首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The operation of the Three Gorges Reservoir (TGR) is an important driver of the recent hydrological changes in the lowlands of Dongting Lake, China. Nevertheless, there has been no convincing study on the quantitative effects of the TGR regulation on the wetland inundation process. Here, the temporal and spatial patterns of the response of wetland inundation in Dongting Lake to the TGR regulation are addressed in detail using a two-dimensional hydrodynamic model, which can accurately reproduce the flooding and drying processes. The results show that temporal patterns of wetland inundation are altered by the TGR regulation, especially in the water pre-releasing period (May to early June) and the water storing period (late September to November). Spatially heterogeneous effects are also observed in Dongting Lake. These findings can help us to take measures at an early stage to effectively deal with the possible adverse effects of the normal operation of the TGR on Dongting Lake.

Editor D. Koutsoyiannis; Associate editor A. Porporato

Citation Lai, X., Jiang, J., and Huang, Q., 2013. Effects of the normal operation of Three Gorges Reservoir on wetland inundation in Dongting Lake, China: a modelling study. Hydrological Sciences Journal, 58 (7), 1467–1477.  相似文献   

2.
ABSTRACT

Flood risk management strongly relies on inundation models for river basin zoning in flood-prone and risk-free areas. Floodplain zoning is significantly affected by the diverse and concurrent uncertainties that characterize the modelling chain used for producing inundation maps. In order to quantify the relative impact of the uncertainties linked to a lumped hydrological (rainfall–runoff) model and a FLO-2D hydraulic model, a Monte Carlo procedure is proposed in this work. The hydrological uncertainty is associated with the design rainfall estimation method, while the hydraulic model uncertainty is associated with roughness parameterization. This uncertainty analysis is tested on the case study of the Marta coastal catchment in Italy, by comparing the different frequency, extent and depth of inundation simulations associated with varying rainfall forcing and/or hydraulic model roughness realizations. The results suggest a significant predominance of the hydrological uncertainty with respect to the hydraulic one on the overall uncertainty associated with the simulated inundation maps.  相似文献   

3.
Abstract

Pakistan has suffered a devastating flood disaster in 2010. In the Kabul River basin (92 605 km2), large-scale riverine and flash floods caused destructive damage with more than 1100 casualties. This study analysed rainfall–runoff and inundation in the Kabul River basin with a newly developed model that simulates the processes of rainfall–runoff and inundation simultaneously based on two-dimensional diffusion wave equations. The simulation results showed a good agreement with an inundation map produced based on MODIS for large-scale riverine flooding. In addition, the simulation identified flash flood-affected areas, which were confirmed to be severely damaged based on a housing damage distribution map. Since the model is designed to be used even immediately after a disaster, it can be a useful tool for analysing large-scale flooding and to provide supplemental information to agencies for relief operations.

Editor Z.W. Kundzewicz

Citation Sayama, T., Ozawa, G., Kawakami, T., Nabesaka, S. and Fukami, K., 2012. Rainfall–runoff–inundation analysis of the 2010 Pakistan flood in the Kabul River basin. Hydrological Sciences Journal, 57 (2), 298–312.  相似文献   

4.
ABSTRACT

The major flood of 2014 in the two eastern, transboundary rivers, the Jhelum and Chenab in Punjab, Pakistan, was simulated using the two-dimensional rainfall–runoff model. The simulated hydrograph showed good agreement with the observed discharge at the model outlet and intervening barrages, with a Nash-Sutcliffe efficiency of 0.86 at the basin outlet. Further, simulated flood inundation extent showed good agreement with the MODIS imagery with a fit (%) of 0.87. For some affected areas that experienced short-duration flooding, local housing damage data confirmed the simulated results. Besides the rainfall–runoff and flood inundation modelling, parameter sensitivity analysis was undertaken to identify the influence of various river and floodplain parameters. The analysis showed that the river channel geometric parameters and the roughness coefficients exerted the primary influence over flood extent and peak flow.  相似文献   

