fugacity and S content in the hydrothermal fluid, which are caused by the abundant precipitation of magnetite.  相似文献   

12.
Hydrothermal ore deposits are typically characterised by footprints of zoned mineral assemblages that extend far beyond the size of the orebody. Understanding the mineral assemblages and spatial extent of these hydrothermal footprints is crucial for successful exploration, but is commonly hindered by the impact of regolith processes on the Earth's surface. Hyperspectral drill core (HyLogger?-3) data were used to characterise alteration mineralogy at the Mt Olympus gold deposit located 35 km southeast of Paraburdoo along the Nanjilgardy Fault within the northern margin of the Ashburton Basin in Western Australia. Mineralogy interpreted from hyperspectral data over the visible to shortwave (400–2500 nm) and thermal (6000–14500 nm) infrared wavelength ranges was validated with X-ray diffraction and geochemical analyses. Spaceborne multispectral (ASTER) and airborne geophysical (airborne electromagnetic, AEM) data were evaluated for mapping mineral footprints at the surface and sub-surface. At the deposit scale, mineral alteration patterns were identified by comparing the most abundant mineral groups detected in the HyLogger data against lithology logging and gold assays. Potential hydrothermal alteration phases included Na/K-alunite, kaolin phases (kaolinite, dickite), pyrophyllite, white mica, chlorite and quartz, representing low-T alteration of earlier greenschist metamorphosed sediments. The respective zoned mineral footprints varied depending on the type of sedimentary host rock. Siltstones were mainly characterised by widespread white-mica alteration with proximal kaolinite alteration or quartz veining. Sandstones showed (1) distal white mica, intermediate dickite, and proximal alunite + kaolinite or (2) widespread white-mica alteration with associated intervals of kaolinite. In both, sandstones and siltstones, chlorite was distal to gold mineralisation. Conglomerates showed distal kaolinite/dickite and proximal white-mica/dickite alteration. Three-dimensional visualisation of the gold distribution and spatially associated alteration patterns around Mt Olympus revealed three distinct categories: (1) several irregular, poddy, SE-plunging zones of >0.5 ppm gold intersected by the Zoe Fault; (2) sulfate alteration proximal to mineralisation, particularly on the northern side of the Mt Olympus open pit; and (3) varying AlIVAlVISiIV–1(Mg,Fe)VI–1 composition of white micas with proximity to gold mineralisation. Chlorite that developed during regional metamorphic or later hydrothermal alteration occurs distal to gold mineralisation. ASTER mineral mapping products, such as the MgOH Group Content used to map chlorite (±white mica) assemblages, showed evidence of correlation to mapped, local structural features and unknown structural or lithological contacts as indicated by inversion modelling of AEM data.  相似文献   

13.
Lithogeochemical-mineralogical haloes around unconformity-type uranium deposits in northern Saskatchewan can expand the size of drill targets up to fifteen times. The deposits are located at or near the unconformity between Aphebian metamorphosed basement rocks in close proximity to Archean granitoids and overlying unmetamorphosed sandstones of the Helikian Athabasca Group. Deposits studied include Key Lake (Deilmann), Midwest Lake and Eagle Point.Unconformity-type deposits are associated with broad alteration haloes in the overlying sandstones and more restricted haloes in the basement rocks. The haloes in the sandstone are localized around steeply dipping fault structures and are characterized by zones of intense leaching of specular hematite and detrital heavy mineral layers and by changes in chemistry related to clay mineral alteration and tourmalinization.Clay mineral alteration haloes are common in the sandstone and basement host rocks. Interstitial clays consist mainly of kaolinite and illite with lesser amounts of chlorite. The ratio K2O/AI2O3 proved useful in delineating illite-kaolinite patterns in the sandstone and in the uppermost portions of the paleoweathering profile in basement rocks. The Midwest deposit is characterized by a broad bell-shaped zone (500 m across strike) of high K2O/AI2O3 ratios (>0.18) in which illite is the dominant clay mineral. The sandstone above the Deilmann deposit, on the other hand, is characterized by silicification and kaolinitization with low K2O/AI2O3 ratios (<0.04). This kaolinite cap overprints a preexisting illite zone.Anomalously high boron values are characteristic of the three deposits considered in this study. Boron anomalies are similar in extent to the anomalous clay mineral alteration haloes. Altered sandstones commonly contain aggregates of radiating magnesium-rich dravite needles within the clay matrix. The interpretation of boron patterns is problema tical however, mainly because of the detrital tourmaline component in sandstones and metamorphic tourmalines present in the Aphebian metasediments.Trace elements such as U, Ni, As and Co are generally of limited use in expanding targets in sandstone because their haloes are restricted to a few tens of metres horizon-anomalies along the steeply dipping zones of mineralization related to fault structures. Uranium (>3 ppm) does form an anomaly more than 200 metres laterally across the Midwest deposit. At the Deilmano deposit anomalous uranium dispersion is restricted to within a few metres of high grade ore.In the basement rocks, the various layers of the paleoweathering profile are geochemically overprinted up to 250 m from mineralization. Bleaching related to illitization and chloritization is associated with enrichment in K2O, MgO, B, S, U, As, Ni and P2O3. The ratio Fe2O3/MgO is useful in delineating chloritization in the upper portion of the paleo weathering profile.Deposits with large root extensions in the Aphebian metasediments such as Eagle Point, have intense dravite-chlorite-illite alteration zones which are restricted to within a few metres of mineralization across strike. ‘Quartzite” units are alteration related. The complexity of the basement lithology inhibits the use of individual elements as alteration guides other than in the intensely altered zone. The application of multivariant techniques, element ratios and clay mineralogical work prove useful in identifying the mineralogical changes at Eagle Point.  相似文献   

