首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Geospatial techniques have become one of the leading tools in the field of natural sciences for assessment, monitoring and management of natural resources, particularly in groundwater research. The paper discusses the demarcation and assessment of groundwater potential zones using geospatial techniques in the Deccan Volcanic Province of Maharashtra, India, using multi-criteria analyses. The study incorporates integration of thematic information (geomorphology, lithology, drainage density, slope and lineaments) in a GIS environment in order to identify groundwater potential zones. The methodology adopted can be used as a rapid assessment tool in groundwater exploration and is helpful in predictive groundwater resource management. Multi-criteria evaluation techniques were used to integrate all the thematic layers. Individual themes and their corresponding categories were assigned a knowledge base ranking from 1 to 5, depending on their importance for groundwater potential. Using the Raster calculator tool in Arc GIS software, all thematic maps were integrated to produce a composite groundwater potential map of the study area. The identified groundwater potential zones were classified into four classes, from excellent to poor. The generated groundwater potential zones were validated with field checks and borewell/dugwell yield data, and showed consistency with the observations.

Citation Singh, P., Thakur, J. K., and Kumar, S. (2013) Delineating groundwater potential zones in a hard-rock terrain using geospatial tools. Hydrological Sciences Journal, 58 (1), 1–11.  相似文献   

2.
Bonäsheden, Sweden's largest continuous dune field, situated in the county of Dalarna, central Sweden, has been investigated using LiDAR (light detection and ranging) remote sensing, ground penetrating radar as well as by field observations and luminescence dating. The use of LiDAR in conjunction with geographic information system (GIS) software proved to be efficient in mapping the inactive dune field and classifying the dune morphology, especially when slope raster images were used. The dunes have formed mostly by winds from the northwest (NW) and are of a transverse type. Still other dune types, such as parabolic dunes, and transverse dunes with a deviating orientation are present. Also, there seems to be different generations of dunes, suggesting a complex palaeowind environment with a change from predominantly north‐westerly winds to more westerly winds. Luminescence dating finally allows us to have an absolute chronology of the development of the Bonäsheden dune field, revealing formation of the dune field closely following the de‐glaciation of this part of Sweden (c. 10.5 ka). The well preserved transverse shape of the majority of the dunes suggests rapid stabilization by vegetation, although sand drift still seems to have been active on a noticeable scale for at least 1500 years and also, occasionally and patchy, as coversand deposition during the Late Holocene. A simple model is proposed for the dune field development of Bonäsheden based on our findings. This model is a useful addition since the majority of present day dune field models focus on the formation of parabolic dunes or large unvegetated dune fields. Our results suggest that most models cannot adequately simulate the formation of such small dune fields as that of Bonäsheden, with apparently rapidly fixated transverse dunes in a previously glaciated, now vegetated area. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Soil is an essential resource for human livelihoods. Soil erosion is now a global environmental crisis that threatens the natural environment and agriculture. This study aimed to assess the annual rate of soil erosion using distributed information for topography, land use and soil, with a remote sensing (RS) and geographical information system (GIS) approach and comparison of simulated with observed sediment loss. The Shakkar River basin, situated in the Narsinghpur and Chhindwara districts of Madhya Pradesh, India, was selected for this study. The universal soil loss equation (USLE) with RS and GIS was used to predict the spatial distribution of soil erosion occurring in the study area on a grid-cell basis. Thematic maps of rainfall erosivity factor (R), soil erodibility factor (K), topographic factor (LS), crop/cover management factor (C), and conservation/support practice factor (P) were prepared using annual rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and a satellite image of the study area in the GIS environment. The annual rate of soil erosion was estimated for a 15-year period (1992–2006) and was found to vary between 6.45 and 13.74 t ha?1 year?1, with an average annual rate of 9.84 t ha?1 year?1. The percentage deviation between simulated and observed values varies between 2.68% and 18.73%, with a coefficient of determination (R2) of 0.874.  相似文献   

