首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
Miduk hypogene and supergene porphyry Cu–Mo mineralization occurs within the Miocene porphyritic quartz–diorite and host Eocene plagioclase–hornblende phyric andesitic pyroclastic and flow sequence. Both the host rocks were extensively altered by hydrothermal fluids to dominantly potassic, phyllic, and argillic with interstitial to distal propylitic types.  相似文献   

3.
The Sarcheshmeh copper deposit is one of the world's largest Oligo-Miocene porphyry copper deposits in a continental arc setting with a well developed supergene sulfide zone, covered mainly by a hematitic gossan. Supergene oxidation and leaching, have developed a chalcocite enrichment blanket averaging 1.99% Cu, more than twice that of hypogene zone (0.89% Cu). The mature gossans overlying the Sarcheshmeh porphyry copper ores contain abundant hematite with variable amounts of goethite and jarosite, whereas immature gossans consist of iron-oxides, malachite, azurite and chrysocolla. In mature gossans, Au, Mo and Ag give significant anomalies much higher than the background concentrations. However, Cu has been leached in mature gossans and gives values close or even less than the normal or crustal content (< 36.7 ppm). Immature gossans are enriched in Cu (160.3 ppm), Zn (826.7 ppm), and Pb (88.6 ppm). Jarosite- and goethite-bearing gossans may have developed over the pyritic shell of most Iranian porphyry copper deposits with pyrite–chalcopyrite ratios greater than 10 and therefore, do not necessarily indicate a promising sulfide-enriched ore (Kader and Ijo). Hematite-bearing gossans overlying nonreactive alteration halos with pyrite–chalcopyrite ratios about 1.5 and quartz stringers have significant supergene sulfide ores (Sarcheshmeh and Miduk). The copper grade in supergene sulfide zone of Sarcheshmeh copper deposit ranges from 0.78% in propylitized rocks to 3.4% in sericitized volcanic rocks, corresponding to the increasing chalcopyrite–pyrite or chalcocite–pyrite ratios from 0.3 to 3, respectively. Immature gossans with dominant malachite and chrysocolla associated with jarosite and goethite give the most weakly developed enrichment zone, as at God-e-Kolvari. The average anomalous values of Au (59.6 ppb), Mo (42.5 ppm) and Ag (2.6 ppm) in mature gossans associated with the Sarcheshmeh copper mine may be a criterion that provides a significant exploration target for regional metallogenic blind porphyry ore districts in central Iranian volcano–plutonic continental arc settings. Drilling for new porphyry ores should be targeted where hematitic gossans are well developed. The ongoing gossan formation may result in natural acidic rock drainage (ARD).  相似文献   

4.
Pre-collisional Eocene–Oligocene arc diorites, quartzdiorites, granodiorites, and volcanic equivalents in the Kerman arc segment in central Iran lack porphyry Cu mineralization and ore deposits, whereas collisional middle-late Miocene adakite-like porphyritic granodiorites without volcanic equivalents host some of the world’s largest Cu ore deposits. Petrological and structural constraints suggest a direct link between orogenic arc crust evolution and the presence of a fertile metallogenic environment. Ore-hosting Kuh Panj porphyry intrusions exhibit high Sr (>400 ppm), low Y (<12 ppm) contents, significant REE fractionation (La/Yb > 20), no negative Eu anomalies (Eu/Eu* ≥ 1), and relatively non-radiogenic Sr isotope signatures (87Sr/86Sr = 0.7042–0.7047), relative to Eocene–Oligocene granitoids (mainly Sr < 400 ppm; Y > 12; La/Yb < 15; Eu/Eu* < 1; 87Sr/86Sr = 0.7053–0.7068). Trace element modeling indicates peridotite melting for the barren Eocene–Oligocene intrusions and a hydrous garnet-bearing amphibolite source for middle-late Miocene ore-hosting intrusions. The presence of garnet implies collisional arc crustal thickening by shortening and basaltic underplating from about 30–35 to 40–45 km or 12 kbar. The changes in residual mineralogy in the source of Eocene to Miocene rocks in the Kerman arc segment reflect probing of a thickening arc crust by recycling melting of the arc crustal keel. Underplating of Cu and sulfur-rich melts from fertile peridotite generated a fertile metallogenic reservoir at or near the crust–mantle boundary, and dehydration melting under oxidizing conditions produced syn- and post-collisional ore-hosting intrusions, while the lack of post-collisional volcanism prevented the venting of volatiles to the atmosphere from sulfur-rich and oxidized adakitic magmas. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Acid mine drainage is a major source of water pollution in the Sarcheshmeh porphyry copper mine area. The concentrations of heavy metals and rare earth elements (REEs) in the host rocks, natural waters and acid mine drainage (AMD) associated with mining and tailing impoundments are determined. Contrary to the solid samples, AMDs and impacted stream waters are enriched in middle rare earth elements (MREEs) and heavy rare earth elements (HREEs) relative to light rare earth elements (LREEs). This behavior suggests that REE probably fractionate during sulfide oxidation and acid generation and subsequent transport, so that MREE and HREE are preferentially enriched. Speciation modeling predict that the dominant dissolved REE inorganic species are Ln3+, Ln(SO4)2, LnSO4+, LnHCO32+, Ln(CO3)2 and LnCO3+. Compared to natural waters, Sarcheshmeh AMD is enriched in REEs and SO42−. High concentrations of SO42− lead to the formation of stable LnSO4+, thereby resulting in higher concentrations of REEs in AMD samples. The model indicates that LnSO4+ is the dissolved form of REE in acid waters, while carbonate and dicarbonate complexes are the most abundant dissolved REE species in alkaline waters. The speciation calculations indicate that other factors besides complexation of the REE's, such as release of MREE from dissolution and/or desorption processes in soluble salts and poorly crystalline iron oxyhydroxy sulfates as well as dissolution of host rock MREE-bearing minerals control the dissolved REE concentrations and, hence, the MREE-enriched patterns of acid mine waters.  相似文献   