5.
《水文科学杂志》2013,58(4):727-738
Abstract

Projected warming in equatorial Africa, accompanied by greater evaporation and more frequent heavy precipitation events, may have substantial but uncertain impacts on terrestrial hydrology. Quantitative analyses of climate change impacts on catchment hydrology require high-resolution (<50 km) climate data provided by regional climate models (RCMs). We apply validated precipitation and temperature data from the RCM PRECIS (Providing Regional Climates for Impact Studies) to a semi-distributed soil moisture balance model (SMBM) in order to quantify the impacts of climate change on groundwater recharge and runoff in a medium-sized catchment (2098 km2) in the humid tropics of southwestern Uganda. The SMBM explicitly accounts for changes in soil moisture, and partitions effective precipitation into groundwater recharge and runoff. Under the A2 emissions scenario (2070–2100), climate projections from PRECIS feature not only rises in catchment precipitation and modelled potential evapotranspiration by 14% and 53%, respectively, but also increases in rainfall intensity. We show that the common application of the historical rainfall distribution using delta factors to the SMBM grossly underestimates groundwater recharge (i.e. 55% decrease relative to the baseline period of 1961–1990). By transforming the rainfall distribution to account for changes in rainfall intensity, we project increases in recharge and runoff of 53% and 137%, respectively, relative to the baseline period.  相似文献   

6.
Abstract

Maintaining and restoring the ecological integrity of floodplains remains a priority for many Australian federal and state government agencies. The Murray-Darling Basin Authority (MDBA) introduced the Proposed Basin Plan 2012, the Australian government’s latest basin-scale water planning instrument to promote a healthy, working river system. The proposal seeks to limit surface water (consumptive) use to 10 873 GL year-1 on a long-term average. The controversy prompted by this proposed reduction has underscored a need for rigorous and transparent modelling of ecological benefits. In this paper, we investigate the likely ecological outcomes of the proposal for Yanga National Park, one of the most significant environmental assets in the Murray-Darling Basin, using a decision support system. Our results indicate that the proposal will increase the inundation extent with a 33% (or 7000 ha) increase in median flood. The increase in inundation would improve the hydrological conditions in most wetlands in terms of the frequency and duration of events and inter-flood dry periods and enhance the habitat quality for a range of biota, though benefits are not distributed evenly across the wetland.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Wen, L. and Saintilan, N., 2014. Linking local ecological outcomes with basin-wide water planning: a case study of Yanga National Park, an important Australian inland forested wetland. Hydrological Sciences Journal, 59 (3–4), 904–915.  相似文献   

7.
Abstract

There is increasing concern that flood risk will be exacerbated in Antalya, Turkey as a result of global-warming-induced, more frequent and intensive, heavy rainfalls. In this paper, first, trends in extreme rainfall indices in the Antalya region were analysed using daily rainfall data. All stations in the study area showed statistically significant increasing trends for at least one extreme rainfall index. Extreme rainfall datasets for current (1970–1989) and future periods (2080–2099) were then constructed for frequency analysis using the peaks-over-threshold method. Frequency analysis of extreme rainfall data was performed using generalized Pareto distribution for current and future periods in order to estimate rainfall intensities for various return periods. Rainfall intensities for the future period were found to increase by up to 23% more than the current period. This study contributed to better understanding of climate change effects on extreme rainfalls in Antalya, Turkey.  相似文献   

8.
ABSTRACT

A semi-distributed hydrological model is developed, calibrated and validated against unregulated river discharge from the Tocantins-Araguaia River Basin, northern Brazil. Climate change impacts are simulated using projections from the 41 Coupled Model Intercomparison Project Phase 5 climate models for the period 2071–2100 under the RCP4.5 scenario. Scenario results are compared to a 1971–2000 base line. Most climate models suggest declines in mean annual discharge although some predict increases. A large proportion suggest that the dry season experiences large declines in discharge, especially during the transition to the rising water period. Most models (>75%) suggest declines in annual minimum flows. This may have major implications for both current and planned hydropower schemes. There is greater uncertainty in projected changes in wet season and annual maximum discharges. Two techniques are investigated to reduce uncertainty in projections, but neither is able to provide more confidence in the simulated changes in discharge.
Editor D. Koutsoyiannis Associate editor F. Hattermann  相似文献   

9.
Projecting changes in the frequency and intensity of future precipitation and flooding is critical for the development of social infrastructure under climate change. The Mekong River is among the world's large-scale rivers severely affected by climate change. This study aims to define the duration of precipitation contributing to peak floods based on its correlation with peak discharge and inundation volume in the Lower Mekong Basin (LMB). We assessed the changes in precipitation and flood frequency using a large ensemble Database for Policy Decision-Making for Future Climate Change (d4PDF). River discharge in the Mekong River Basin (MRB) and flood inundation in the LMB were simulated by a coupled rainfall-runoff and inundation (RRI) model. Results indicated that 90-day precipitation counting backward from the day of peak flooding had the highest correlation with peak discharge (R2 = .81) and inundation volume (R2 = .81). The ensemble mean of present simulation of d4PDF (1951–2010) showed good agreement with observed extreme flood events in the LMB. The probability density of 90-day precipitation shifted from the present to future climate experiments with a large variation of mean (from 777 to 900 mm) and SD (from 57 to 96 mm). Different patterns of sea surface temperature significantly influence the variation of precipitation and flood inundation in the LMB in the future (2051–2110). Extreme flood events (50-year, 100-year, and 1,000-year return periods) showed increases in discharge, inundation area, and inundation volume by 25%–40%, 19%–36%, and 23%–37%, respectively.  相似文献   

