首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brown shrimp (Farfantepenaeus aztecus) are an important commercial aquatic species experiencing loss of inshore marsh nursery habitat in coastal Louisiana. To study inshore brown shrimp movements and identify aspects of essential habitat important for sustaining brown shrimp populations, we collected juvenile brown shrimp in April and May 2000, the time of annual maximum brown shrimp abundance, in a small 1-km2 marsh area on the central Louisiana coast. Drop sampling showed average shrimp densities of 1.6–2.4 m−2 in shallow marsh ponds and seining indicated lower densities of 0.5–0.9 m−2 in nearby shallow channel and open bay sites. Smaller shrimp (< 50 mm) fed disproportionately on benthic diatoms and small harpacticoid copepods, while large shrimp fed more frequently on larger-bodied amphipods and tanaids. We developed novel chemical approaches to estimate patterns of shrimp residency and movement using carbon and nitrogen stable isotopic determinations. Resident shrimp had isotopic values similar to average foods and showed consistent isotopic spacings between fast and slow turnover tissues. Residency was highest (47–55%) in ponds and shallow channel habitats and much less in open bays and deep channels (4–27%). There was sparse evidence for dietary specialization among individull shrimp. The results support the view that small 10–20 mm postlarval and juvenile brown shrimp arriving in estuaries from offshore waters continue movement through sub-optimal habitats (deep channels and open bays), but exhibit much less movement once an optimal habitat (marsh ponds or shallow channel margins) is reached. This study also indicated that combining estimates of shrimp densities, residency, growth rate, and mortality allows evaluation of the importance of different habitat types for shrimp production. Shallow ponds that in many ways resemble fertile aquaculture ponds appear to be hot spots for brown shrimp production, and coastal preservation and restoration efforts should focus on these areas as important for sustaining shrimp fisheries.  相似文献   

2.
Decreases in seagrass abundance reported from numerous locations around the world suggest that seagrass are facing a global crisis. Declining water quality has been identified as the leading cause for most losses. Increased public awareness is leading to expanded efforts for conservation and restoration. Here, we report on abundance patterns and environmental issues facing eelgrass (Zostera marina), the dominant seagrass species in the Chesapeake Bay region in the mid-Atlantic coast of the USA, and describe efforts to promote its protection and restoration. Eelgrass beds in Chesapeake Bay and Chincoteague Bay, which had started to recover from earlier diebacks, have shown a downward trend in the last 5–10 years, while eelgrass beds in the Virginia coastal bays have substantially increased in abundance during this same time period. Declining water quality appears to be the primary reason for the decreased abundance, but a recent baywide dieback in 2005 was associated with higher than usual summer water temperatures along with poor water clarity. The success of eelgrass in the Virginia coastal bays has been attributed, in part, to slightly cooler water due to their proximity to the Atlantic Ocean. A number of policies and regulations have been adopted in this region since 1983 aimed at protecting and restoring both habitat and water quality. Eelgrass abundance is now one of the criteria for assessing attainment of water clarity goals in this region. Numerous transplant projects have been aimed at restoring eelgrass but most have not succeeded beyond 1 to 2 years. A notable exception is the large-scale restoration effort in the Virginia coastal bays, where seeds distributed beginning in 2001 has initiated an expanding recovery process. Our research on eelgrass abundance patterns in the Chesapeake Bay region and the processes contributing to these patterns have provided a scientific background for management strategies for the protection and restoration of eelgrass and insights into the causes of success and failure of restoration efforts that may have applications to other seagrass systems.  相似文献   

3.
Many estuarine and coastal marine ecosystems have increasingly experienced degradation caused by multiple stressors. Anthropogenic pressures alter natural ecosystems and the ecosystems are not considered to have recovered unless secondary succession has returned the ecosystem to the pre-existing condition or state. However, depending upon the scales of time, space and intensity of anthropogenic disturbance, return along the historic trajectory of the ecosystem may: (1) follow natural restoration though secondary succession; (2) be re-directed through ecological restoration, or (3) be unattainable. In order to address the gaps in knowledge about restoration and recovery of estuarine and coastal ecosystems, this special feature includes the present overview and other contributions to provide a synthesis of our knowledge about recovery patterns, rates and restoration effectiveness. From the 51 examples collated in this contribution, we refine the recovery from the list of stressors into six recovery mechanisms: (1) recovery from sediment modification, which includes all aspects of dredging and disposal; (2) recovery by complete removal of stressors limiting natural ecosystem processes, which includes tidal marsh and inundation restoration; (3) recovery by speed of organic degradation, which includes oil discharge, fish farm wastes, sewage disposal, and paper mill waste; (4) recovery from persistent pollutants, which includes chemical discharges, such as TBT; (5) recovery from excessive biological removal, related to fisheries and (6) recovery from hydrological and morphological modification. Drawing upon experience both from these many examples and from an example of one comprehensive study, we show that although in some cases recovery can take <5 years, especially for the short-lived and high-turnover biological components, full recovery of coastal marine and estuarine ecosystems from over a century of degradation can take a minimum of 15–25 years for attainment of the original biotic composition and diversity may lag far beyond that period.  相似文献   