14.
The Santa Rosa mylonite zone developed predominantly from a granodiorite protolith in the eastern margin of the Peninsular Ranges batholith. A wide variation in K−Ar biotite dates within the zone is shown to reflect the times of cooling through closure temperatures whose variability is chiefly a result of deformation-induced reduction in grain size. We suggest that such variation generally may be exploited to place constraints on the timing of deformation episodes. Previous workers have shown that deformation in the Santa Rosa mylonite zone involved the formation of mylonites and an imbricate series of low-angle faults which divide the area into structural units. Field work, petrographic studies, and TEM analysis of deformation mechanisms in biotite show that the granodiorite mylonite, the lowermost structural unit, formed below the granodiorite solidus. The granodiorite mylonite varies from protomylonite to ultramylonite, with regions of high strain distributed heterogeneously within the zone. Previously reported biotite and hornblende K−Ar dates from the granodiorite protolith below (82–89 Ma) and the Asbestos Mountain granodiorite above (61–68 Ma) the mylonite zone indicate dramatically dissimilar thermal histories for the lowermost and uppermost structural units. Other workers' fission track dates on sphene, zircon, and apatite from the granodiorite mylonite and the Asbestos Mountain granodiorite suggest thermal homogenization and rapid cooling to ∼100° C by ca 60 Ma. Within and adjacent to the mylonite zone, K−Ar dates on 5 samples of biotite from variably deformed granodiorite range from 62–76 Ma; dates are not correlated with structural depth but clearly decrease with degree of deformation and concomitant grain size reduction. 40Ar/39Ar incremental heating analyses of biotite from the granodiorite protolith reveals no evidence of excess argon and produces a relatively flat age spectrum. 40Ar/39Ar incremental heating analysis of biotite from the granodiorite mylonite discloses discordance consistent with 39Ar recoil loss. K analysis of samples, allowing K−Ar dates to be calculated, is therefore recommended as an adjunct to 40Ar/39Ar step heating analysis in rocks that have experienced similar deformation. During mylonitization, biotite grain size reduction through intracrystalline cataclasis results in estimated grain dimensions as small as 0.05 μm locally within porphyroclasts as large as 1 mm. Because biotite compositions are relatively Uniform (Fe/[Fe+Mg+Mn+Ti+AlVI]=0.47–0.52) and show no systematic variation with grain size, compositional dependence of activation energy and diffusivity can be eliminated as sources of variation in Ar retention. Ar closure temperatures, calculated with appropriate diffusion parameters for the observed grain sizes, are in the range ∼220–280° C and define a cooling curve consistent with a thermal history intermediate between those of the granodiorite protolith below and the Asbestos Mountain granodiorite above the mylonite zone. Changes in the slope of the cooling curve indicate that the main deformation episode initiated at or above ca 330° C (∼80 Ma), above the closure temperature for thermally activated diffusion of argon in biotite, and continued to a minimum of ca 220–260° C (∼62 Ma).  相似文献   

15.
On the basis of 135 pairs of chemical analyses of coexisting hornblendes and biotites, we have established a relationship between the contents of AlIV, AlVI, Fe3+, Mg, Ti, Na, and K and the overall iron index in the hornblendes and the depth of granitoid formation. This relationship has been emphasized by the R-method of factor analysis. We have examined the strength and nature of the correlations between the elements in the hornblendes and have considered the types of Isomorphism in the amphiboles according to depth, from the viewpoint of crystal chemistry. A regular increase in the amounts of AIV in hornblende from <0.8 to > 1.6 formula units; of (AlVI + Fe3+ + Ti) from <0.5 to >1. 0 formula units; of (K + Na) from <0.35 to >0. 64 formula units; and of Group A from <0.24 to >0.51 formula units has been recorded from the near-surface granitoids to the ultra-abyssal types. Biotites In this respect display no adequately clear and reliable information.—Authors.  相似文献   