10.
Inundation patterns in two of the largest savanna floodplains of South America were studied by analysis of the 37‐GHz polarization difference observed by the Scanning Multichannel Microwave Radiometer (Nimbus‐7 satellite). Flooded area was estimated at monthly intervals for January 1979 through to August 1987 using mixing models that account for the major landscape units with distinctive microwave emission characteristics. Results are presented separately for five subregions in each of the two floodplain regions to show the spatial as well as temporal variability in inundation patterns. The total area inundated during the 9 years varied between 2069 and 78 460 km2 in the Llanos de Moxos (also spelled as Mojos; median area, 23 383 km2) and 1278 and 105 454 km2 in the Llanos del Orinoco (median, 25 374 km2), not including the open‐water area of permanent lakes and river channels. The correlation between flooded area and river stage was used to extend the inundation records over a 30‐year period in the Moxos (1967–97) and a 58‐year period (1927–85) in the Orinoco. Interannual variability in inundation is greater in the Moxos than the Orinoco. Comparison of these data, however, with a previously published analysis of the Pantanal wetland shows that inundation patterns in these two floodplain regions are not as variable across years as they are in the Pantanal. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

Runoff discharge in the Tuku lowlands, Taiwan, has increased with land development. Frequent floods caused by extreme weather conditions have resulted in considerable economic and social losses in recent years. Currently, numerous infrastructures have been built in the lowland areas that are prone to inundation; the measures and solutions for flood mitigation focus mainly on engineering aspects. Public participation in the development of principles for future flood management has helped both stakeholders and engineers. An integrated drainage–inundation model, combining a drainage flow model with a two-dimensional overland-flow inundation model is used to evaluate the flood management approaches with damage loss estimation. The proposed approaches include increasing drainage capacity, using fishponds as retention ponds, constructing pumping stations, and building flood diversion culverts. To assess the effects on the drainage system of projected increase of rainfall due to climate change, for each approach simulations were performed to obtain potential inundation extent and depth in terms of damage losses. The results demonstrate the importance of assessing the impacts of climate change for implementing appropriate flood management approaches.

Editor Z.W. Kundzewicz

Citation Chang, H.-K., Tan, Y.-C., Lai, J.-S., Pan, T.-Y., Liu, T.-M., and Tung, C.-P., 2013. Improvement of a drainage system for flood management with assessment of the potential effects of climate change. Hydrological Sciences Journal, 58 (8), 1581–1597.  相似文献   

12.
ABSTRACT

The aim of the present paper was to improve understanding of the rainfall dynamics in Bas-Congo and Kinshasa provinces, in Democratic Republic of Congo (DRC). The first objective of the study was achieved by analysing the spatial correlations of monthly, seasonal, annual and individual monthly rainfall amounts of Kinshasa and Bas-Congo. The second objective was achieved through investigating and quantifying the temporal trends and their spatial variations. The results demonstrated notably high average inter-station correlation of +0.63 for dry season series, followed by monthly rainfall series with an average inter-station correlation of +0.58. However, there was no station with a stable monthly rainfall regime, i.e. with mean precipitation concentration index lower than 10% (it varies between 14.2 and 21.9%). Moreover, Kinshasa experienced an increase of rainfall with an average annual rate of change of +4.59 mm/year for the period 1961–2006. The results will be helpful for efficient water resources management and for mitigating the adverse impacts of future extreme drought or flood occurrences.
Editor M.C. Acreman Associate editor N. Verhoest  相似文献   