4.
Although the broadly observed increase in nutrient loading rates to coastal waters in the last 100 years may increase aboveground biomass, it also tends to increase soil metabolism and lower root and rhizome biomass—responses that can compromise soil strength. Fourteen different multiyear field combinations of nutrient amendments to salt marshes were made to determine the relationship between soil strength and various nitrogen, phosphorus, and nitrogen+phosphorus loadings. There was a proportional decline in soil strength that reached 35% in the 60- to 100-cm soil layer at the highest loadings and did not level off. These loading rates are equivalent to those in the flow path of the Caernarvon river diversion, a major wetland restoration project near New Orleans; 12% of the wetlands in the flow path were converted to open water in 2005. The increased nutrient loading from the Mississippi River watershed this century has also driven the formation of the low oxygen zone (the “Dead Zone”) that forms off the Louisiana–Texas shelf each summer. These results suggest that improving water quality in the watershed will aid the restoration of both offshore waters and coastal wetland ecosystems.  相似文献   

5.
The purpose of this investigation was to examine storm surge and wave reduction benefits of different environmental restoration features (marsh restoration and barrier island changes), as well as the impact of future wetland degradation on local surge and wave conditions. Storm surge simulations of two representative hurricanes were performed using the ADCIRC storm surge model with the inclusion of radiation stress gradients from the STWAVE nearshore wave model. Coupled model simulations were made for a number of landscape configurations that involved both restored and degraded wetland features. The impact of barrier island condition on hurricane surge and waves was also evaluated. Effects of landscape features were represented by changes in elevation and frictional resistance. Restoration and degradation of marsh resulted in decreases (for restoration cases) and increases (for degradation cases) in both surge and waves. The magnitude of change was correlated with the magnitude of the horizontal extent and elevation changes in the marsh. In general, the wave change patterns are consistent with the water level changes. Deflation of the Chandeleur Islands (barrier island chain) resulted in slightly increased surge. Results suggest that coastal marsh does have surge and wave reduction potential. Results also indicate that the impact of the landscape features is amplified in areas where there are levee “pockets.” Barrier islands and coastal ridges reduce wave heights, even if in a degraded condition and thus can reduce wave energy in wetland areas, protecting them from erosion.  相似文献   

6.
This paper characterizes major ion distributions and investigates whether groundwater exerts a major control on the chemical functioning of Mangueira Lagoon, a large (90 km long), shallow (∼4–5 m deep), and fresh coastal lagoon in southern Brazil. Water volumes equivalent to ∼80% of the total annual input are used in the summer for irrigating nearby rice plantations, the most important regional economic activity. While Na+ and Cl are the major ions in local groundwater, Na+ and HCO3 are the most enriched ions in lagoon water. The ion concentrations measured in Mangueira Lagoon were homogeneous, except for a few samples affected by rainwater and groundwater inputs. A shore-normal transect starting at the pump house of a rice irrigation canal indicated strong groundwater input at this canal. In spite of the small volume contribution (∼2% of precipitation), groundwater discharge accounts for 50–70% of major ion inputs into the lagoon, with ∼70% of the groundwater inputs being anthropogenically derived (e.g., from the rice irrigation canals). This may have serious implications for the management of the coastal water resources from Mangueira Lagoon and other similar areas as groundwater associated with agricultural systems may be contaminated by fertilizers and pesticides. The results imply that groundwater should not be neglected in dissolved species’ budgets even when its volume contribution is small.  相似文献   