6.
Fluid–rock interaction related to the circulation of hydrothermal fluids can strongly modify the physicochemical properties of wall rocks in porphyry Cu deposits. These processes can also produce compositional and textural changes in ferromagnetic minerals, which can be quantified using magnetic methods. In the Escondida porphyry Cu deposit of northern Chile, each hydrothermally altered lithology is characterized by a discrete assemblage of Fe–Ti oxide minerals. These minerals have distinctive bulk magnetic susceptibility (K bulk), temperature-dependent magnetic susceptibility, and magnetic hysteresis parameters. Selectively altered rocks (i.e., potassic and chloritic alteration types) exhibit the highest K bulk values (>3.93?×?10?3 SI units), and their hysteresis parameters indicate multidomain magnetic mineral behavior. This suggests that these rocks are composed of the coarsest magnetic grain sizes within the deposit. Optical analyses and susceptibility–temperature curves confirm that the magnetic signals in selectively altered rocks are mainly carried by secondary magnetite. In contrast, pervasively altered rocks (i.e., quartz-sericite and argillic alteration types) exhibit low K bulk values (<1.93?×?10?4 SI units) and contain smaller pseudo-single domain magnetic grain assemblages. This is consistent with the destruction and/or reduction in size of magnetite under acidic conditions. The results therefore demonstrate a genetic relationship between the hydrothermal alteration processes, Fe–Ti oxide minerals, and magnetic properties of the wall rock in the Escondida deposit. These magnetic methods can be considered a sensitive and efficient petrophysical tool for the identification and semi-quantification of alteration assemblages, and facilitating the recognition and mapping of discrete hydrothermal zones during exploration and operation of porphyry Cu deposits.  相似文献   

