首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Saturation of the Large Aperture Scintillometer   总被引:2,自引:0,他引:2  
The saturation aspects of a large aperture (0.3 m) scintillometer operating over a 10-km path were investigated. Measurements were made over mainly forested, hilly terrain with typical maximum sensible heat fluxes of 300–400 W m −2, and over flat terrain with mainly grass, and typical maximum heat fluxes of 100–150 W m−2. Scintillometer-based fluxes were compared with eddy-correlation observations. Two different schemes for calculating the reduction of scintillation caused by saturation were applied: one based on the work of Hill and Clifford, the other based on Frehlich and Ochs. Without saturation correction, the scintillation fluxes were lower than the eddy-correlation fluxes; the saturation correction according to Frehlich and Ochs increased the scintillometer fluxes to an unrealistic level. Correcting the fluxes after the theory of the Hill and Clifford gave satisfying results  相似文献   

2.
Large Aperture Scintillometer Intercomparison Study   总被引:4,自引:2,他引:2  
Two field studies with six large aperture scintillometers (LASs) were performed using horizontal and slant paths. The accuracy of this novel and increasingly popular technique for measuring sensible heat fluxes was quantified by comparing measurements from different instruments over nearly identical transects. Random errors in LAS measurements were small, since correlation coefficients between adjacent measurements were greater than 0.995. However, for an ideal set-up differences in linear regression slopes of up to 21% were observed with typical inter-instrument differences of 6%. Differences of 10% are typical in more realistic measurement scenarios over homogeneous natural vegetation and different transect heights and locations. Inaccuracies in the optics, which affect the effective aperture diameter, are the most likely explanation for the observed differences.  相似文献   

3.
利用2009年馆陶站(1-12月)和阿柔站(1-6月和10-11月)的大孔径闪烁仪LAS相关数据,分析了LAS观测中莫宁—奥布霍夫相似理论MOST理论的适用性,并探讨了MOST理论适用性的定量判断方法.结果表明:(1)在不稳定条件下,大尺度涡旋运动、大气湍流发展状况和温度尺度都能对MOST理论适用性产生显著影响;(2)确立了两种新的MOST理论适用性判断方法,即因子分析法和温度结构参数法,并验证了这两种判断方法是合理、可靠的.  相似文献   

4.
大口径闪烁仪及其在地表能量平衡监测中的应用   总被引:10,自引:0,他引:10       下载免费PDF全文
介绍了LAS仪器的测量原理及数据处理方法, 并利用中荷合作项目CEWBMS中获得的河南郑州LAS测站2000年的观测资料, 同时结合其它辅助资料, 对观测点附近地区的能量平衡状况进行了分析。分析结果表明, 由LAS测值得到的显热通量值, 以及结合净辐射资料间接得到的潜热通量值, 合理地反映出了当地能量平衡状况的季节变化, 显示出一年之中当地大部分的净辐射能用于潜热通量的释放。其数据结果所表征的当地下垫面干湿程度的变化与同期的降水及土壤相对湿度相比, 表现出了相当好的一致性, 这为拓展LAS在局地地表能量平衡监测中的应用提供了物理依据。  相似文献   

5.
基于黄土高原定西站2009年9月大孔L径闪烁仪(LAS)的观测数据,结合涡动相关系统(EC)和梯度塔的同步观测资料,分析了LAS和EC在测量感热通量过程中的温度特征尺度T*及其差异与近地层气象要素风向、位温梯度和稳定度等的关系.结果表明,黄土高原下垫面LAS测量的T*LAS和EC测量的T*EC有很好的相关性,相关系数达到0.955,拟合的线性趋势系数是1.482.对9月进行风向统计,主风向为NNE和SE,NNE风向上T*LAS和T*EC的相关系数是0.960,拟合的线性趋势系数是1.349,SE风向上T* LAS和T*EC的相关系数是0.968,拟合的线性趋势系数是1.619,风向对T*有显著影响.位温梯度与T*呈很好的线性相关关系,T*LAS相较于T*EC与位温梯度有更好的相关性.当稳定度z/L<1.5时,T*LAS/T*EC随着z/L的增大雨减小;当z/L>1.5时,T*LAS/T*EC随着z/L的增大而增大.T* LAS/T*EC的变化范围随着z/L的增大逐渐变小,当z/L增大到4后,T*LAS/T*EC开始保持较小的变化范围.  相似文献   