7.
 Investment in the coastal resources of Gaza City is vital to various developmental issues and projects. Access to the coast and coastal erosion represent two major geo-environmental problems to the city. This paper describes local engineering works developed by the municipality and local people to overcome such problems. A cliff of calcareous sandstone – Kurkar as it is locally known – (up to 18 m high), is located at a distance of 20–50 m from the water–land contact. People who need to reach the beach must cross this Kurkar cliff. The engineering works used to facilitate access to the beach are: old automobile tires, white waste skeletons (refrigerators) and construction waste, where long stairs were designed using these materials. Meanwhile the engineering works which were used as erosion control measures include: rock gabions, concrete wastes, construction waste, concrete walls and shallow excavations. Such practices are commonly used in third world countries and are characterized by inexpensive transportation and implementation costs. The performance of these methods was evaluated from an economic, environmental and safety point of view. Suggestions were made to improve the performance of these practices in the future. Received: 18 November 1998 · Accepted: 15 February 1999  相似文献   

8.
We investigated the hypothesis that effects of cultural eutrophication can be reversed through natural resource restoration via addition of an oyster module to a predictive eutrophication model. We explored the potential effects of native oyster restoration on dissolved oxygen (DO), chlorophyll, light attenuation, and submerged aquatic vegetation (SAV) in eutrophic Chesapeake Bay. A tenfold increase in existing oyster biomass is projected to reduce system-wide summer surface chlorophyll by approximately 1 mg m−3, increase summer-average deep-water DO by 0.25 g m−3, add 2100 kg C (20%) to summer SAV biomass, and remove 30,000 kg d−1 nitrogen through enhanced denitrification. The influence of osyter restoration on deep extensive pelagic waters is limited. Oyster restoration is recommended as a supplement to nutrient load reduction, not as a substitute.  相似文献   

9.
I examined four hypotheses about causes for the dramatically high coastal wetland losses (0.86% yr?1) in the northern Gulf of Mexico: an extensive dredged canal and spoil bank network, a decline in sediments in the Mississippi River during the 1950s, Mississippi River navigation and flood protection levees, and salinity changes. Natural factors contributing to these habitat changes include eustatic sea-level rise and geological compaction, which appear to have remained relatively constant this century, although variation does occur. These four hypotheses were tested using data on land-to-water changes in 15-min quadrangle maps inventoried for four intervals between the 1930s and 1990. Land loss rates were directly proportional to changes in wefland hydrology in time and space. A linear regression of the direct losses due to dredging versus the losses due to all other factors (indirect losses) had a zero intercept and a slope that increased with time. The ratio indirect:direct land loss was highest nearest the estuarine entrance. The coastwide patterns of land loss do not appear to be affected by riverine sediment reductions over the last 60 yr. The effects of changes in wetland hydrology from dredging human-made channels and forming dredged spoil banks appear to be the most efficacious hypothesis explaning these dramatic losses. The effects of extensive human-induced changes on this coast have apparently overwhelmed the causal linkages identified in the historical re-constructionist view of deltaic gain and loss that emphasizes the role of mineral sediments. A paradigm shift is therefore proposed that emphasizes a broad ecological view as contrasted to a mostly physical view emphasizing the role of sediment supply in wetland maintenance. In this view, plants are not an ancillary consequence of strictly geological dynamics such as sediment supply but are dominant agents controlling factors relevant to coastal restoration and management efforts.  相似文献   

10.
We present a spatially explicit global overview of nearshore coastal types, based on hydrological, lithological and morphological criteria. A total of four main operational types act as active filters of both dissolved and suspended material entering the ocean from land: small deltas (type I), tidal systems (II), lagoons (III) and fjords (IV). Large rivers (V) largely bypass the nearshore filter, while karstic (VI) and arheic coasts (VII) act as inactive filters. This typology provides new insight into the spatial distribution and inherent heterogeneity of estuarine filters worldwide. The relative importance of each type at the global scale is calculated and types I, II, III and IV account for 32%, 22%, 8% and 26% of the global coastline, respectively, while 12% have a very limited nearshore coastal filter. As an application of this typology, the global estuarine surface area is re-estimated to 1.1 × 106 km2 instead of 1.4 × 106 km2 in earlier work.  相似文献   