7.
西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿   总被引:37,自引:17,他引:37  
驱龙超大型矿床是一个产于后碰撞伸展环境下、与大洋俯冲无关的新型斑岩铜矿。文章通过对驱龙铜矿床地质、蚀变与矿化的详细研究,建立了驱龙中新世岩浆演化序列,初步查明了岩浆浅成侵位的构造控制要素,厘定了主要的围岩蚀变类型及空间展布规律,查明了引起各期蚀变事件的地质记录及矿化的空间分布规律,并探讨了成矿物质沉淀的机制,初步建立了该矿床的成矿模型。研究表明,驱龙铜矿中新世斑岩是闪长质深部岩浆房不断演化的产物,花岗闪长岩中新发现的、结晶时间为22.2Ma左右的闪长质包体可近似代表深部岩浆房组分,依次产出的花岗闪长岩、呈岩株或岩枝产出的P斑岩、X斑岩及最晚期的闪长玢岩(15.7±0.2)Ma,均为深部岩浆房连续演化的产物,岩浆持续6Ma左右。岩浆演化过程中角闪石、斜长石不断的结晶分异,导致了岩石常量元素、稀土元素及微量元素组成的规律性变化,斑岩埃达克质的特征也因岩浆演化过程中角闪石等矿物的不断结晶分异而引起。X斑岩中锆石的Hf同位素特征表明,岩石可能形成于新生下地壳的部分熔融。大面积产出的花岗闪长岩为驱龙铜矿最主要的含矿围岩,容纳了驱龙矿床70%以上的矿体,主要由斜长石、钾长石和石英组成,具花岗结构-似斑状结构,近EW向产出,其浅成就位可能受背斜控制,其后的各期斑岩均沿该侵位中心上侵,而冈底斯地壳中新世的快速抬升与剥蚀是导致含矿斑岩浅成侵位的根本原因;矿区内的SN向裂隙带既不控岩,也不控矿。浅成侵位的斑岩及深部岩浆房均发生了流体出溶。发生了大量流体出溶的深部岩浆房,是矿区早期蚀变流体的主要来源,显微晶洞构造及单向固结结构(UST)是流体出溶的地质记录。蚀变主要有3种类型,分别为早期的钾硅酸盐化、青磐岩化以及晚期的长石分解。钾硅酸盐化可分为2个阶段,即蚀变矿物以次生钾长石为主的早期钾硅酸盐化和以次生黑云母为主的晚期钾硅酸盐化。青磐岩化因产出的岩石类型不同,蚀变矿物组合具有明显差异性:产于叶巴组地层中的青磐岩化相对较强,蚀变矿物以绿帘石为主;产于花岗闪长岩中的青磐岩化相对较弱,蚀变矿物以绿泥石为主。晚期长石分解蚀变以破坏长石类矿物为特征,蚀变矿物主要为绢云母-绿泥石-粘土等。石英和硬石膏贯穿于上述各种蚀变中。空间上,钾硅酸盐化位于斑岩体及其周围地区,青磐岩化位于钾硅酸岩化外侧。后期形成的长石分解蚀变强烈叠加了早期钾硅酸盐化,介于钾硅酸盐化带与青磐岩化带之间。与早期钾长石化有关的脉体主要为不规则石英-钾长石脉,与晚期黑云母化有关的脉体主要为不规则至板状的石英-硬石膏脉、黑云母脉,与青磐岩化有关的脉体主要为板状的绿帘石-石英脉,与晚期长石分解蚀变有关的脉体主要为板状黄铜矿-黄铁矿脉及黄铁矿脉;在早期钾硅酸盐蚀变与晚期长石分解蚀变转换阶段,发育一组板状的石英-硫化物脉。早期不规则的脉体形成于斑岩结晶早期、矿区裂隙小规模发育阶段;晚期的板状脉体形成于斑岩弱固结或固结之后、矿区大规模连通裂隙发育阶段。驱龙矿区的铜矿化分布较为均一,主体产于花岗闪长岩中,其中,铜矿化主体形成于黑云母化蚀变阶段,转变阶段及长石分解阶段也有大量铜的形成;钼主要形成于转换阶段,长石分解蚀变阶段也有产出。黑云母化阶段,铜的沉淀与角闪石黑云母化、斜长石钾长石化过程中Ca2 的大量释放有关;转换阶段,铜钼矿化可能与压力和(或)温度骤降有关;晚期铜矿化与长石矿化蚀变阶段,斜长石绿泥石化、黑云母绿帘石化过程中Ca2 及Fe2 的释放有关。  相似文献   

8.
Visible near infrared and shortwave infrared (VNIR-SWIR, 350 to 2500 nm) reflectance spectra obtained from an analytical spectral device (ASD) have been used to define alteration zones adjacent to porphyry copper deposits (PCDs), in the central part of Kerman magmatic arc, SE Iran. The spectral analysis identified sericite, illite, halloysite, montmorillonite, dickite, kaolinite, pyrophyllite, biotite, chlorite, epidote, calcite, jarosite, and iron oxyhydroxides (e.g. hematite, goethite) of hydrothermal and supergene origin. Identified alteration zones are classified into six principal types namely phyllic, phyllic/propylitic, propylitic, potassic, argillic and advanced argillic. The iron oxide minerals in the oxidized zone were also identified using spectral analysis. Results of spectral analyses of samples are consistent with mineralogical data obtained from X-ray diffraction (XRD) and petrographic studies. Spectroscopic studies by ASD demonstrate that this tool is very useful for semi-quantitative and cost effective identification of different types of alteration mineral assemblages. Furthermore, it can provide a valuable tool for evaluating aerial distribution of alteration minerals while coupled with remote sensing data analysis.  相似文献   