6.
不同下垫面大孔径闪烁仪观测数据处理与分析   总被引:6,自引:0,他引:6       下载免费PDF全文
大孔径闪烁仪是近年兴起的测量大尺度(500 m~10 km)地表通量的仪器。北京师范大学等单位分别于2002年、2004年在北京昌平小汤山开展了大孔径闪烁仪短期观测实验, 2006年6月又在北京密云建立了长期观测站。利用这些数据, 对大孔径闪烁仪观测数据进行处理与分析, 结果表明:闪烁仪光径高度和风速是影响观测显热通量的关键因子。当地表粗糙元的高度变化相对于光径高度不可忽略时, 零平面位移需要精确确定。波文比在湿润地表需要准确确定, 而气温、气压和动力学粗糙度则为不敏感因子。计算中所需的大气稳定度可用理查孙数判断, 也可借助日出日落时间或净辐射观测值确定。稳定条件下的普适函数目前无统一表达式, 可采用仪器说明书推荐的函数。通过几个站点闪烁仪观测显热通量与涡动相关仪测量值的比较表明:大孔径闪烁仪在均匀和非均匀地表都能得到合理的显热通量观测值。  相似文献   

7.
涡动相关仪和大孔径闪烁仪观测通量的空间代表性   总被引:10,自引:3,他引:10       下载免费PDF全文
在对涡动相关仪和大孔径闪烁仪足迹模型进行敏感性分析的基础上,利用北京密云站2006年8月至2007年12月期间的观测资料,应用足迹模型对观测通量的空间代表性做了初步的分析.结果表明:涡动相关仪和大孔径闪烁仪的源区对风向、Monin-Obukhov长度,空气动力学粗糙度和观测高度/有效高度等因子比较敏感.密云站涡动相关仪的源区白天主要分布在仪器的西南与南面,而夜间则在东北与北面.大孔径闪烁仪的源区为西南一东北向分布.涡动相关仪各月源区形状不同,但大致分布在南北长1000 m、东两宽850 m的范嗣内,而LAS各月源区为西南一东北向分布,长约2060 m,最宽处约为620 m.对涡动相关仪通量有贡献的下垫面主要为园地(67%)和耕地(19%).其中园地的通量贡献比例在夏、秋季比较大,冬、春季稍小,而耕地则相反.大孔径闪烁仪的主要通量贡献源区为园地、耕地和居民地,通量贡献比例分别为49%,28%和11%.其中园地和耕地通量贡献率的变化趋势与涡动相关仪的观测结果一致,但没有涡动相关仪的变化明显.  相似文献   

8.
The friction velocity (u*) and the sensible heat flux density (H) determined with a displaced-beam small aperture scintillometer (DBSAS) and a hot-film eddy correlation system are compared. Random errors in the DBSAS are relatively small, compared to scatter found with two eddy-correlation systems. Assuming that the hot-film system yields the true fluxes, theDBSAS appears to overestimate u* when u* is less than 0.2 m s-1 and to underestimate u* at high wind speeds. This implies that the DBSAS measurements of theinner scale length of turbulence, l0, a direct measure for the dissipation rate of kinetic turbulent energy, are biased. Possible causes for these results are discussedin detail. A correction procedure is presented to account for effects of random noise and of so-called inactive turbulence or sensor vibrations. The errors in u* cause errors in the DBSAS measurements of the structure parameter of temperature CT 2. The derived H appears to be less sensitive to errors in l0 and CT 2, because errors in these quantities tend to cancel out.  相似文献   

9.
The performance of the Scintec displaced-beam small aperture scintillometer (DBSAS) in the stable boundary layer (SBL) is investigated using data gathered during the CASES-99 experiment in Kansas, U.S.A. The DBSAS is superior to the eddy-covariance method in determining vertical fluxes of sensible heat and momentumclose to the ground and/or over short (< 1 min) averaging intervals. Both aspects are of importance in the shallow and non-stationary SBL.The friction velocity, u*, the temperature scale, *, and from these the sensible heat flux, H, were calculated from the indirectly determined dissipation rate, , and the structure parameter of temperature, CT 2, by the DBSAS, which was operated over a path length of 112 m. All these variables are compared with eddy-covariance data for 10-minute time averages. Previously reported systematic errors in the DBSAS, overestimation of u* for low u* values and underestimation of u* for high u* values, have in part been dealt with by adjusting the beam displacement distance from 2.7 mm to 2.6 mm in the calculations. The latter adjustment is presented as a working hypothesis, not a general solution.  相似文献   