11.
The eastern Alaska Beaufort Sea coast is characterized by numerous shallow (2–5 m) estuarine lagoons, fed by streams and small rivers that drain northward from the Brooks Range through the arctic coastal plain, and bounded seaward by barrier islands and shoals. Millions of birds from six continents nest and forage during the summer period in this region using the river deltas, lagoons, and shoreline along with several species of anadromous and marine fish. We examined biogeochemical processes linking the benthic community to the overall food web structure of these poorly studied but pristine estuaries, which are largely covered by 1.8 m of ice for 10 months annually. In summer, these lagoons are relatively warm with brackish salinities (5–10°C, S = 10–25) compared to more open coastal waters (0–5°C, S > 27). The stable isotopic composition of organic materials in sediments (i.e., benthic particulate organic matter) and water column suspended particulate organic matter from both streams and lagoons are largely indistinguishable and reflect strong terrestrial contributions, based upon δ13C and δ15N values (−25.6‰ to −27.4‰ and 1.4‰ to 3.3‰, respectively). By comparison, shifts toward more heavy isotope-enriched organic materials reflecting marine influence are observed on the adjacent coastal shelf (−24.8‰ to −25.4‰ and 3.4‰ to 5.3‰, respectively). The isotopic composition of lagoon fauna is consistent with a food web dominated by omnivorous detritovores strongly dependent on microbial processing of terrestrial sources of carbon. Biomagnification of 15N in benthic organisms indicate that the benthic food web in lagoons support up to four trophic levels, with carnivorous gastropod predators and benthic fishes (δ15N values up to 14.4‰) at the apex.  相似文献   

12.
In 1994, 1995, and 1996, seagrasses in 46 of the 89 coastal embayments and portions of seven open-water near-shore areas in Massachusetts were mapped with a combination of aerial photography, digital imagery, and ground truth verification. In the open-water areas, 9,477.31 ha of seagrass were identified, slightly more than twice the 4,846.2 ha detected in the 46 coastal embayments. A subset of the 46 embayments, including all regions of the state were remapped in 2000, 2001, and 2002 and again in 2006 and 2007. We detected a wide range of changes from increases as high as 29% y−1 in Boston Harbor to declines as large as −33% y−1 in Salem Harbor. One embayment, Waquoit Bay, lost all of its seagrass during the mapping period. For the 12-year change analysis representing all geographic regions of the state, only three embayments exhibited increases in seagrass coverage while 30 of the original 46 embayments showed some indication of decline. For the decadal period, rates of decline in the individual embayments ranged from −0.06% y−1 to as high as −14.81% y−1. The median rate of decline by region ranged from −2.21% y−1 to −3.51% y−1 and was slightly less than the recently reported global rate of decline for seagrasses (−3.7% y−1). Accounting for the gains in three of the embayments, 755.16 ha (20.6%) of seagrass area originally detected was lost during the mapping interval. The results affirm that previously reported losses in a few embayments were symptomatic of more widespread seagrass declines in Massachusetts. State and Federal programs designed to improve environmental quality for conservation and restoration of seagrasses in Massachusetts should continue to be a priority for coastal managers.  相似文献   

13.
A sudden disturbance in water level was recorded by hydrographs monitoring wells in the coastal city Dammam, Saudi Arabia on December 26, 2004. The water level was being recorded from the shallow (1–3 M deep) coastal aquifer at that time. In two wells, this disturbance was observed ~12 h after the Sumatra earthquake/tsunami event of December 26, 2004. The timing of this event is synchronous in two wells near the coast, but an inland well away from the coast line did not show any such disturbance. It is hypothesized that this disturbance, we call it the “shock event”, is resulted by sudden impact of tsunamis traveling in the Arabian Gulf from southeast toward northwest. As the tsunamis propagated, they suddenly impacted the coastal shallow groundwater aquifer resulting in the “shock event”.  相似文献   

14.
Baseflow and storm runoff fluxes of water, suspended particulate matter (SPM), and nutrients (N and P) were assessed in conservation, urban, and agricultural streams discharging to coastal waters around the tropical island of Oahu, Hawai‘i. Despite unusually low storm frequency and intensity during the study, storms accounted for 8–77% (median 30%) of discharge, 57–99% (median 93%) of SPM fluxes, 11–79% (median 36%) of dissolved nutrient fluxes and 52–99% (median 85%) of particulate nutrient fluxes to coastal waters. Fluvial nutrient concentrations varied with hydrologic conditions and land use; land use also affected water and particulate fluxes at some sites. Reactive dissolved N:P ratios typically were ≥16 (the ‘Redfield ratio’ for marine phytoplankton), indicating that inputs could support new production by coastal phytoplankton, but uptake of dissolved nutrients is probably inefficient due to rapid dilution and export of fluvial dissolved inputs. Particulate N and P fluxes were similar to or larger than dissolved fluxes at all sites (median 49% of total nitrogen, range 22–82%; median 69% of total phosphorus, range 49–93%). Impacts of particulate nutrients on coastal ecosystems will depend on how efficiently SPM is retained in nearshore areas, and on the timing and degree of transformation to reactive dissolved forms. Nevertheless, the magnitude of particulate nutrient fluxes suggests that they represent a significant nutrient source for many coastal ecosystems over relatively long time scales (weeks–years), and that reductions in particulate nutrient loading actually may have negative impacts on some coastal ecosystems.  相似文献   

