首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
L. Brocca  F. Melone  T. Moramarco 《水文研究》2011,25(18):2801-2813
Nowadays, in the scientific literature many rainfall‐runoff (RR) models are available ranging from simpler ones, with a limited number of parameters, to highly complex ones, with many parameters. Therefore, the selection of the best structure and parameterisation for a model is not straightforward as it is dependent on a number of factors: climatic conditions, catchment characteristics, temporal and spatial resolution, model objectives, etc. In this study, the structure of a continuous semi‐distributed RR model, named MISDc (‘Modello Idrologico Semi‐Distribuito in continuo’) developed for flood simulation in the Upper Tiber River (central Italy) is presented. Most notably, the methodology employed to detect the more relevant processes involved in the modelling of high floods, and hence, to build the model structure and its parameters, is developed. For this purpose, an intense activity of monitoring soil moisture and runoff in experimental catchments was carried out allowing to derive a parsimonious and reliable continuous RR model operating at an hourly (or smaller) time scale. Specifically, in order to determine the catchment hydrological response, the important role of the antecedent wetness conditions is emphasized. The application of MISDc both for design flood estimation and for flood forecasting is reported here demonstrating its reliability and also its computational efficiency, another important factor in hydrological practice. As far as the flood forecasting applications are concerned, only the accuracy of the model in reproducing discharge hydrographs by assuming rainfall correctly known throughout the event is investigated indepth. In particular, the MISDc has been implemented in the framework of Civil Protection activities for the Upper Tiber River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
ABSTRACT

A rainfall–runoff model was employed to identify four major flood-generating processes corresponding to flood events identified from daily discharge data from 614 stations across Europe in the period 1961–2010: long-rain, short-rain, snowmelt, and rain-on-dry-soil flood events. Trend analyses were performed on the frequency of occurrence of each of the flood types continentally and in five geographical regions of Europe. Continentally, the annual frequency of flood events did not show a significant change over the investigation period. However, the frequency of both winter and summer long-rain events increased significantly, while that of summer snowmelt events decreased significantly. Regionally, the frequency of winter short and long-rain events increased significantly in Western Europe, while the frequency of summer snowmelt and short-rain events decreased in Northern Europe. The frequency of summer snowmelt events in Eastern Europe and winter short-rain events in Southern Europe showed a declining trend.  相似文献   

3.
Knowledge about flood generating processes can be beneficial for numerous applications. Especially in the context of climate change impact assessment, daily patterns of meteorological and catchment state conditions leading to flood events (i.e., storylines) may be of value. Here, we propose an approach to identify storylines of flood generation using daily weather and snow cover observations. The approach is tested for and applied to a typical pre‐Alpine catchment in the period between 1961 and 2014. Five precipitation parameters were determined that describe temporal and spatial characteristics of the flood associated precipitation events. The catchment's snow coverage was derived using statistical relationships between a satellite‐derived snow cover climatology and station snow measurements. Moreover, (pre‐) event snow melt sums were estimated using a temperature‐index model. Based on the precipitation and catchment state parameters, 5 storylines were identified with a cluster analysis: These are (a) long duration, low intensity precipitation events with high precipitation depths, (b) long duration precipitation events with high precipitation depths and episodes of high intensities, (c) shorter duration events with high or (d) low precipitation intensity, respectively, and (e) rain‐on‐snow events. The event groups have distinct hydrological characteristics that can largely be explained by the storylines' respective properties. The long duration, high intensity storyline leads to the most adverse hydrological response, namely, a combination of high peak magnitudes, high volumes, and long durations of threshold exceedance. The results show that flood generating processes in mesoscale catchments can be distinguished on the basis of daily meteorological and catchment state parameters and that these process types can explain the hydrological flood properties in a qualitative way. Hydrological simulations of daily resolution can thus be analysed with respect to flood generating processes.  相似文献   

4.
Abstract

The aim of this paper is to understand the causal factors controlling the relationship between flood peaks and volumes in a regional context. A case study is performed based on 330 catchments in Austria ranging from 6 to 500 km2 in size. Maximum annual flood discharges are compared with the associated flood volumes, and the consistency of the peak–volume relationship is quantified by the Spearman rank correlation coefficient. The results indicate that climate-related factors are more important than catchment-related factors in controlling the consistency. Spearman rank correlation coefficients typically range from about 0.2 in the high alpine catchments to about 0.8 in the lowlands. The weak dependence in the high alpine catchments is due to the mix of flood types, including long-duration snowmelt, synoptic floods and flash floods. In the lowlands, the flood durations vary less in a given catchment which is related to the filtering of the distribution of all storms by the catchment response time to produce the distribution of flood producing storms.
Editor Z.W. Kundzewicz  相似文献   