16.
The Kanmon Group (Lower Cretaceous) is a non-marine sequence in the Inner Zone of southwest Japan and is divided into the lower Wakino (lacustrine) and the upper Shimonoseki (fluvial) subgroups. Major diagenetic changes in this group are compaction, iron-oxide cementation, calcite cementation and grain replacement, quartz overgrowth and pore-fill cementation, illite authigenesis, chlorite pore-fill cementation and grain replacement, albitization of feldspar, and grain replacement by pyrite. Two subgroups of the Kanmon Group present no significant differences in general diagenetic features, paragenetic sequence, or the degree of diagenetic changes despite differences in depositional environments (lacustrine vs. fluvial) and stratigraphic positions. However, some differences are recognized in the content and chemistry of authigenic minerals caused by different sandstone framework compositions. The content of authigenic clay minerals is higher in sandstones of the Shimonoseki Subgroup containing abundant volcanic rock fragments. In addition, the composition of chlorite, the most abundant authigenic clay mineral in Kanmon sandstones, is Mg-rich in the volcanoclastic Shimonoseki sandstones, compared to an Fe-rich variety in Wakino sandstones. The original sandstone composition played a significant role in pore-water composition and diagenetic reactions.The Wakino sandstones lost most of its porosity by compaction, whereas Shimonoseki sandstones are only compacted in the vicinity of the basin-bounding fault. The weakly compacted Shimonoseki sandstones, instead, were largely cemented by pore-filling calcite during early diagenesis; cementation prevented compaction during further burial. The Kanmon Group sediments were heated to about 300 °C based on illite crystallinity values.  相似文献   

17.
Mineralogical and colour changes of quartz sandstones by heat   总被引:1,自引:0,他引:1  
Seven German and three Hungarian monumental sandstones have been tested in laboratory conditions to analyse the effect of heat. The studied quartz sandstones have a wide-range of cements and grain-sizes including silica-, carbonate-, clay- and ferrous mineral—cemented varieties of fine-, medium- to coarse-grained types. Cylindrical specimens were heated up to 150, 300, 450, 600, 750 and 900°C in an oven. The mineralogical and textural changes were recorded and compared by using microscopy, XRD, DTA-DTG and SEM. Colours and colour differences (a*, b*, L* values) were also measured and evaluated. Colour changes are related to mineral transformations. The most intense colour change is caused by the oxidation of iron-bearing minerals to hematite that takes place up to 900°C. When temperature increases the green glauconite becomes brownish while the chlorite changes to yellowish at first. The colour of burnt sandstone is not a direct indicator of burning temperature, since there are sandstones in which the burnt specimens are lighter and less reddish than the natural ones. Porosity increase is related to micro-cracking at grain boundaries (above 600°C) and within the grains (at and above 750°C) and mineral transformations. The clay mineral structure collapses at different temperatures (kaolinite up to 600°C, chlorite above 600°C) and leads to a slight increase in porosity. The most drastic change is observed in calcite cemented sandstones where the carbonate structure collapses at 750°C and CaO appears at 900°C. Subsequently it is transformed to portlandite due to absorption of water vapour from the air. This leads to the disintegration of sandstone at room temperature a few days after the heat shock.Special issue: Stone decay hazards  相似文献   

18.
Wetting weakening of tertiary sandstones—microscopic mechanism   总被引:3,自引:0,他引:3  
The micromechanism accounting for wetting weakening of tertiary sandstones was studied. It was found that intragranular fracture prevails for all dry sandstones. However, when the sandstone is wet, intergranular fracture occurs for Type B sandstones. Therefore, one sandstone from Type A sandstones, MS1, and another from Type B, TK, were selected to further investigate the nature of the matrix. It was found that (1) for both sandstones, the major mineral components of the matrix are illite and kaolinite except that the MS1 sandstone has more chlorite; (2) leaching of matrix induced an increase of porosity and consequently results in leaching softening; and (3) among the mineral composition, chlorite is easiest to be dissolved and leached out and induces a more significant increase of porosity, which, in turn, results in a more significant leaching softening.  相似文献   