15.
海岸带是位于海陆结合部的复杂环境系统,是人类活动最集中的地区。中国大陆海岸线约18000km,涉及沿海11个省,由于经济社会高速发展,海岸带地区的人口、资源、环境矛盾日益突出,面临海岸带资源无序开发、水土污染、滨海湿地退化、海岸侵蚀、地面沉降等一系列生态环境与灾害地质问题,已成为影响生态文明建设的主要问题之一。因此中国持续加大海岸带生态环境保护力度,并提出实施重要生态系统保护和修复重大工程、强化湿地保护和修复等政策措施。美国国家海洋和大气管理局主导的海岸带损害评估及修复计划已实施了近30年,并取得了显著效果,其完善的法律制度体系、规范的损害评估和修复程序、数据集成管理和共享应用等成功经验值得学习借鉴。建议加快完善中国海岸带生态环境损害评估与修复的技术方法体系和制度体系、有序开展海岸带自然资源和生态环境调查、加强海岸带及滨海湿地等重要生态系统的演化和修复技术研究与示范,并构建统一的海岸带基础调查数据库、建立海岸带监测预警体系。  相似文献   

16.
The societal usage of coastal zones (including offshore wind energy plants, waterway deepening, beach conservation and restoration) is of emerging importance. Sediment dynamics in these areas result in sandy deposits due to strong tidal and wave action, which is difficult to simulate in laboratory geotechnical tests. Here, we present data from in situ penetrometer tests using the lightweight, free-fall Nimrod penetrometer and complementary laboratory experiments to characterize the key physical properties of sandy seafloors in areas dominated by quartzose (North Sea, Germany) and calcareous (Hawaii, USA) mineralogy. The carbonate sands have higher friction angles (carbonate: 31–37°; quartz: 31–32°) and higher void ratios (carbonate: 1.10–1.40; quartz: 0.81–0.93) than their siliceous counterparts, which have partly been attributed to the higher angularity of the coral-derived particles. During the in situ tests, we consistently found higher sediment strength (expressed in deceleration as well as in estimated quasi-static bearing capacity) in the carbonate sand (carbonate: 68–210 g; quartz: 25–85 g), which also showed a greater compressibility. Values were additionally affected by seafloor inclination (e.g., along a sub-aqueous dune or a channel), or layering in areas of sediment mobilization (by tides, shorebreak or currents). The study shows that the differences in in situ measured penetration profiles between carbonate sands and quartz sands are supported by the laboratory results and provide crucial information on mobile layers overlying sands of various physical properties.  相似文献   

17.
Nitrogen loading from anthropogenic sources, including fertilizer, manure, and sewage effluents, has been linked with declining water quality in coastal lagoons worldwide. Freshwater inputs to mid-Atlantic coastal lagoons of the USA are from terrestrially influenced sources: groundwater and overland flow via streams and agricultural ditches, with occasional precipitation events. Stable nitrogen isotopes ratios (δ15N) in bioindicator species combined with conventional water quality monitoring were used to assess nitrogen sources and provide insights into their origins. Water quality data revealed that nutrients derived from terrestrial sources increased after precipitation events. Tissues from two bioindicator species, a macroalgae (Gracilaria sp.) and the eastern oyster (Crassostrea virginica) were analyzed for δ15N to determine spatial and temporal patterns of nitrogen sources. A broad-scale survey assessment of deployed macroalgae (June 2004) detected regions of elevated δ15N. Macroalgal δ15N (7.33 ± 1.15‰ in May 2006 and 6.76 ± 1.15‰ in July 2006) responded quickly to sustained June 2006 nutrient pulse, but did not detect spatial patterns at the fine scale. Oyster δ15N (8.51 ± 0.89‰) responded slowly over longer time periods and exhibited a slight gradient at the finer spatial scale. Overall, elevated δ15N values in macroalgae and oysters were used to infer that human and animal wastes were important nitrogen sources in some areas of Maryland’s coastal bays. Different nitrogen integration periods across multiple organisms may be used to indicate nitrogen sources at various spatial and temporal scales, which will help focus nutrient management.  相似文献   

