首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

What implications do societies’ risk perceptions have for flood losses? This study uses a stylized, socio-hydrological model to simulate the mutual feedbacks between human societies and flood events. It integrates hydrological modelling with cultural theory and proposes four ideal types of society that reflect existing dominant risk perception and management: risk neglecting, risk monitoring, risk downplaying and risk controlling societies. We explore the consequent trajectories of flood risk generated by the interactions between floods and people for these ideal types of society over time. The results suggest that flood losses are substantially reduced when awareness-raising attitudes are promoted through inclusive, participatory approaches in the community. In contrast, societies that rely on top-down hierarchies and structural measures to protect settlements on floodplains may still suffer significant losses during extreme events. This study illustrates how predictions formed through social science theories can be applied and tested in hydrological modelling.  相似文献   

2.
ABSTRACT

Hydrogeological hazards are increasingly causing damage worldwide due to climatic and socio-economic changes. Building resilient communities is crucial to reduce potential losses. To this end, one of the first steps is to understand how people perceive potential threats around them. This study aims at exploring how risk awareness of, and preparedness to, face hydrological hazards changes over time. A cohort study was carried out in two villages in the northeastern Italian Alps, Romagnano and Vermiglio, affected by debris flows in 2000 and 2002. Surveys were conducted in 2005 and 2018, and the results compared. The survey data show that both awareness and preparedness decreased over time. We attribute this change to the fact that no event had occurred in a long time and to a lack of proper risk communication strategies. The outcomes of this study contribute to socio-hydrological modelling by providing empirical data on human behaviour dynamics.  相似文献   

3.
ABSTRACT

Characterizing, understanding and better estimating uncertainties are key concerns for drawing robust conclusions when analyzing changing socio-hydrological systems. Here we suggest developing a perceptual model of uncertainty that is complementary to the perceptual model of the socio-hydrological system and we provide an example application to flood risk change analysis. Such a perceptual model aims to make all relevant uncertainty sources – and different perceptions thereof – explicit in a structured way. It is a first step to assessing uncertainty in system outcomes that can help to prioritize research efforts and to structure dialogue and communication about uncertainty in interdisciplinary work.  相似文献   

4.
Characterizing, understanding and better estimating uncertainties are key concerns for drawing robust conclusions when analyzing changing socio-hydrological systems. Here we suggest developing a perceptual model of uncertainty that is complementary to the perceptual model of the socio-hydrological system and we provide an example application to flood risk change analysis. Such a perceptual model aims to make all relevant uncertainty sources – and different perceptions thereof – explicit in a structured way. It is a first step to assessing uncertainty in system outcomes that can help to prioritize research efforts and to structure dialogue and communication about uncertainty in interdisciplinary work.  相似文献   

5.
ABSTRACT

Ertsen discusses the representation of reality and uncertainty in our paper, raising three critical points. In response to the first, we agree that discussion of different interpretations of the concept of uncertainty is important when developing perceptual models – making different uncertainty interpretations explicit was a key motivation behind our method. Secondly, we do not, as Ertsen suggests, deny anyone who is not a “certified” scientist to have relevant knowledge. The elicitation of diverse views by discussing perceptual models is a basis for open discussion and decision making. Thirdly, Ertsen suggests that it is not useful to treat socio-hydrological systems as if they exist. We argue that we act as “pragmatic realists” in most practical applications by treating socio-hydrological systems as an external reality that can be known. But the uncertainty that arises from our knowledge limitations needs to be recognized, as it may impact on practical decision making and associated costs.  相似文献   

6.
Statistical data over the past 30 years show that the cumulative sum of losses caused by floods S(t) has been increasing with time approximately as t1·3, i.e. faster than the linear growth expected for a stationary process. (Losses are evaluated by the number of homeless caused by floods, since these data are the most systematically reported.) At the same time, the factors determining flood losses (the rate of floods and single loss distribution) appear to be stationary over the period of observation. An explanation of this paradox is suggested based on a heavy-tail distribution function of losses, i.e. a distribution function with infinite expectation value. The proposed stochastic model predicts a faster than linear growth of the cumulative losses until some limiting time, which corresponds to the recurrence period of the maximal possible single loss. Similar pseudo-non-stationary effects can be observed for other types of catastrophes and hydrological characteristics with heavy-tail distributions © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT

The city of São Carlos, state of São Paulo, Brazil, has a historical coexistence between society and floods. Unplanned urbanization in this area is a representative feature of how Brazilian cities have developed, undermining the impact of natural hazards. The Gregório Creek catchment is an enigma of complex dynamics concerning the relationship between humans and water in Brazilian cities. Our hypothesis is that social memory of floods can improve future resilience. In this paper we analyse flood risk dynamics in a small urban catchment, identify the impacts of social memory on building resilience and propose measures to reduce the risk of floods. We applied a socio-hydrological model using data collected from newspapers from 1940 to 2018. The model was able to elucidate human–water processes in the catchment and the historical source data proved to be a useful tool to fill gaps in the data in small urban basins.  相似文献   

8.
This work aims to provide a dynamic assessment of flood risk and community resilience by explicitly accounting for variable human behaviour, e.g. risk-taking and awareness-raising attitudes. We consider two different types of socio-hydrological systems: green systems, whereby societies deal with risk only via non-structural measures, and technological systems, whereby risk is dealt with also by structural measures, such as levees. A stylized model of human–flood interactions is first compared to real-world data collected at two test sites (People’s Republic of Bangladesh and the city of Rome, Italy) and then used to explore plausible trajectories of flood risk. The results show that flood risk in technological systems tends to be significantly lower than in green systems. However, technological systems may undergo catastrophic events, which lead to much higher losses. Furthermore, green systems prove to be more resilient than technological ones, which makes them more capable of withstanding environmental and social changes.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR not assigned  相似文献   

9.
Conventional flood frequency analysis is concerned with providing an unbiased estimate of the magnitude of the design flow exceeded with the probabilityp, but sampling uncertainties imply that such estimates will, on average, be exceeded more frequently. An alternative approach is therefore, to derive an estimator which gives an unbiased estimate of flow risk: the difference between the two magnitudes reflects uncertainties in parameter estimation. An empirical procedure has been developed to estimate the mean true exceedance probabilities of conventional estimates made using a GEV distribution fitted by probability weighted moments, and adjustment factors have been determined to enable the estimation of flood magnitudes exceeded with, on average, the desired probability.  相似文献   

10.
ABSTRACT

This paper reviews socio-hydrology and hydrosocial research, finding a sophisticated relationship with emergent syntheses. We examined 419 papers by topic, region of study, theories implemented, journal, and year published to ascertain trends in both subfields. We found important overlap and considerable difference between subfields. Whereas hydrosocial research took years to develop, socio-hydrology commenced with an inaugural paper in 2012. While the former focuses on power and scale in studying water demand, the latter concentrates on practical responses to climate extremes. Hydrosocial research usually relies on qualitative methods, and socio-hydrology research the quantitative. In the geographic regions where the former does not focus, the latter does. The former often relies on post-structuralist theory, whereas the latter uses positivist approaches. Our review concludes that socio-hydrology and hydrosocial research exist in a complex epistemological relationship, offering fertile grounds for lively discussions from which both will continue to benefit.  相似文献   

11.
Abstract

The Easter 1998 flood was the largest flood event in the gauged record of many basins of the English Midlands. Flood frequency analysis, using such gauged records only, placed the 1998 event at a return period of over 100 years on several basins. However a review of historical (pre-gauged) flooding on some rivers gives a different perspective. Examples are given of the use of historical flood information on the River Leam, the River Wreake at Melton Mowbray, the River Sence (tributary to the River Soar) and the River Frome at Stroud. The cost of acquiring such historical flood data is trivial in comparison to gauged data, but the benefits are demonstrated as significant. In particular, historical flood data provide a better basis for risk assessment and planning on flood plains through revised estimates of flood discharge and depth.  相似文献   