19.
The Rosia Poieni deposit is the largest porphyry copper deposit in the Apuseni Mountains, Romania. Hydrothermal alteration and mineralization are related to the Middle Miocene emplacement of a subvolcanic body, the Fundoaia microdiorite. Zonation of the alteration associated with the porphyry copper deposit is recognized from the deep and central part of the porphyritic intrusion towards shallower and outer portions. Four alteration types have been distinguished: potassic, phyllic, advanced argillic, and propylitic. Potassic alteration affects mainly the Fundoaia subvolcanic body. The andesitic host rocks are altered only in the immediate contact zone with the Fundoaia intrusion. Mg-biotite and K-feldspar are the main alteration minerals of the potassic assemblage, accompanied by ubiquitous quartz; chlorite, and anhydrite are also present. Magnetite, pyrite, chalcopyrite and minor bornite, are associated with this alteration. Phyllic alteration has overprinted the margin of the potassic zone, and formed peripheral to it. It is characterized by the replacement of almost all early minerals by abundant quartz, phengite, illite, variable amounts of illite-smectite mixed-layer minerals, minor smectite, and kaolinite. Pyrite is abundant and represents the main sulfide in this alteration zone. Advanced argillic alteration affects the upper part of the volcanic structure. The mineral assemblage comprises alunite, kaolinite, dickite, pyrophyllite, diaspore, aluminium-phosphate-sulphate minerals (woodhouseite-svanbergite series), zunyite, minamyite, pyrite, and enargite (luzonite). Alunite forms well-developed crystals. Veins with enargite (luzonite) and pyrite in a gangue of quartz, pyrophyllite and diaspore, are present within and around the subvolcanic intrusion. This alteration type is partially controlled by fractures. A zonal distribution of alteration minerals is observed from the centre of fractures outwards with: (1) vuggy quartz; (2) quartz + alunite; (3) quartz + kaolinite ± alunite and, in the deeper part of the argillic zone, quartz + pyrophyllite + diaspore; (4) illite + illite-smectite mixed-layer minerals ± kaolinite ± alunite, and e) chlorite + albite + epidote. Propylitic alteration is present distal to all other alteration types and consists of chlorite, epidote, albite, and carbonates. Mineral parageneses, mineral stability fields, and alteration mineral geothermometers indicate that the different alteration assemblages are the result of changes in both fluid composition and temperature of the system. The alteration minerals reflect cooling of the hydrothermal system from >400 °C (biotite), to 300–200 °C (chlorite and illite in veinlets) and to lower temperatures of kaolinite, illite-smectite mixed layers, and smectite crystallization. Hydrothermal alteration started with an extensive potassic zone in the central part of the system that passed laterally to the propylitic zone. It was followed by phyllic overprint of the early-altered rocks. Nearly barren advanced argillic alteration subsequently superimposed the upper levels of the porphyry copper alteration zones. The close spatial association between porphyry mineralization and advanced argillic alteration suggests that they are genetically part of the same magmatic-hydrothermal system that includes a porphyry intrusion at depth and an epithermal environment of the advanced argillic type near the surface.Editorial handling: B. Lehmann  相似文献   

20.
鄂尔多斯盆地纳岭沟铀矿床绿泥石特征及地质意义   总被引:3,自引:0,他引:3  
夏菲  孟华  聂逢君  严兆彬  张成勇  李满根 《地质学报》2016,90(12):3473-3482
纳岭沟铀矿床位于鄂尔多斯盆地北部,具有明显的后期热液作用的特征,矿体空间展布主要受控于绿色-灰色砂岩的过渡界面,与绿泥石化的蚀变砂岩关系密切。通过对纳岭沟铀矿床不同颜色砂岩中的绿泥石进行详细的岩相学研究和电子探针化学成分分析,依据绿泥石的成因与共生矿物的关系,识别出绿泥石主要的3种类型:填隙物型绿泥石,片状与黄铁矿共生型绿泥石以及黑云母蚀变型绿泥石;同时通过绿泥石的Fe-Si图解确定了纳岭沟铀矿床不同颜色砂岩中的绿泥石主要为铁镁绿泥石和密绿泥石。根据Al/(Fe+Mg+Al)-Mg/(Fe+Mg)的关系图解确定出不同颜色砂岩中的绿泥石具有铁镁质流体和泥质两种来源,通过绿泥石中主要阳离子与镁的关系图解和计算得出的绿泥石形成温度共同确定出绿泥石是多期次的中低温热液流体作用的产物。综合研究表明,纳岭沟铀矿床的绿泥石形成至少经历了温度稍高的还原性流体和温度稍低的氧化性流体等两个期次的流体作用,稍高温的还原性流体与成矿关系更为重要。与绿泥石形成有关的热液流体作用不仅带入了部分铀,还促进了铀的活化和运移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号