5.
The objective of the study was to compare the relative accuracy of three methodologies of regional flood frequency analysis in areas of limited flood records. Thirty two drainage basins of different characteristics, located mainly in the southwest region of Saudi Arabia, were selected for the study. In the first methodology, region curves were developed and used together with the mean annual flood, estimated from the characteristics of drainage basin, to estimate flood flows at a location in the basin. The second methodology was to fit probability distribution functions to annual maximum rainfall intensity in a drainage basin. The best fitted probability function was used together with common peak flow models to estimate the annual maximum flood flows in the basin. In the third methodology, duration reduction curves were developed and used together with the average flood flow in a basin to estimate the peak flood flows in the basin. The results obtained from each methodology were compared to the flood records of the selected stations using three statistical measures of goodness-of-fit. The first methodology was found best in a case of having short length of record at a drainage basin. The second methodology produced satisfactory results. Thus, it is recommended in areas where data are not sufficient and/or reliable to utilise the first methodology.  相似文献   

6.
钟栗  姚成  李致家  黄鹏年 《湖泊科学》2015,27(5):975-982
为了探明流域产汇流参数变化特征及其演变机理,分析流域下垫面条件变化对设计洪水的影响.通过新安江海河模型研究卫河流域代表区下垫面变化情况,采用综合线性权重法对元村集站设计洪水资料系列进行一致性修正.结果表明:自由水蓄水容量、河网水流退水系数、地表填洼蓄水能力和地下水库出流初始水深这4个参数在1980年后都变大,可见代表区下垫面1980年前、后发生了明显的变化,导致流域内径流量大幅减少;合河—新村—五陵区间在1980年前15场洪水和1980年后32场洪水的预报径流深合格率都超过80%,达到乙等精度;元村集站最大5日洪量修正后比修正前平均减小27.1%;最大15日洪量修正后比修正前平均减小25.4%;最大30日洪量修正后比修正前平均减小23.0%.本研究可为水利工程的建设规模的确定提供科学依据,保障地区的防洪安全,满足人民生活和生产用水需求.  相似文献   

7.
Abstract

The Easter 1998 flood was the largest flood event in the gauged record of many basins of the English Midlands. Flood frequency analysis, using such gauged records only, placed the 1998 event at a return period of over 100 years on several basins. However a review of historical (pre-gauged) flooding on some rivers gives a different perspective. Examples are given of the use of historical flood information on the River Leam, the River Wreake at Melton Mowbray, the River Sence (tributary to the River Soar) and the River Frome at Stroud. The cost of acquiring such historical flood data is trivial in comparison to gauged data, but the benefits are demonstrated as significant. In particular, historical flood data provide a better basis for risk assessment and planning on flood plains through revised estimates of flood discharge and depth.  相似文献   

8.
9.
Development of design flood hydrographs using probability density functions   总被引:1,自引:0,他引:1  
Probability density functions (PDFs) are used to fit the shape of hydrographs and have been popularly used for the development of synthetic unit hydrographs by many hydrologists. Nevertheless, modelling the shapes of continuous stream flow hydrographs, which are probabilistic in nature, is rare. In the present study, a novel approach was followed to model the shape of stream flow hydrographs using PDF and subsequently to develop design flood hydrographs for various return periods. Four continuous PDFs, namely, two parameter Beta, Weibull, Gamma and Lognormal, were employed to fit the shape of the hydrographs of 22 years at a site of Brahmani River in eastern India. The shapes of the observed and PDF fitted hydrographs were compared and root mean square errors, error of peak discharge (EQP) and error of time to peak (ETP) were computed. The best‐fitted shape and scale parameters of all PDFs were subjected to frequency analysis and the quartiles corresponding to 20‐, 50‐, 100‐ and 200‐year were estimated. The estimated parameters of each return period were used to develop the flood hydrographs for 20‐, 50‐, 100‐ and 200‐year return periods. The peak discharges of the developed design flood hydrographs were compared with the design discharges estimated from the frequency analysis of 22 years of annual peak discharges at that site. Lognormal‐produced peak discharge was very close to the estimated design discharge in case of 20‐year flood hydrograph. On the other hand, peak discharge obtained using the Weibull PDF had close agreement with the estimated design discharge obtained from frequency analysis in case of 50‐, 100‐ and 200‐year return periods. The ranking of the PDFs based on estimation of peak of design flood hydrograph for 50‐, 100‐ and 200‐year return periods was found to have the following order: Weibull > Beta > Lognormal > Gamma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
《水文科学杂志》2013,58(5):974-991
Abstract