10.
A large-aperture scintillometer (LAS) was operated continuouslyduring a period of more than one year over a heterogeneous land surface in Central Europeat the transition between marine and continental climates. The LAS measurements of the refractiveindex structure parameter, CN 2, were used to estimate the sensible heat flux. Thiswas possible for about 60to 80% of the time under daytime conditions during thesummer, with lower values obtained for the cold season (October to March). Using datafrom a three-week long field experiment, the LAS-based heat flux was compared with a weighedaverage of local heat flux measurements over the main land use classes (forest, agriculture,water) in the area, resulting in reasonable agreement. LAS-based heat fluxes were then used forcomparison with the heat flux values of a numerical weather prediction model. An over-predictionof the model heat flux was found in summer but the modelled values were lower than the LASderived data during the cold season.  相似文献   

11.
To test the applicability of the scintillation method over a heterogeneous area an experiment was carried out in the summer of 1998 in Flevoland (The Netherlands). In the patchy area only four crops were grown namely sugar beet, potatoes, wheat and onions. From eddy covariance measurements it was found that the heterogeneity was mainly caused by differences in thermal properties. No variations in the aerodynamics roughness length were observed. Two large aperture scintillometers were installed at a height of 11.6 and 20.4 m. A good resemblance was found between the sensible heat fluxes derived from both LAS instruments and the area-averaged fluxes obtained from the in-situ eddy covariance measurements. The slight underestimation of the lower LAS could be assessed using a blending height model and an analytical footprint model. The results also indicated that when scintillometer measurements are made below the blending height the violation to Monin–Obukhov Similarity Theory is small and that reasonable fluxes can be obtained from path-averaged structure parameters.  相似文献   

12.
Scintillometer measurements were collected over an irrigated wheat field ina semi-arid region in northwest Mexico. Conditions were unstable in the morning andstable during the afternoon, while latent heat fluxes remained high throughout the day.Regional advection was observed during near-neutral conditions. Monin–Obukhovsimilarity relationships for the structure parameter of temperature were verified in both unstable and stable conditions, but were violated close to near-neutral conditions. We found that, using additional measurements of radiation, soil heat flux and windspeed, areally averages of both sensible and latent heat fluxes can be reliably predicted by large aperture scintillometer measurements, as long as the net radiation is greater than zero.  相似文献   

13.
A method is presented for selecting the optimal flight patterns for airbornemeteorological measurements in various flow situations. The method is basedon systematic utilisation of mesoscale model fields. Flow overan Arctic sea-ice boundary zone is modelled, and it is assumed that the mesoscale model fields represent the true state of the atmosphere, and that each possible flight pattern yields a different sample of the true fields. A plan for the basic structure of the flight pattern is assumed, and then the unexplained variance, i.e., the difference between the true variance and the sample variance, of a quantity of interest is calculated for a variety of possible flight patterns. Different target quantities are considered, such as wind speed, air temperature, and the turbulent fluxesof momentum and sensible heat. The optimal flight pattern is defined byminimisation of the unexplained variance, and often depends on the quantitywe are interested in. For sawtooth patterns, the optimal flight pattern was sensitive to the maximum ascent angle of the aircraft. In flight patterns designed for turbulence measurements, the optimal pattern was different for the unexplained variance of the turbulent fluxes and for the unexplained total heat content of the convective layer.  相似文献   

14.
l. IntroductionThe physical mechanisms contro1ling t]de El Nifio event have been studied based on ob-servations in the equatorial Pacific (Weare l983; Reed l986; Hayes et al. l99l; McPhadenand Picaut l990; Frankignoul et al. 1996; Weisberg and Wang l997). One of the most impor-tant issues is whether the surface heat flux ojr ocean advective heat fluxes are dominant in con-trolling the sea surface temperature (SST). Some studies indicated that the SST is mainly con-trolled by the surface…  相似文献   

15.
The heat budget is analyzed in the surface-layer (0-50 m) Pacific of the equatorial band (10°S-10°N),using the simulation of an ocean general circulation model from 1945 to 1993. The analysis indicates that downward net surface heat flux from the atmosphere and ocean advective heat fluxes play distinct roles in seasonal and interannual variabilities of surface-layer ocean temperature. The surface heat flux dominantly determines the ocean temperature in the seasonal time-scale. But, it has a negative feedback to the ocean temperature in the interannual time-scale. The interannual variability of ocean temperature is largely associated with the cold advection from off-equatorial divergent flow in the central Pacific and from upwelling in the cold tongue. Both the surface heat flux and ocean advective heat fluxes are important to the ocean temperature during an El Nino event. The ocean advective heat fluxes are further associated with local westward trade wind in the central Pacific. These results are largely consistent with some regional observational analyses.  相似文献   