4.
Joy Sanyal  X. X. Lu 《水文研究》2005,19(18):3699-3716
Flooding due to excessive rainfall in a short period of time is a frequent hazard in the flood plains of monsoon Asia. In late September 2000, a devastating flood stuck Gangetic West Bengal, India. This particular event has been selected for this study. Instead of following the conventional approach of flooded area delineation and overall damage estimation, this paper seeks to identify the rural settlements that are vulnerable to floods of a given magnitude. Vulnerability of a rural settlement is perceived as a function of two factors: the presence of deep flood water in and around the settlement and its proximity to an elevated area for temporary shelter during an extreme hydrological event. Landsat ETM+ images acquired on 30 September 2000 have been used to identify the non‐flooded areas within the flooded zone. Particular effort has been made to differentiate land from water under cloud shadow. ASTER digital elevation data have been used to assess accuracy and rectify the classified image. The presence of large numbers of trees around rural settlements made it particularly difficult to extract the flooded areas from their spectral signatures in the visible and infrared bands. ERS‐1 synthetic aperture radar data are found particularly useful for extracting the settlement areas surrounded by trees. Finally, all information extracted from satellite imageries are imported into ArcGIS, and spatial analysis is carried out to identify the settlements vulnerable to river inundation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The use of electrical resistivity tomography (ERT; non‐intrusive geophysical technique) was assessed to identify the hydrogeological conditions at a surface water/groundwater test site in the southern Black Forest, Germany. A total of 111 ERT transects were measured, which adopted electrode spacings from 0·5 to 5 m as well as using either Wenner or dipole‐dipole electrode arrays. The resulting two‐dimensional (2D) electrical resistivity distributions are related to the structure and water content of the subsurface. The images were interpreted with respect to previous classical hillslope hydrological investigations within the same research basin using both tracer methods and groundwater level observations. A raster‐grid survey provided a quasi 3D resistivity pattern of the floodplain. Strong structural heterogeneity of the subsurface could be demonstrated, and (non)connectivities between surface and subsurface bodies were mapped. Through the spatial identification of likely flow pathways and source areas of runoff, the deep groundwater within the steeper valley slope seems to be much more connected to runoff generation processes within the valley floodplain than commonly credited in such environmental circumstances. Further, there appears to be no direct link between subsurface water‐bodies adjacent to the stream channel. Deep groundwater sources are also able to contribute towards streamflow from exfiltration at the edge of the floodplain as well as through the saturated areas overlying the floodplain itself. Such exfiltrated water then moves towards the stream as channelized surface flow. These findings support previous tracer investigations which showed that groundwater largely dominates the storm hydrograph of the stream, but the source areas of this component were unclear without geophysical measurements. The work highlighted the importance of using information from previous, complementary hydrochemical and hydrometric research campaigns to better interpret the ERT measurements. On the other hand, the ERT can provide a better spatial understanding of existing hydrochemical and hydrometric data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The interaction between surface water and groundwater in clay-rich fluvial environments can be complex and is generally poorly understood. Airborne electromagnetic surveys are often used for characterizing regional groundwater systems, but they are constrained by the resolution of the method. A resistivity imaging survey has been carried out in the Macquarie Marshes (New South Wales, Australia) in combination with water chemical sampling. The results have enabled the identification of buried palaeochannels and the location of potential recharge points. The data have been compared with previously published airborne electromagnetic data in the same area. Deeper less conductive features suggest that there is a potential connection between the Great Artesian Basin and groundwater contained within the shallow sand aquifer. Even though the chemistry of the groundwater samples does not indicate interaction with the Great Artesian Basin, the observed discontinuity in the saprolite implies potential for this to happen in other locations.  相似文献   