The aim is to build a seasonal flood frequency analysis model and estimate seasonal design floods. The importance of seasonal flood frequency analysis and the advantages of considering seasonal design floods in the derivation of reservoir planning and operating rules are discussed, recognising that seasonal flood frequency models have been in use for over 30 years. A set of non-identical models with non-constant parameters is proposed and developed to describe flows that reflect seasonal flood variation. The peak-over-threshold (POT) sampling method was used, as it is considered to provide significantly more information on flood seasonality than annual maximum (AM) sampling and has better performance in flood seasonality estimation. The number of exceedences is assumed to follow the Poisson distribution (Po), while the peak exceedences are described by the exponential (Ex) and generalized Pareto (GP) distributions and a combination of both, resulting in three models, viz. Po-Ex, Po-GP and Po-Ex/GP. Their performances are analysed and compared. The Geheyan and the Baiyunshan reservoirs were chosen for the case study. The application and statistical experiment results show that each model has its merits and that the Po-Ex/GP model performs best. Use of the Po-Ex/GP model is recommended in seasonal flood frequency analysis for the purpose of deriving reservoir operation rules.  相似文献   

11.
Abstract

Pooling of flood data is widely used to provide a framework to estimate design floods by the Index Flood method. Design flood estimation with this approach involves derivation of a growth curve which shows the relationship between XT and the return period T, where XT ?=?QT /QI and QI is the index flood at the site of interest. An implicit assumption with the Index Flood procedure of pooling analysis is that the XT T relationship is the same at all sites in a homogeneous pooling group, although this assumption would generally be violated to some extent in practical cases, i.e. some degree of heterogeneity exists. In fact, in only some cases is the homogeneity criterion effectively satisfied for Irish conditions. In this paper, the performance of the index-flood pooling analysis is assessed in the Irish low CV (coefficient of variation) hydrology context considering that heterogeneity is taken into account. It is found that the performance of the pooling method is satisfactory provided there are at least 350 station years of data included. Also it is found that, in a highly heterogeneous group, it is more desirable to have many sites with short record lengths than a smaller number of sites with long record lengths. Increased heterogeneity decreases the advantage of pooling group-based estimation over at-site estimation. Only a heterogeneity measure (H1) less than 4.0 can render the pooled estimation preferable to that obtained for at-site estimation for the estimation of 100-year flood. In moderately to highly heterogeneous regions it is preferable to conduct at-site analysis for the estimation of 100-year flood if the record length at the site concerned exceeds 50.

Editor Z.W. Kundzewicz; Associate editor A. Carsteanu

Citation Das, S. and Cunnane, C., 2012. Performance of flood frequency pooling analysis in a low CV context. Hydrological Sciences Journal, 57 (3), 433–444.  相似文献   

12.
Conventional flood frequency analysis is concerned with providing an unbiased estimate of the magnitude of the design flow exceeded with the probabilityp, but sampling uncertainties imply that such estimates will, on average, be exceeded more frequently. An alternative approach is therefore, to derive an estimator which gives an unbiased estimate of flow risk: the difference between the two magnitudes reflects uncertainties in parameter estimation. An empirical procedure has been developed to estimate the mean true exceedance probabilities of conventional estimates made using a GEV distribution fitted by probability weighted moments, and adjustment factors have been determined to enable the estimation of flood magnitudes exceeded with, on average, the desired probability.  相似文献   