12.
This work examines future flood risk within the context of integrated climate and hydrologic modelling uncertainty. The research questions investigated are (1) whether hydrologic uncertainties are a significant source of uncertainty relative to other sources such as climate variability and change and (2) whether a statistical characterization of uncertainty from a lumped, conceptual hydrologic model is sufficient to account for hydrologic uncertainties in the modelling process. To investigate these questions, an ensemble of climate simulations are propagated through hydrologic models and then through a reservoir simulation model to delimit the range of flood protection under a wide array of climate conditions. Uncertainty in mean climate changes and internal climate variability are framed using a risk‐based methodology and are explored using a stochastic weather generator. To account for hydrologic uncertainty, two hydrologic models are considered, a conceptual, lumped parameter model and a distributed, physically based model. In the conceptual model, parameter and residual error uncertainties are quantified and propagated through the analysis using a Bayesian modelling framework. The approach is demonstrated in a case study for the Coralville Dam on the Iowa River, where recent, intense flooding has raised questions about potential impacts of climate change on flood protection adequacy. Results indicate that the uncertainty surrounding future flood risk from hydrologic modelling and internal climate variability can be of the same order of magnitude as climate change. Furthermore, statistical uncertainty in the conceptual hydrological model can capture the primary structural differences that emerge in flood damage estimates between the two hydrologic models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Nonstationary GEV-CDN models considering time as a covariate are built for evaluating the flood risk and failure risk of the major flood-control infrastructure in the Pearl River basin, China. The results indicate: (1) increasing peak flood flow is observed in the mainstream of the West River and North River basins and decreasing peak flood flow is observed in the East River basin; in particular, increasing peak flood flow is detected in the mainstream of the lower Pearl River basin and also in the Pearl River Delta region, the most densely populated region of the Pearl River basin; (2) differences in return periods analysed under stationarity and nonstationarity assumptions are found mainly for floods with return periods longer than 50 years; and (3) the failure risks of flood-control infrastructure based on failure risk analysis are higher under the nonstationarity assumption than under the stationarity assumption. The flood-control infrastructure is at higher risk of flood and failure under the influence of climate change and human activities in the middle and lower parts of Pearl River basin.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR G. Thirel  相似文献   

14.
Abstract

A global flood risk index (FRI) is established, based on both natural and social factors. The advanced flood risk index (AFRI) is the expectation of damage in the case of a single flood occurrence, estimated by a linear regression-based approach as a function of hazard and vulnerability metrics. The resulting equations are used to predict potential flood damage given gridded global data for independent variables. It is new in the aspect that it targets floods by units of events, instead of a long-term trend. Moreover, the value of the AFRI is that it can express relative potential flood risk with the process of flood damage occurrence considered. The significance of this study is that not only the hazard parameters which contribute directly to flood occurrence, but vulnerability parameters which reflect the conditions of the region where flood occurred, including its residential and social characteristics, were shown quantitatively to affect flood damage.

Citation Okazawa, Y., Yeh, P., Kanae, S. & Oki, T. (2011) Development of a global flood risk index based on natural and socioeconomic factors. Hydrol. Sci. J. 56(5), 789–804.  相似文献   

15.
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed‐scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, intensely agricultural, Raccoon River watershed in Iowa. We first developed a baseline model for flood risk based on current land use and typical weather patterns and then simulated the effects of varying levels of increased perennials on the landscape under the same weather patterns. Results suggest that land use changes in the Raccoon River could reduce the likelihood of flood events, decreasing both the number of flood events and the frequency of severe floods. The duration of flood events were not substantially affected by land use change in our assessment. The greatest flood risk reduction was associated with converting all cropland to perennial vegetation, but we found that converting half of the land to perennial vegetation or extended rotations (and leaving the remaining area in cropland) could also have major effects on reducing downstream flooding potential. We discuss the potential costs of adopting the land use change in the watershed to illustrate the scale of subsidies required to induce large‐scale conversion to perennially based systems needed for flood risk reduction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

The scientific literature has focused on uncertainty as randomness, while limited credit has been given to what we call here the “seventh facet of uncertainty”, i.e. lack of knowledge. This paper identifies three types of lack of understanding: (i) known unknowns, which are things we know we don’t know; (ii) unknown unknowns, which are things we don’t know we don’t know; and (iii) wrong assumptions, things we think we know, but we actually don’t know. Here we discuss each of these with reference to the study of the dynamics of human–water systems, which is one of the main topics of Panta Rhei, the current scientific decade of the International Association of Hydrological Sciences (IAHS), focusing on changes in hydrology and society. In the paper, we argue that interdisciplinary studies of socio-hydrological dynamics leading to a better understanding of human–water interactions can help in coping with wrong assumptions and known unknowns. Also, being aware of the existence of unknown unknowns, and their potential capability to generate surprises or black swans, suggests the need to complement top-down approaches, based on quantitative predictions of water-related hazards, with bottom-up approaches, based on societal vulnerabilities and possibilities of failure.
Editor D. Koutsoyiannis; Associate editor S. Weijs  相似文献   