7.
8.
VLF、EH4和CSAMT均为基于电磁原理的地球物理手段,但它们在探测深度、测量精度和野外操作的复杂程度上有较大的差异.因而不同探测目标和精度要求,尽可能使用不同的方法或方法组合.VLF一般用于矿区及外围的地球物理扫面,以快速确定和发现覆盖层(不超过50~60 m)之下矿化构造系统的空间展布和基本规模.CSAMT具有探测深度大(>2000m)、工作效率高和抗干扰能力强等特点,一般用于确定矿化系统的深部的宏观几何形态和产状变化.EH4是这三种方法中对地下地质结构解析度最高、有效探测深度适中(800~1 200m)的一种地球物理测深方法,它可以解析较为精确地探测矿体的三维形态、规模、产状变化和细部结构但采集数据时对近场电磁干扰要求较高.这三种地球物理方法在赤峰柴胡栏子金矿区的联合应用,为寻找覆盖层之下隐伏矿体取得了良好的效果.  相似文献   

9.
The Beldih open cast mine of the South Purulia Shear Zone in Eastern India is well known for apatite deposits associated with Nb–rare‐earth‐element–uranium mineralization within steeply dipping, altered ferruginous kaolinite and quartz–magnetite–apatite rocks with E–W strikes at the contact of altered mafic–ultramafic and granite/quartzite rocks. A detailed geophysical study using gravity, magnetic, and gradient resistivity profiling surveys has been carried out over ~1 km2 area surrounding the Beldih mine to investigate further the dip, depth, lateral extension, and associated geophysical signatures of the uranium mineralization in the environs of South Purulia Shear Zone. The high‐to‐low transition zone on the northern part and high‐to‐low anomaly patches on the southeastern and southwestern parts of the Bouguer, reduced‐to‐pole magnetic, and trend‐surface‐separated residual gravity–magnetic anomaly maps indicate the possibility of highly altered zone(s) on the northern, southeastern, and southwestern parts of the Beldih mine. The gradient resistivity survey on either side of the mine has also revealed the correlation of low‐resistivity anomalies with low‐gravity and moderately high magnetic anomalies. In particular, the anomalies and modeled subsurface features along profile P6 perfectly match with subsurface geology and uranium mineralization at depth. Two‐dimensional and three‐dimensional residual gravity models along P6 depict the presence of highly altered vertical sheet of low‐density material up to a depth of ~200 m. The drilling results along the same profile confirm the continuation of uranium mineralization zone for the low‐density material. This not only validates the findings of the gravity model but also establishes the geophysical signatures for uranium mineralization as low‐gravity, moderate‐to‐high magnetic, and low‐resistivity values in this region. This study enhances the scope of further integrated geophysical investigations along the South Purulia Shear Zone to delineate suitable target areas for uranium exploration.  相似文献   

10.
《Geofísica Internacional》2014,53(2):183-198
As a result of a gasoline spill in an urban area, Electrical Resistivity Tomography (ERT), Electromagnetic Profiling (EMP) and Volatile Organic Compounds (VOC) methods were used in order to define the contamination plume and to optimize the drilling and soil sampling activities. The VOC anomalies (recent contamination) indicated that a gas station located at the study site is an active contamination source. The mature contaminated zones defined by ERT and EMP methods corresponded with low resistivity anomalies due to degradation process of the hydrocarbons contaminants. The ERT, EMP and VOC results were integrated on a map, allowing the final configuration of contamination plumes and the optimization of drilling and soil/free-product sampling. Laboratory analyses of free-product samples suggest the existence of more than one contamination event in the site, with the presence of recent and degraded-hydrocarbon contaminants classified in the gasoline range. This study shows the advantages of joint application of ERT, EMP and VOC methods in sites with active contamination source, where the existence of recent and mature contaminants in subsoil is assumed.  相似文献   

11.
根据热红外遥感影像上断层热信息具有特征几何尺寸的特点,以断层系统热信息分析为目标,提出了一种基于尺度分析的断层热信息遥感图像增强方法.在江山—绍兴断裂金衢段的实际工作中,通过断层两侧地表高温区域尺度分析、特征尺度网格抽样和样本插值成图等步骤,有效地降低了背景干扰,客观地描述了研究区与断层相关的热信息的空间分布形态及特征.多种尺度分析结果表明,在9 km2特征尺度上,断层热信息特征规律明显:地表高温区域沿北东走向的江山—绍兴断裂带和常山—漓渚断裂带两侧分布,呈线性特征;在淳安—温州断裂带与衢州—天台断裂带交叉位置地表温度较高.研究结果经实测资料验证,基本特征与实测资料相符.  相似文献   