9.
The Iju Cu porphyry is located in the NW part of the Kerman Magmatic Copper Belt (KMCB). It is related to a ~ 9 Ma granodiorite porphyry intrusion, with three main stages of hydrothermal activity. The homogenization temperatures for the fluid inclusions are in the ranges of 200–494 °C, and their salinities vary from 4.0 to 42.8 wt% NaCl equiv., which are typical magmatic-hydrothermal fluids. The δ34S values of sulfides range from −0.4 to +3.2 ‰ (V-CDT), and the δ34S values of anhydrite samples range from +11.6 to +16.8 ‰. The δ34S values of sulfides show a narrow range, implying a homogeneous sulfur source. The oxygen isotopic composition of hydrothermal water in equilibrium with quartz samples ranges from +3.4 to +6.0 ‰ (V-SMOW) consistent with the hydrothermal fluids having a magmatic signature, but diluted with meteoric waters in the main mineralizing stage. The most important factors responsible for metal precipitation in the Iju porphyry deposit are fluid boiling, oxygen fugacity decrease and cooling followed by dilution with meteoric water. The primary fluids of the Iju Cu deposit are characterized by relatively high temperature and moderate salinity, and are CO2-rich, indicating a typical post-collisional porphyry system.  相似文献   

10.
A strong link between high Sr/Y arc magmas and porphyry Cu–Mo–Au deposits has been recognized in recent years. The Tongshan and Duobaoshan deposits are representative large Cu–Mo–Au deposits in NE China. We report LA–ICP–MS zircon U–Pb crystallization age of 471.5 ± 1.3 Ma for Tongshan ore-related granitoid. Re–Os isotopic analyses of the two chalcopyrite samples from Tongshan deposit show a model age range of 470.2–477.1 Ma. The Duobaoshan and Tongshan ore-related granitoids show higher Sr/Y and La/Yb ratios. The δ34S values of sulphides from the Duobaoshan and Tongshan deposits vary from −2.3‰ to 0.0‰, belonging to a magmatic-hydrothermal system. The Pb isotopic ratios of the sulphides from the Duobaoshan and Tongshan deposit range from 17.201 to 18.453 for 206Pb/204Pb, 15.445 to 15.551 for 207Pb/204Pb, and 36.974 to 37.999 for 208Pb/204Pb, indicating the addition of lower crustal material. The Duobaoshan and Tongshan granitoids were formed in a subduction-related continental arc setting, produced by partial melting of juvenile hydrous basalts underplating the deep continental crust during the Ordovician.  相似文献   

11.
The San Jorge porphyry copper deposit (SJPCD) is hosted by Carboniferous clastic sedimentary rocks and Permian intrusions located within the Permo-Triassic belt of Chile and Argentina. Its hypogene mineralization and alteration are products of superposed orthomagmatic and hydrothermal events that were strongly fault controlled. Copper related to orthomagmatic processes includes disseminated chalcopyrite in the matrix of porphyritic granodiorite and andesite, and chalcopyrite with tourmaline and quartz in breccias, both of which have accompanying potassic alteration. Soon thereafter, disseminated chalcopyrite is associated with a structurally controlled silicification of the sedimentary sequence. Finally, multiple episodes of hydrofracturing, probably driven by a deep-seated intrusion, deposited sulfide minerals in veinlets throughout the sedimentary sequence; the centers of these systems are characterized by potassic alteration. Total sulfides, which include chalcopyrite, pyrite, arsenopyrite, and pyrrhotite, and pyrite:chalcopyrite form a linear NNE trend, parallel to the main faults. Quartz–sericite is the dominant alteration and is ubiquitous. Zones of potassic alteration can be delineated even though phyllic alteration can be superposed. Much of the system evolved under reducing conditions. Despite uplift along a reverse fault during the Tertiary, and subsequent erosion, the system is preserved at high levels. Supergene processes redistributed copper in secondary oxides and sulfides. These processes were more effective where the deposit is covered by unconsolidated alluvial sediments. The unique history of the San Jorge deposit renders it an important variation of porphyry copper-style mineralization.  相似文献   