17.
洪湖分蓄洪区洪水淹没风险动态识别与可能损失评估   总被引:1,自引:0,他引:1  
全球气候变化和社会经济快速发展,使长江流域面临越来越严重的防洪压力.在长江流域开展洪水淹没风险识别与洪水损失评估工作,对于长江流域洪水风险管理具有重大意义.本项研究以洪湖分蓄洪区为案例,采用基于GIS栅格数据整合于Arcview3.x的二维水文-水动力学模型进行洪水淹没风险动态识别,并且根据土地利用分类及其单位面积价值,建立洪水淹没损失函数,进行洪水淹没动态损失评估,建立了东洪湖分蓄洪区洪水淹没动态损失数据库,为东洪湖分蓄洪区的合理利用提供定量科学依据.洪水淹没动态风险识别基于数字高程模型进行,采用修正的1998年夏季洪水水位-时间水文过程线对模型参数进行调整,并以地面糙率反映不同地表覆盖形态对洪水演进过程的影响.  相似文献   

18.
The potential impact of climate change on fluvial flooding is receiving considerable scientific and political interest thanks to evidence from climate model projections and a widely held belief that flood risk may be increasing at European levels. This review compares published work on historical trends in UK rainfall and river flow records with high‐resolution regional climate change projections, and attempts to reconcile apparent differences between the two. Attention is focused on the techniques used for climate change detection and attribution, as well as the potential confounding effects of land‐use change. International and domestic efforts to build adaptive capacity rest on improved quantification of uncertainty in flood risk at very local, catchment and regional scales. This will involve further research to better integrate climate and land‐management interactions, to understand changes in the dependence between different flood generating mechanisms, and to improve the characterization and communication of uncertainty at all stages of analysis. Resources are also needed to ensure that latest, but still uncertain, science is presented in an appropriate form to underpin policy development and is translated into sensible guidance for practitioners. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the development of flood hazard and flood risk delineations that account for uncertainty as improvements to standard floodplain maps for coastal watersheds. Current regulatory floodplain maps for the Gulf Coastal United States present 1% flood hazards as polygon features developed using deterministic, steady‐state models that do not consider data uncertainty or natural variability of input parameters. Using the techniques presented here, a standard binary deterministic floodplain delineation is replaced with a flood inundation map showing the underlying flood hazard structure. Additionally, the hazard uncertainty is further transformed to show flood risk as a spatially distributed probable flood depth using concepts familiar to practicing engineers and software tools accepted and understood by regulators. A case study of the proposed hazard and risk assessment methodology is presented for a Gulf Coast watershed, which suggests that storm duration and stage boundary conditions are important variable parameters, whereas rainfall distribution, storm movement, and roughness coefficients contribute less variability. The floodplain with uncertainty for this coastal watershed showed the highest variability in the tidally influenced reaches and showed little variability in the inland riverine reaches. Additionally, comparison of flood hazard maps to flood risk maps shows that they are not directly correlated, as areas of high hazard do not always represent high risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper uses numerical simulation of flood inundation based on a coupled one‐dimensional–two‐dimensional treatment to explore the impacts upon flood extent of both long‐term climate changes, predicted to the 2050s and 2080s, and short‐term river channel changes in response to sediment delivery, for a temperate upland gravel‐bed river. Results show that 16 months of measured in‐channel sedimentation in an upland gravel‐bed river cause about half of the increase in inundation extent that was simulated to arise from climate change. Consideration of the joint impacts of climate change and sedimentation emphasized the non‐linear nature of system response, and the possibly severe and synergistic effects that come from combined direct effects of climate change and sediment delivery. Such effects are likely to be exacerbated further as a result of the impacts of climate change upon coarse sediment delivery. In generic terms, these processes are commonly overlooked in flood risk mapping exercises and are likely to be important in any river system where there are high rates of sediment delivery and long‐term transfer of sediment to floodplain storage (i.e. alluviation involving active channel aggradation and migration). Similarly, attempts to reduce channel migration through river bank stabilization are likely to exacerbate this process as without bank erosion, channel capacity cannot be maintained. Finally, many flood risk mapping studies rely upon calibration based upon combining contemporary bed surveys with historical flood outlines, and this will lead to underestimation of the magnitude and frequency of floodplain inundation in an aggrading system for a flood of a given magnitude. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号