12.
In this paper, a hybrid machine learning ensemble approach namely the Rotation Forest based Radial Basis Function (RFRBF) neural network is proposed for spatial prediction of landslides in part of the Himalayan area (India). The proposed approach is an integration of the Radial Basis Function (RBF) neural network classifier and Rotation Forest ensemble, which are state-of-the art machine learning algorithms for classification problems. For this purpose, a spatial database of the study area was established that consists of 930 landslide locations and fifteen influencing parameters (slope angle, road density, curvature, land use, distance to road, plan curvature, lineament density, distance to lineaments, rainfall, distance to river, profile curvature, elevation, slope aspect, river density, and soil type). Using the database, training and validation datasets were generated for constructing and validating the model. Performance of the model was assessed using the Receiver Operating Characteristic (ROC) curve, area under the ROC curve (AUC), statistical analysis methods, and the Chi square test. In addition, Logistic Regression (LR), Multi-layer Perceptron Neural Networks (MLP Neural Nets), Naïve Bayes (NB), and the hybrid model of Rotation Forest and Decision Trees (RFDT) were selected for comparison. The results show that the proposed RFRBF model has the highest prediction capability in comparison to the other models (LR, MLP Neural Nets, NB, and RFDT); therefore, the proposed RFRBF model is promising and should be used as an alternative technique for landslide susceptibility modeling.  相似文献   

13.
T. Neta  Q. Cheng  R. L. Bello  B. Hu 《水文研究》2010,24(18):2617-2628
Assessing moisture contents of lichens and mosses using ground‐based high‐spectral resolution spectrometers offers immense opportunities for a comprehensive monitoring of peatland moisture status by satellite/airborne imagery. This study investigates the impact of various moisture conditions of common subarctic lichen and moss species upon the spectral signatures obtained. The lichens are Cladina stellaris and Cladina rangiferina, and the mosses are Dicranum elongatum and Tomenthypnum nitens. Reflectance and moisture content measurements of these species were made in a laboratory setting, while maintaining the natural moisture conditions of the samples; once the moisture and spectral measurements were complete, the samples were returned to the field and placed in their natural setting, continuously receiving moisture from precipitation and groundwater and losing water through evaporation and drainage. Changes in reflectance of the visible to shortwave infrared (SWIR) range (400–2500 nm) at various moisture contents were examined, as well as the potential of current spectral reflectance indices to evaluate the plants' moisture contents was examined. Results indicate that the SWIR region is useful in identifying variations in plants moisture conditions, while the unique spectral signatures of the lichens and mosses in the visible and near‐infrared range suggest that these species may be detected by satellite and airborne imagery. Of current spectral indices, the normalized difference infrared index (NDII) was most successful in identifying the above plants' moisture content (details are discussed in the paper). Future study should focus on the development of improved moisture content spectral indices, as well as upscaling reflectance data and spectral indices. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
沿裂隙发育的天然气水合物是印度深水盆地细粒沉积物中水合物的重要产出方式,水合物以结核状或脉状充填在高角度裂隙中.天然气水合物主要沿着构造主应力方向生成,由于裂隙的存在,含水合物的沉积物层呈现各向异性.利用孔隙介质中水合物呈均匀分布的速度模型计算的NGHP01-10D井水合物饱和度高达40%,而压力取芯表明水合物饱和度占孔隙空间的20%左右.为了研究水合物饱和度差异,基于层状介质的各向异性模型计算了裂隙充填型水合物的饱和度.在垂直井孔中,由于波入射角与裂隙倾角有关,考虑裂隙倾角变化,利用纵波和横波速度同时反演水合物饱和度和裂隙倾角.利用层状介质模型计算的水合物占孔隙空间的15%~25%,裂隙的倾角在60°~90°,多为高角度裂隙.在NGHP01-10D井中,纵横波速度联合计算的饱和度与压力取芯结果吻合更好.  相似文献   