12.
温利刚 《地质与勘探》2017,53(3):547-557
云南宝兴厂铜钼矿床是西南三江成矿带上与富碱斑岩有关的典型斑岩型矿床,产出于金沙江-哀牢山富碱侵入岩带的中部东侧。本文引用基于"广义自相似性"与"局部奇异性"多重分形理论的S-A法,提取了宝兴厂铜钼矿床的石英、钾长石、绢云母、绿泥石和绿帘石等特征蚀变矿物的遥感蚀变异常信息,这些蚀变异常信息由内向外依次出现石英(钾长石)→绢云母→绿帘石(绿泥石)的分布特征,并且多沿北东、北西向展布,呈条带状或环带状分布于侵入岩体的内部或外围附近,与传统经典的硅化(钾化)带→绢英岩化带→青磐岩化带的蚀变分带模式大致相当,但这些遥感蚀变异常信息并不完全出现在出露的侵入体的接触带及其两侧。野外实地验证表明此次获得的遥感蚀变异常信息有较好的矿化指示效果,可以为该地区斑岩型铜钼矿床的进一步找矿提供一定的指导。  相似文献   

13.
为了研究木吉村斑岩型铜(钼)矿床蚀变过程中元素的迁移规律,拟推流体演化规律,笔者通过对赋矿闪长玢岩体的强硅化带、钾长石化带、石英绢云母化带、青磐岩化带中分别取样测试分析,利用Grant方程定量探讨了各蚀变带围岩中主量元素、稀土元素和微量元素的带入、带出特征,结果表明:岩浆初始热液流体富K而贫Na。相对原岩(蚀变弱的青磐岩化带),在各蚀变带中Fe_2O_3、MgO、P_2O_5和TiO_2从深部强硅化带到浅部石英绢云母化带总体上由带出变为带入,SiO_2、MnO则与上述大体相反,FeO在各蚀变带主体为带出元素。各稀土元素从深部向浅部石英绢云母化带带入特征明显,同时各蚀变带在稀土元素球粒陨石标准化曲线上表现出斜率一致的右倾型特征,说明轻重稀土分馏较明显,轻稀土富集,重稀土亏损。Cu和Mo在石英绢云母化带中富集尤为明显,其次在钾长石化带也明显富集,即海拔400~500 m为主要的Cu、Mo富集区。  相似文献   

14.
The Sarcheshmeh is one of the largest Oligo-Miocene porphyry Cu deposits in the world. Comparative hydrochemical, mineralogical and chemical fractionation associated with mining efflorescence salts and processing wastes of this mine are discussed. Hydrochemical results showed that rock waste dumps, reject wastes and old impoundments of tailings are the main sources of acid mine drainage waters (AMD) that contain potentially toxic metals such as Cd, Co, Cu, Mn, Ni and Zn as well as Al. Episodic fluxes of highly contaminated acidic waters were produced in a tailings dam over a short period of time. Secondary soluble minerals provide important controls on the quality of AMD produced, especially in old, dry tailings impoundments. Secondary sulfate minerals such as gypsum, magnesiocopiapite, hydronium jarosite, kornelite and coquimbite were found in rock waste drainages and in old weathered reject wastes. Highly soluble secondary minerals such as gypsum, eriochalcite, and bonattite are also observed in an evaporative layer on old tailings impoundments. Chemical fractionation patterns of potentially toxic elements showed that the geochemical behavior of metals is primarily controlled by the mineralogical composition of waste samples. Elements such as Co, Cr, Cu, Mn, Ni and Zn are readily released into the water soluble fraction from efflorescence salts associated with rock waste drainages, as well as from the evaporative layer of old tailings. Potentially toxic elements, such as As, Mo and Pb, are principally adsorbed or co-precipitated with amorphous and crystalline Fe oxides, but they may also be associated with oxidizing, primary sulfides and residual fractions. Following the development of the dammed tailings pond, the secondary minerals were dissolved, producing acidic waters contaminated by Al (154 mg L−1), Cu (150 mg L−1), Cd (0.31 m gL−1), Co (2.13 mg L−1), Mn (73.7 mg L−1), Ni (1.74 mg L−1), Zn (20.3 mg L−1) and Cl (1690 mg L−1). Therefore, the potential use of recycled water from the Sarcheshmenh dammed tailings pond is diminished by the presence of corrosive ions like Cl in highly acidic fluids that promote corrosion of pipes and pumps in the water recycling system.  相似文献   