16.
Many new types of sonic anemometer obtain sonic temperature from an average value of temperature measured along three paths, unlike previous sonic anemometers that generally used one path. New equations are derived to calculate temperature variance from sonic temperature variance and sensible heat flux from buoyancy flux considering the influence of a crosswind. These equations can be applied to CSAT3, Solent R2, R3, R3A, HS, and USA-1 sonic anemometers with the corresponding correction factors given in this paper. The equations are verified by data measured by a CSAT3 sonic anemometer in the LITFASS-1998 field study.  相似文献   

17.
Abtract Sensible heat flux estimated by Large Aperture Scintillometry (LAS) has been tested against the more traditional eddy covariance technique over Marseille city centre, a reasonably homogeneous surface. Over the 3 week test period fluxes were found to be similar, yet less noisy for the LAS due to the spatial integration. No systematic bias between the estimates was found as a function of wind direction, indicating the homogeneity of the site. Sensitivity analysis of the required aerodynamic parameters shows that careful attention must be paid to the displacement height along the measurement path. Spatial variability of surface sensible heat flux is studied via a second LAS measurement path over the city.  相似文献   

18.
An approximate method for calculating the relationship between z/L(z = reference height, L = Obukhov length) and the bulk Richardsonnumber is presented. If this relationship is known, the momentum andheat fluxes can be computed easily without any iteration. The avoidance of iteration can speed up computationsin large-scale models considerably (up to 10 times) and cases which do not converge or converge very slowly cannot occur. The proposed formulae take into account the difference between momentum (z0M) and heat roughnesslengths (z0H). Because the roughness lengths are not neglected at any step of the derivation, the resulting analytical formulae can be used not only between the surface and the reference height but also between two finite levels z1 andz2 (by replacing z0M and z0H by z1 and z by z2). Theequations remain correct even in the limit z1 z2.The formulae are based upon the (partially modified) Businger–Dyer flux–profile relationships and,consequently, they are restricted to predominantly homogeneous terrain.These new approximations are an improvement over the existing solutions because they are simpler than most of the formulae in the literature and are able to match the numerical exact solution for different parameter sets (Businger, Dyer, Högström) with an maximum error of about 2% for a wide range of z/L, z/z0M and z0M/z0H.Furthermore, in stable conditions, schemes with and without a finitecritical bulk Richardson number can be approximated. The possibleambiguity of the exact solution =f(RIB) in (moderately) stable conditions is discussed briefly. The performance of the new formulae is compared to the exact numerical solution and to different formulae proposed in the literature.  相似文献   

19.
Bulk Formulation of the Surface Heat Flux   总被引:1,自引:1,他引:1  
An interpretive literature survey examines different approachesfor applying the bulk aerodynamic formulato predict the surface heat flux. The surface heat flux is often predicted in terms of the surface radiation temperature, which is also used to predict the upward longwave radiation and the heat flux into the soil. In models, the thermal roughness length based on the surface radiation temperature (radiometric roughness length) is often specified to be smaller than the roughness length for momentum for a number of distinct reasons. The definition of the radiometric roughness length depends on the way that the surface temperature is measured, the choice of stability functions and displacement height and inclusion of any additional resistances.Using airborne eddy correlation data collected over eight different sites including bare soil, crops and grassland and several types of forests, the radiometric roughness length is found to vary by orders of magnitude in a manner that is difficult to formulate. Alternatively, we evaluate the approach where the thermal roughness length is equated with the better behaved roughness length for momentum and the corresponding aerodynamic surface temperature is modelled in terms of the surface radiation temperature, solar radiation, and vegetation index. The influence of wind speed and soil moisture on the difference between the aerodynamic and surface radiation temperatures is also examined.  相似文献   

20.
Energy and CO2 fluxes are commonly measured above plant canopies using an eddy covariance system that consists of a three-dimensional sonic anemometer and an H2O/CO2 infrared gas analyzer. By assuming that the dry air is conserved and inducing mean vertical velocity, Webb et al. (Quart. J. Roy. Meteorol. Soc. 106, 85-100, 1980) obtained two equations to account for density effects due to heat and water vapour transfer on H2O/CO2 fluxes. In this paper, directly starting with physical consideration of air-parcel expansion/compression, we derive two alternative equations to correct for these effects that do not require the assumption that dry air is conserved and the use of the mean vertical velocity. We then applied these equations to eddy flux observations from a black spruce forest in interior Alaska during the summer of 2002. In this ecosystem, the equations developed here led to increased estimates of CO2 uptake by the vegetation during the day (up to about 20%), and decreased estimates of CO2 respiration by the ecosystem during the night (approximately 4%) as compared with estimates obtained using the Webb et al. approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号