15.
Airborne hyperspectral data and airborne laserscan or LIDAR data were applied to analyse the sediment transport and the beach morphodynamics along the Belgian shoreline. Between 2000 and 2004, four airborne acquisitions were performed with both types of sensor. The hyperspectral data were classified into seven sand type classes following a supervised classification approach, in which feature selection served to reduce the number of bands in the hyperspectral data. The seven classes allowed us to analyse the spatial dynamics of specific sediment volumes. The technique made it possible to distinguish the sand used for berm replenishment works or for beach nourishments from the sand naturally found on the backshore and the foreshore. Subtracting sequential DTMs (digital terrain models) resulted in height difference maps indicating the erosion and accretion zones. The combination of both data types, hyperspectral data and LIDAR data, provides a powerful tool, suited to analyse the dynamics of sandy shorelines. The technique was demonstrated on three sites along the Belgian shoreline: Koksijde, located on the West Coast and characterized by wide accretional beaches, influenced by dry berm replenishment works and the construction of groins; Zeebrugge, on the Middle Coast, where a beach nourishment was executed one year before the acquisitions started and where the dams of the harbour of Zeebrugge are responsible for the formation of a large accretional beach, and Knokke‐Heist, located on the East Coast and characterized by narrow, locally reflective, beaches, heavily influenced by nourishment activities. The methodology applied allowed retrieval of the main sediment transport directions as well as the amount of sediment transported. It proved to be specifically suited to follow up the redistribution and the re‐sorting of the fill in beach nourishment areas. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A combination of stable isotopes (18O and 2H) and hydrochemistry has been applied to investigate storage processes in relation to aquifer storage and recovery (ASR) of the shallow alluvial Quaternary aquifer in Damascus basin. The stored water, entirely taken from the Figeh springs during flood periods, was injected in a single well having a brackish groundwater. Water samples were collected from four observation wells drilled in the Damascus University Campus (DUC) site during a 3‐year period (2006–2008). The injectant water, which deviates in its chemical and isotopic signatures from that of the ambient groundwater, shows that the stored water plume remains within close proximity to the injection well (IW) (<≈ 100 m). Thus, only two wells (W13 and W14) located at a distance less than 80 m from the injection point were affected by this injection. The observation wells located at longer distances from the IW (≈145 m and ≈ 600 m for wells W15 and WHz, respectively) were completely unaffected by the injection. Although most of the chemical and isotopic parameters usefully reflected the mixing process that occurs between the injectant water and ambient groundwater, the stable isotope (18O) and chloride (Cl) were the most sensitive parameters that quickly reflect this signature. Using a simple mass balance, the calculated proportion of injectant water reaching the well W13 was in the range of 50–90%. This proportion was even lower (30–55%) in the case of well W14. Although the drought event prevailing during this study did not much help to inject further amounts of water, higher than the injected volume (0·2416 M m3) and also not favourable to better evaluate the fate and subsurface hydrological processes, these findings offer encouragement to continue the ASR activities, as an alternative way for better management of water resources in this basin facing intensive problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
ABSTRACT

In this study, a GIS-based integration of multi-criteria analysis and the Height Above Nearest Drainage (HAND) terrain model was adopted to delineate potential flood hazard zones and vulnerability of the Ogun River Basin, Nigeria. Flood causative factors were used as input for multi-criteria analysis using an analytical hierarchy process (AHP) and weighted overlay in ArcGIS 10.5 to generate potential flood hazard zones. The flood hazard map was overlaid with demographic population data to identify areas where vulnerable people and assets are located. The results show the varying degree of people’s susceptibility to flood hazards. Flood hazard zones were classified into Very High, High, Moderate, Low and Very Low, with area coverage of 1269.40, 14139.50, 7188.40, 17.41 and 0.85 km2, respectively (occupied by 466 290, 355 542, 69 554, 231 and 54 people, respectively). This study serves as a preliminary guide for early warning and policy decision-making for flood disaster risk reduction.  相似文献   