15.
新疆青河县新近发现哈腊苏铜矿床,正在进行的勘探证实具有大型铜储量前景。它位于阿尔泰东南缘,靠近额尔齐斯构造变形带。这个区域经历了古生代中期的洋-陆俯冲、古生代晚期的陆-陆碰撞以及其后的陆内活化等地质过程。铜成矿与哪种地质地质过程有关受人关注,矿床成因也存在斑岩型、热液脉型和火山岩型等不同认识。哈腊苏铜矿区主要出露中泥盆统基性火山岩(含苦橄岩)及侵入其中的不同时期含铜蚀变斑岩体,包括花岗闪长斑岩、斑状花岗岩、石英二长斑岩和石英闪长斑岩等,斑岩SiO_2质量分数为57.24%~65.45%,其中花岗闪长斑岩δ~(18)O_(V-SMOW)=7.9‰~8.6‰,ε_(Nd)(t)=7.3~8.5(接近于MORB值),(~(87)Sr/~(86)Sr)_t=0.70383~0.70410(接近原始地幔值),暗示岩浆起源于地幔或下地壳。矿区含铜蚀变斑岩全岩矿化(Cu 0.2%),矿体(Cu 0.3%以上)呈透镜状和不规则分枝脉状,产状与斑岩体相仿,95%以上矿体产于斑岩体内。围岩蚀变从矿体到斑岩再到基性火山岩围岩,发育钾长石黑云母化、黑云母绿泥石化、青磐岩化的分带,后期脉状线型钾长石化叠加于早期面状弥散型钾硅酸盐蚀变之上。没有次生硫化物富集现象,原生铜矿石出现细脉浸染型和脉状叠加型两种自然类型,前者以"黄铁矿+黄铜矿+辉钼矿"为典型金属矿物组合,后者呈在前者背景上的"石英+黄铁矿+黄铜矿"脉状叠加矿化。相对于前者,后者Cu、Au品位明显偏高(分别达到Cu 2.21%、Au 0.83 g/t)、微量和稀土元素总量降低,微量元素蛛网图和REE配分曲线更为平缓,Eu正异常更加显著。基性火山喷发、幔源岩浆侵入和多期矿化叠加是哈腊苏铜成矿的关键,早期斑岩型铜成矿基础上的后期构造热液矿化叠加显著。细脉浸染型铜矿石中共生黄铁矿-黄铜矿的硫同位素温度计指示斑岩型铜成矿温度为420~560℃。铜矿石硫化物δ~(34)S_(V-CDT)主体范围为-1‰~-4‰,矿石硫源自幔源斑岩体(有地层硫酸盐还原硫少量混入);黄铁矿~(206)Pb/~(204)Pb=18.052~18.461,~(207)Pb/~(204)Pb=15.501~15.606,~(208)Pb/~(204)Pb=37.813~39.335,与矿床所在区域喀拉通克岩浆Cu-Ni硫化物接近,成矿金属主体来自幔源斑岩;脉状矿化叠加型铜矿石中含铜硫化物石英脉晶出母液(δ~(18)O_(V-SMOW)=6.4‰~10.2‰,δD_(V-SMOW)=-89‰~-80‰)具有岩浆水的O、H同位素组成特点。通过成岩、成矿和热液蚀变的年代学研究获得:(1)含铜蚀变的斑状花岗岩(381.6±2.5)Ma和花岗闪长斑岩(371.8±9.6)Ma的U-Pb谐和年龄、细脉浸染型铜矿石中辉钼矿(376.9±2.2)Ma的Re-Os等时线年龄,是洋-陆俯冲期斑岩成岩成矿的年龄记录;(2)含铜蚀变石英二长斑岩(265.6±3.7)Ma的U-Pb谐和年龄和脉状叠加型铜矿石中钾长石(269.2±3.2)Ma的Ar-Ar坪年龄,是陆-陆碰撞晚期斑岩铜矿化蚀变的年龄记录;(3)含铜蚀变石英闪长斑岩(215.8±4.6)Ma的U-Pb谐和年龄和脉状叠加型铜矿石中钾长石(198.2±2.3)~(206.4±2.7)Ma的Ar-Ar坪年龄,是陆内构造岩浆活化期的年龄记录。多期构造-岩浆-热液矿化叠加作用是哈腊苏铜成矿的显著特征。该研究为认识中亚构造域斑岩铜矿床的多期叠加成矿作用特征积累了新资料。  相似文献   