13.
Gerard Govers  Jan Diels 《水文研究》2013,27(25):3777-3790
Experimental work has clearly shown that the effective hydraulic conductivity (Ke) or effective infiltration rate (fe) on the local scale of a plot cannot be considered as constant but are dependent on water depth and rainfall intensity because non‐random microtopography‐related variations in hydraulic conductivity occur. Rainfall–runoff models generally do not account for this: models assume that excess water is uniformly spread over the soil surface and within‐plot variations are neglected. In the present study, we propose a model that is based on the concepts of microtopography‐related water depth‐dependent infiltration and partial contributing area. Expressions for the plot scale Ke and fe were developed that depend on rainfall intensity and runon from upslope (and thus on water depth). To calibrate and validate the model, steady state infiltration experiments were conducted on maize fields on silt loam soils in Belgium, with different stages and combinations of rainfall intensity and inflow, simulating rainfall and runon. Water depth–discharge and depth–inundation relationships were established and used to estimate the effect of inundation on Ke. Although inflow‐only experiments were found to be unsuitable for calibration, the model was successfully calibrated and validated with the rainfall simulation data and combined rainfall–runon data (R²: 0.43–0.91). Calibrated and validated with steady state infiltration experiments, the model was combined with the Green–Ampt infiltration equation and can be applied within a two‐dimensional distributed rainfall–runoff model. The effect of water depth–dependency and rainfall intensity on infiltration was illustrated for a hillslope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
ABSTRACT

When discharge measurements are not available, design of water structures relies on using frequency analysis of rainfall data and applying a rainfall–runoff model to estimate a hydrograph. The Soil Conservation Service (SCS) method estimates the design hydrograph first through a rainfall–runoff transformation and next by propagating runoff to the basin outlet via the SCS unit hydrograph (UH) method. The method uses two parameters, the Curve Number (CN) and the time of concentration (Tc). However, in data-scarce areas, the calibration of CN and Tc from nearby gauged watersheds is limited and subject to high uncertainties. Therefore, the inherent uncertainty/variability of the SCS parameters may have considerable ramifications on the safety of design. In this research, a reliability approach is used to evaluate the impact of incorporating the uncertainty of CN and Tc in flood design. The sensitivity of the probabilistic outcome against the uncertainty of input parameters is calculated using the First Order Reliability Method (FORM). The results of FORM are compared with the conventional SCS results, taking solely the uncertainty of the rainfall event. The relative importance of the uncertainty of the SCS parameters is also estimated. It is found that the conventional approach, used by many practitioners, might grossly underestimate the risk of failure of water structures, due to neglecting the probabilistic nature of the SCS parameters and especially the Curve Number. The most predominant factors against which the SCS-CN method is highly uncertain are when the average rainfall value is low (less than 20 mm) or its coefficient of variation is not significant (less than 0.5), i.e. when the resulting rainfall at the design return period is low. A case study is presented for Egypt using rainfall data and CN values driven from satellite information, to determine the regions of acceptance of the SCS-CN method.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR A. Efstratiadis  相似文献   

15.
This study examined trends and change points in 100-year annual and seasonal rainfall over hot and cold arid regions of India. Using k-means clustering, 32 stations were classified into two clusters: the coefficient of variation for annual and seasonal rainfall was relatively high for Cluster-II compared to Cluster-I. Short-term and long-term persistence was more dominant in Cluster-II (entirely arid) and Cluster-I (partly arid), respectively. Trend tests revealed prominent increasing trends in annual and wet season rainfall of Cluster-II. Dry season rainfall increased by 1.09 mm year?1 in the cold arid region. The significant change points in annual and wet season rainfall mostly occurred in the period 1941–1955 (hot and cold), and in the dry season in the period 1973–1975 (hot arid) and in 1949 (cold arid). The findings are useful for managing a surplus or deficiency of rainwater in the Indian arid region.
EDITOR A. Castellarin; ASSOCIATE EDITOR S. Kanae  相似文献   

16.
Abstract

Hydrological processes of the wetland complex in the Prairie Pothole Region (PPR) are difficult to model, partly due to a lack of wetland morphology data. We used Light Detection And Ranging (LiDAR) data sets to derive wetland features; we then modelled rainfall, snowfall, snowmelt, runoff, evaporation, the “fill-and-spill” mechanism, shallow groundwater loss, and the effect of wet and dry conditions. For large wetlands with a volume greater than thousands of cubic metres (e.g. about 3000 m3), the modelled water volume agreed fairly well with observations; however, it did not succeed for small wetlands (e.g. volume less than 450 m3). Despite the failure for small wetlands, the modelled water area of the wetland complex coincided well with interpretation of aerial photographs, showing a linear regression with R2 of around 0.80 and a mean average error of around 0.55 km2. The next step is to improve the water budget modelling for small wetlands.