18.
Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth because of its proximity to the Greater Toronto area. This has led to extensive land use changes that have impacted its water resources and altered run‐off patterns in some rivers draining to the lake. Here, we use a paired‐catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most urban‐impacted catchment. Annual run‐off from Lovers Creek increased from 239 to 442 mm/year in contrast to the reference catchment (Black River at Washago) where run‐off was relatively stable with an annual mean of 474 mm/year. Increased annual run‐off from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992–1997; pre‐major development) and late (2004–2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to run‐off flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible run‐off simulations in Lovers Creek because of greater scatter between the parameters in canonical space. Separation of early and late‐period parameter sets for the reference catchment was based on climate and snowmelt‐related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment, whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A number of statistical methods are typically used to effectively predict potential landslide distributions. In this study two multivariate statistical analysis methods were used (weights of evidence and logistic regression) to predict the potential distribution of shallow-seated landslides in the Kamikawachi area of Sabae City, Fukui Prefecture, Japan. First, the dependent variable (shallow-seated landslides) was divided into presence and absence, and the independent variables (environmental factors such as slope and altitude) were categorized according to their characteristics. Then, using the weights of evidence (WE) method, the weights of pairs comprising presence (w^+(i)) or absence (w^-(i)), and the contrast values for each category of independent variable (evidence), were calculated, Using the method that integrated the weights of evidence method and a logistic regression model, score values were calculated for each category of independent variable. Based on these contrast values, three models were selected to sum the score values of every gird in the study area. According to a receiver operating characteristic curve analysis (ROC), model 2 yielded the best fit for predicting the potential distribution of shallow-seated landslide hazards, with 89% correctness and a 54.5% hit ratio when the occurrence probability (OP) of landslides was 70%. The model was tested using data from an area close to the study region, and showed 94% correctness and a hit ratio of 45.7% when the OP of landslides was 70%. Finally, the potential distribution of shallow-seated landslides, based on the OP, was mapped using a geographical information system.  相似文献   

20.
A long‐term study of O, H and C stable isotopes has been undertaken on river waters across the 7000‐km2 upper Thames lowland river basin in the southern UK. During the period, flow conditions ranged from drought to flood. A 10‐year monthly record (2003–2012) of the main River Thames showed a maximum variation of 3‰ (δ18O) and 20‰ (δ2H), although interannual average values varied little around a mean of –6.5‰ (δ18O) and –44‰ (δ2H). A δ2H/δ18O slope of 5.3 suggested a degree of evaporative enrichment, consistent with derivation from local rainfall with a weighted mean of –7.2‰ (δ18O) and –48‰ (δ2H) for the period. A tendency towards isotopic depletion of the river with increasing flow rate was noted, but at very high flows (>100 m3/s), a reversion to the mean was interpreted as the displacement of bank storage by rising groundwater levels (corroborated by measurements of specific electrical conductivity). A shorter quarterly study (October 2011–April 2013) of isotope variations in 15 tributaries with varying geology revealed different responses to evaporation, with a well‐correlated inverse relationship between Δ18O and baseflow index for most of the rivers. A comparison with aquifer waters in the basin showed that even at low flow, rivers rarely consist solely of isotopically unmodified groundwater. Long‐term monitoring (2003–2007) of carbon stable isotopes in dissolved inorganic carbon (DIC) in the Thames revealed a complex interplay between respiration, photosynthesis and evasion, but with a mean interannual δ13C‐DIC value of –14.8 ± 0.5‰, exchange with atmospheric carbon could be ruled out. Quarterly monitoring of the tributaries (October 2011–April 2013) indicated that in addition to the aforementioned factors, river flow variations and catchment characteristics were likely to affect δ13C‐DIC. Comparison with basin groundwaters of different alkalinity and δ13C‐DIC values showed that the origin of river baseflow is usually obscured. The findings show that long‐term monitoring of environmental tracers can help to improve the understanding of how lowland river catchments function. Copyright © NERC 2015. Hydrological Processes © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号