16.
《International Geology Review》2012,54(12):1353-1368
Copper and gold mineralization in the Maher-Abad area, eastern Iran, is closely related to multiple episodes of emplacement of a late Eocene granodiorite into a quartz-monzonitic stock and andesitic volcaniclastic rocks. Hypogene and supergene porphyry Cu–Au mineralization occurred within the porphyritic granodiorite and quartz-monzonite host rocks extensively altered into dominantly potassic, propylitic, phyllic, and argillic assemblages. Temperature and pressure estimates using the plagioclase–hornblende thermometer and Al-in-hornblende barometer indicate that the granodiorite intruded at 758 ± 10°C and 1.4 ± 0.2 kbar.

Biotites from the alteration zones have more variable AlIV than those in the fresh granodiorite, but nearly all are close to the ideal phlogopite composition. Biotite compositions display an increase in Al2O3, FeO, TiO2, and Cl, but a decrease in SiO2 and F, from the porphyritic granodiorite and potassic to the transitional phyllic alteration zones. Biotite from the potassic zone (X phl?=?0.63–0.67) possesses a moderate F content (0.53 to 0.82 wt.%) that is significantly higher than that in the phyllic zone (0.22 to 0.38 wt.%), exhibiting a positive correlation with X Mg and negative correlation with Cl.

With a decrease in the temperature, log (fH2O/fHF) and log (fH2O/fHCl) values calculated for fluids equilibrated with biotite increase progressively from the granodiorite through the potassic to the phyllic zones, whereas log (fHF/fHCl) shifts towards more negative values. Fugacity ratio trends in the Maher-Abad porphyry copper deposit are quite similar to those of other porphyry copper systems. The decrease in halogen content of hydrothermal fluids towards outer parts of the deposits reflects an increase in the degree of mixing between magmatic fluid and meteoric water.  相似文献   

17.
《China Geology》2022,5(4):662-695
The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far. The Pulang porphyry copper deposit (also referred to as the Pulang deposit) in this area has proven copper reserves of 5.11×106 t. This deposit has been exploited on a large scale using advanced mining methods, exhibiting substantial economic benefit. Based on many research results of previous researchers and the authors’ team, this study proposed the following key insights. (1) The Geza island arc was once regarded as an immature island arc with only andesites and quartz diorite porphyrites occurring. This understanding was overturned in this study. Acidic endmember components such as quartz monzonite porphyries and quartz monzonite porphyries have been identified in the Geza island arc, and the mineralization is mainly related to the magmatism of quartz monzonite porphyries. (2) Complete porphyry orebodies and large vein orebodies have developed in the Pulang deposit. Main orebody KT1 occurs in the transition area between the potassium silicate alteration zone of quartz monzonite porphyries and the sericite-quartz alteration zone. Most of them have developed in the potassium silicate alteration zone. The main orebody occurs as large lenses at the top of the hanging wall of rock bodies, with an engineering-controlled length of 1920 m and thickness of 32.5‒630.29 m (average: 187.07 m). It has a copper grade of 0.21%‒1.56% (average: 0.42%) and proven copper resources of 5.11×106 t, which are associated with 113 t of gold, 1459 t of silver, and 170×103 t of molybdenum. (3) Many studies on diagenetic and metallogenic chronology, isotopes, and fluid inclusions have been carried out for the Pulang deposit, including K-Ar/Ar-Ar dating of monominerals (e.g., potassium feldspars, biotites, and amphiboles), zircon U-Pb dating, and molybdenite Re-Os dating. The results show that the porphyries in the Pulang deposit are composite plutons and can be classified into pre-mineralization quartz diorite porphyrites, quartz monzonite porphyries formed during the mineralization, and post-mineralization granite porphyries, which were formed at 223±3.7 Ma, 218±4 Ma, and 207±3.9 Ma, respectively. The metallogenic age of the Pulang deposit is 213‒216 Ma. (4) The petrogeochemical characteristics show that the Pulang deposit has the characteristics of volcanic arc granites. The calculation results of trace element contents in zircons show that quartz monzonite porphyries and granite porphyries have higher oxygen fugacity. The isotopic tracing results show that the diagenetic and metallogenic materials were derived from mixed crust- and mantle-derived magmas.©2022 China Geology Editorial Office.  相似文献   