Editor Z.W. Kundzewicz; Associate editor X. Chen

Citation Huang, S.L., Young, C., Abdul-Aziz, O.I., Dahal, D., Feng, M., and Liu, S.G., 2013. Simulating the water budget of a Prairie Potholes complex from LiDAR and hydrological models in North Dakota, USA. Hydrological Sciences Journal, 58 (7), 1434–1444.  相似文献   

17.
Uruguay has encouraged the development of the forestry sector since 1989. As a member of the Montreal Process, the country has followed a set of criteria and indicators for the Sustainable Forest Management. The aim of this paper is to describe the studies carried out in a large basin of 2097 km2, located in an area of humid subtropical climate and 1300 mm of long‐term mean annual rainfall, where the conversion of natural grasslands to forests increased up to 540 km2 during the last 15 years. Using data from daily rainfall and streamflow, the study analyses the effects of afforestation on the runoff and water loss. The analysis comprises hydrographs resulting from comparable rainfall events and annual and seasonal streamflow and water loss behaviour, both before afforestation (1975–1993) and during the afforestation period (1994–2008). A statistically significant reduction of runoff volumes (33–43%) and peak flows (59–65%) were identified on storm hydrographs. The annual and seasonal streamflow also showed diminishing tendencies due to the forestry development, whereas the water loss increases. The annual streamflow decreased between 8·2 and 36·5% depending on the annual rainfall totals. The streamflow reduction was higher during spring and summer (25·2–38·4%) and smaller during autumn and winter (15–20·3%). The water loss is expected to increase by 98 mm for the long‐term mean annual rainfall. The resulting information is a valuable input for the Integrated Water Resources Management of the Negro river basin located downstream, where hydroelectric power, rice irrigation and forestry development are supported. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

Daily precipitation data from 31 Senegalese stations spanning the period from 1950 to 2007 were used to examine the inter-annual variations of seven rainfall indices: the annual mean precipitation (MEAN); the annual standard deviation of daily precipitation (STD); the frequency of wet days (Prcp1); the maximum number of consecutive dry days (CDD); the maximum 3-day rainfall total (R3D); the wet day precipitation intensity (SDII); and the 90th percentile of rain-day precipitation (Prec90p). The indices were spatially averaged over three agro-climatic regions in Senegal. Trends in the time series of the averaged indices were assessed using both visual examination and a modified version of the Mann-Kendall (MM-K) test. Initially negative significant trends in all seven indices suggest gradually drier conditions over the three agro-climatic regions between 1950 and 1980. In contrast, no significant trends, or even positive significant trends, were observed from the mid-1980s to 2007. The MM-K test was applied to all available data (1950–2007) and the period from 1971 to 2000. While several indices were found to have significant trends towards drier conditions for the 1950–2007 period, only PRCP1 showed a positive significant trend for the 1971–2000 period. The MM-K test did not detect a significant trend for the other indices. It was found that the rainfall deficit and therefore drought is no longer intensifying, and that the region may even become wetter. However, the period covered by the observations is still too short to resolve the question of whether there is now a trend towards wetter conditions.
Editor Z.W. Kundzewicz; Associate editor K. Hamed  相似文献   

19.
《水文科学杂志》2013,58(6):1007-1012
Abstract

The effects of human activities on flood propagation, during the period 1878–2005, in a 190-km reach of the middle—lower portion of the River Po (Northern Italy) are investigated. A series of topographical, hydrological and inundation data were collected for the 1878 River Po geometry and the June 1879 flood event, characterised by an inundated area of 432 km2. The aim of the study is two-fold: (1) to show the applicability of flood inundation models in reconstructing historical inundation events, and (2) to assess the effects of human activities during the last century on flood propagation in the middle—lower portion of the River Po. Numerical simulations were performed by coupling a two-dimensional finite element code, TELEMAC-2D, with a one-dimensional finite difference code, HEC-RAS.  相似文献   

20.
Abstract

Rainfall is the most important input parameter for water resource planning and hydrological studies because flood risk assessment, rainfall harvesting and runoff estimation depend on the rainfall distribution within a region. Due to practical and economic factors, it is not possible to site rainfall stations everywhere, so representative rainfall stations are sited at specific locations. Rainfall distribution is then estimated from such stations. In this study, rainfall distribution in the southwestern region of Saudi Arabia was estimated using kriging, co-kriging and inverse distance weighted (IDW) methods. Historical records of rainfall from 47 stations for the period 1965–2010 and the altitude of these stations were used. The study shows that co-kriging is a better interpolator than the kriging and IDW methods, with a better correlation between actual and estimated monthly average rainfall for the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号