18.
We evaluate if the distribution and abundance ofThalassia testudinum, Syringodium filiforme, andHalodule wrightii within Biscayne Bay, Florida, are influenced by salinity regimes using, a combination of field surveys, salinity exposure experiments, and a seagrass simulation model. Surveys conducted in June 2001 revealed that whileT. testudinum is found throughout Biscayne Bay (84% of sites surveyed),S. filiforme andH wrightii have distributions limited mainly to the Key Biscayne area.H. wrightii can also be found in areas influenced by canal discharge. The exposure of seagrasses to short-term salinity pulses (14 d, 5–45‰) within microcosms showed species-specific susceptibility to the salinity treatments. Maximum growth rates forT testudinum were observed near oceanic salinity values (30–40‰) and lowest growth rates at extreme values (5‰ and 45‰).S. filiforme was the most susceptible seagrass species; maximum growth rates for this species were observed at 25‰ and dropped dramatically at higher and lower salinity.H. wrightii was the most tolerant, growing well at all salinity levels. Establishing the relationship between seagrass abundance and distribution and salinity is especially relevant in South Florida where freshwater deliveries into coastal bays are influenced by water management practices. The seagrass model developed by Fong and Harwell (1994) and modified here to include a shortterm salinity response function suggests that freshwater inputs and associated decreases in salinity in nearshore areas influence the distribution and growth of single species as well as modify competitive interactions so that species replacements may occur. Our simulations indicate that although growth rates ofT. testudinum decrease when salinity is lowered, this species can still be a dominant component of nearshore communities as confirmed by our surveys. Only when mean salinity values are drastically lowered in a hypothetical restoration scenario isH. wrightii able to outcompeteT. testudinum.  相似文献   

19.
The investigations were carried out in order to evaluate change of the beaches profile during the period 1993–2008 and to elucidate main trends of the coastal dynamics. Morphometric indicators (beach width, height and inclination) were measured every year during the period 1993–2008 in 70 measuring stations located along the coastline. It was determined that the dynamic shoreline of the mainland during 1993–2008 receded by 10.2 m and the dynamic shoreline of the Curonian Spit advanced into the sea by 8.3 m. The different morphometric beach indicators changed to varying extents over the period 1993–2008, but comparison of values for 1993 and 2008 showed that those changes were small. The average beach width increased by 1.2 m on the mainland coast and by 0.5 m on the Curonian Spit coast. The average beach height also increased negligibly: by 0.5 m on the mainland coast and by 0.1 m on the Curonian Spit coast. The average beach slope inclination increased by 0.012 (from 0.065 to 0.077) on the mainland coast and by 0.005 (from 0.073 to 0.078) on the Curonian Spit coast. The measurements show that, despite being the most dynamic elements in the coastal system, these beaches managed to retain their morphometric indicators almost unchanged during the period of observation.  相似文献   

20.
The mummichog,Fundulus heteroclitus, is one of the most important macrofaunal components of salt marsh surfaces and an important link to subtidal areas of the adjacent estuary along the east coast of the U.S. We estimated growth, population size, and production of the mummichog in a restored marsh in order to improve our understanding of the role of this resident fish and to evaluate the success of the restoration. The restored marsh, covering 234 ha, was a former salt hay farm located in the mesohaline portion of Delaware Bay that was restored to tidal influence in August 1996. We separated the mummichog population into two components based on life history stage and summer habitat use patterns. One component, consisting of adults and large young-of-the-year (YOY), exhibited tidal movements to and from the marsh surface and the subtidal creeks. These were examined with an intensive mark and recapture program using coded wire tags. Another component, consisting of small YOY, remained on the marsh surface throughout the tidal cycle. Throw traps were used to sample these small YOY. The mean annual population density of adults and large YOY for the entire marsh was approximately 1.2 fish m−2 and mean monthly density peaked at 2.9 fish m−2. The mean annual density of small YOY on the marsh surface was 15.1 fish m−2 and mean monthly density peaked at 41.4 fish m−2. Size and season influenced the growth rate of individual fish and instantaneous growth rates ranged from 0.03 to 2.26 mo−1. Total annual mummichog production was estimated to be 8.37 g dw m−2 yr−1, with adults and large YOY contributing 28.4% (2.38 g dw m−2 yr−1) and small YOY on the marsh surface contributing 71.6% (5.99 g dw m−2 yr−1). The seasonal use and population densities were comparable to previous studies in natural marshes while growth and production of mummichog in this restored marsh appeared to be higher. Coupled with the results of other studies on the feeding, movement, and habitat use of this species in this restored marsh, the species has responded well to the restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号