18.
The Hercynian mercury mineralization of Las Cuevas is hosted by a highly folded and sheared sequence of basalts, intrusive breccias, slates, psamitic rocks and quartzites. The mineral paragenesis is simple and consists of cinnabar, native mercury and pyrite. Hydrothermal alteration can be divided into `proximal' and `distal' with respect to the mineralized bodies. The proximal alteration (≤1.3 m wide) consists of quartz-pyrophyllite-kaolinite, quartz-pyrophyllite-(kaolinite)-(illite), and quartz-illite-(pyrophyllite)-(kaolinite). The distal alteration (∼100 m wide) consists of (quartz)-illite-chlorite-(pyrophyllite), or rectorite-(chlorite). These assemblages overprint an earlier, regional alteration consisting of quartz-chlorite-albite-carbonates (±ankerite, ±siderite, ±magnesite, ±calcite). The mercury deposit of Las Cuevas can be regarded as an unusual combination of mercury deposition and advanced argillic alteration within a relatively deep environment (≥1.8 km). Received: 3 February 1998 / Accepted: 8 June 1998  相似文献   

19.
玉龙斑岩铜(钼)矿床是亚洲最大的斑岩型铜矿床,包含多种矿化类型,成矿作用复杂。作为典型的斑岩型矿床,岩浆熔融体的性质在玉龙铜矿床的形成过程中起到了至关重要的作用。本文将分别从岩浆熔融体的物理和化学性质出发,解释玉龙矿床为何能成为玉龙成矿带中唯一一个超大型矿床的原因。在熔体演化方面,笔者主要通过对熔体密度、粘度的计算获得有关数据,以了解熔体运移、含矿流体分离的过程,以解释玉龙铜矿床为何能形成如此规模的矿床。  相似文献   

20.
熊燕云  李兵  陈静  周涛发 《岩石学报》2019,35(12):3811-3824
斑岩型矿床具有十分广泛和明显的热液蚀变带,青磐岩化通常位于中心钾化带外侧,可分为三个亚带,绿帘石是青磐岩化带最重要的蚀变矿物之一,但目前对青磐岩化带内各亚带之中的绿帘石的特征研究较为薄弱。近年来,短波红外光谱技术(SWIR)已经广泛应用于热液蚀变矿物的识别,但由于短波红外光谱通过识别特定的基团进而识别含此基团的矿物,难以识别斑岩中部分关键蚀变矿物,如钾长石、钠长石和硬石膏。X射线衍射技术(XRD)能识别大部分蚀变矿物,可对红外光谱技术在斑岩矿床中的应用进行补充。本文以江西省德兴地区富家坞矿区为研究对象,提出应用SWIR和XRD分析辅助蚀变填图。富家坞矿区发育了十分广泛的绿帘石化,根据其共生矿物组合及空间分布,划分了三种绿帘石类型。第Ⅰ类:矿物组合为绿帘石-钠长石-石英-方解石,绿帘石和钠长石以脉状形式产出于钾化花岗闪长斑岩体内,穿切钾长石斑晶;第Ⅱ类:矿物组合为绿帘石±绿泥石-石英-方解石,绿帘石和绿泥石以集合体形式交代早期岩体内黑云母、斜长石的方式产出,并保留有原生矿物晶型,伴有方解石、石英等矿物;第Ⅲ类绿帘石共生矿物主要为石英、方解石、沸石等,含少量高岭石,主要呈不规则脉状,分布于蚀变花岗闪长斑岩外侧。通过对以上三类绿帘石进行系统SWIR和XRD分析,发现类型Ⅰ绿帘石大部分表现出较大的Fe-OH吸收峰位值(Pos2252 2255),类型Ⅱ和类型Ⅲ绿帘石大部分表现为较小的Fe-OH吸收峰位值(Pos2252 2255)。XRD结果显示绿帘石晶体特征更为明显,特征衍射峰位值{■13}晶面表现出相对集中的特征,但是次峰{022}晶面表现出一定的差异性,且绿帘石{022}晶面2. 40?衍射峰半高宽(FWHM-2)与绿帘石Dep2334/Dep2252值呈现负相关的关系。故本文认为绿帘石的次峰{022}晶面2. 40?衍射峰值及其半高宽(FWHM-2)可以作为讨论斑岩矿床围岩蚀变矿物绿帘石的结晶度的主要参数。三种绿帘石结晶指数的差异可能是热液流体演化过程中温度降低和距离岩体中心的远近造成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号