13.
In this paper, a new index is proposed for the selection of the best regional frequency analysis method. First, based on the theory of reliability, the new selective index is developed. The variances of three regional T‐year event estimators are then derived. The proposed methodology is applied to an actual watershed. For each regional method, the reliability of various T‐year regional estimates is computed. Finally, the reliability‐based selective index graph is constructed from which the best regional method can be determined. In addition, the selection result is compared with that based on the traditional index, root mean square error. The proposed new index is recommended as an alternative to the existing indices such as root mean square error, because the influence of uncertainty and the accuracy of estimates are considered. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
High‐magnitude floods across Europe within the last decade have resulted in the widespread reassessment of flood risk; this coupled with the introduction of the Water Framework Directive (2000) has increased the need for a detailed understanding of seasonal variability in flood magnitude and frequency. Mean day of flood (MDF) and flood seasonality were calculated for Wales using 30 years of gauged river‐flow records (1973–2002). Noticeable regional variations in timing and length of flood season are evident, with flooding occurring earlier in small catchments draining higher elevations in north and mid‐west Wales. Low‐altitude regions in West Wales exposed to westerly winds experience flooding during October–January, while large eastern draining catchments experience later flooding (January–February). In the northeast and mid‐east regions December–January months experience the greatest number of floods, while the southeast has a slightly longer flood season (December–February), with a noticeable increase in January floods. Patterns obtained from MDF data demonstrate their effectiveness and use in analysing regional patterns in flood seasonality, but catchment‐specific determinants, e.g. catchment wetness, size and precipitation regime are important factors in flood seasonality. Relatively strong correlations between precipitation and flood activity are evident in Wales, with a poorer relationship between flooding and weather types and the North Atlantic Oscillation (NAO). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Nonstationary GEV-CDN models considering time as a covariate are built for evaluating the flood risk and failure risk of the major flood-control infrastructure in the Pearl River basin, China. The results indicate: (1) increasing peak flood flow is observed in the mainstream of the West River and North River basins and decreasing peak flood flow is observed in the East River basin; in particular, increasing peak flood flow is detected in the mainstream of the lower Pearl River basin and also in the Pearl River Delta region, the most densely populated region of the Pearl River basin; (2) differences in return periods analysed under stationarity and nonstationarity assumptions are found mainly for floods with return periods longer than 50 years; and (3) the failure risks of flood-control infrastructure based on failure risk analysis are higher under the nonstationarity assumption than under the stationarity assumption. The flood-control infrastructure is at higher risk of flood and failure under the influence of climate change and human activities in the middle and lower parts of Pearl River basin.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR G. Thirel  相似文献   

16.
鄱阳湖区洪涝灾害规律分析   总被引:8,自引:3,他引:5  
王凤  吴敦银  李荣昉 《湖泊科学》2008,20(4):500-506
根据1950-2002年的鄱阳湖洪水与洪水灾害损失资料,建立年最高洪水位与洪灾损失的相关模型;运用概率统计的理论与方法,研究了鄱阳湖区洪涝灾害与灾害损失的统计规律,将鄱阳湖洪水、鄱阳湖区洪涝灾害的受灾面积划分为6个等级.揭示鄱阳湖区洪水主要集中于10年一遇(3级)以下;一般洪水为2-5年一遇,在统计资料内,共发生过24次,造成的损失只占到历年总损失量的约l/3;5年一遇以上的洪水虽然只发生过7次,但是其损失却占历年洪灾总损失的约2/3.采取综合治理措施.降低鄱阳湖洪水位,并进一步提高鄱阳湖区圩堤防洪能力是减轻鄱阳湖区洪涝灾害损失的有效途经.  相似文献   

17.
Abstract

Flood frequency analysis (FFA) is essential for water resources management. Long flow records improve the precision of estimated quantiles; however, in some cases, sample size in one location is not sufficient to achieve a reliable estimate of the statistical parameters and thus, regional FFA is commonly used to decrease the uncertainty in the prediction. In this paper, the bias of several commonly used parameter estimators, including L-moment, probability weighted moment and maximum likelihood estimation, applied to the general extreme value (GEV) distribution is evaluated using a Monte Carlo simulation. Two bias compensation approaches: compensation based on the shape parameter, and compensation using three GEV parameters, are proposed based on the analysis and the models are then applied to streamflow records in southern Alberta. Compensation efficiency varies among estimators and between compensation approaches. The results overall suggest that compensation of the bias due to the estimator and short sample size would significantly improve the accuracy of the quantile estimation. In addition, at-site FFA is able to provide reliable estimation based on short data, when accounting for the bias in the estimator appropriately.
Editor D. Koutsoyiannis; Associate editor Sheng Yue  相似文献   

18.
ABSTRACT

The objective of this study is to investigate the factors that control event runoff characteristics at the small catchment scale. The study area is the Hydrological Open Air Laboratory, Lower Austria. Event runoff coefficient (Rc), recession time constant (Tc) and peak discharge (Qp) are estimated from hourly discharge and precipitation data for 298 events in the period 2013–2015. The results show that the Rc and their variability tend to be largest for the tile drainages (mean Rc = 0.09) and the main outlet (mean Rc = 0.08) showing larger Rc in January/February and smaller Rc in July/August. Tc does not vary much between the systems and tends to be largest at the main outlet (mean Tc = 6.5 h) and smallest for the tile drainages (mean Tc = 4.5 h). Groundwater levels explain the temporal variability of Rc and Tc more than soil moisture or precipitation, suggesting a role of shallow flow paths.  相似文献   

19.
气候变化和人类活动导致珠江流域水文变化,变化前后洪水频率分布显著不同.运用滑动秩和(Mann-Whitney U test)结合Brown-Forsythe、滑动T、有序聚类和Mann-Kendall检验法,并用累积距平曲线法获取年最大流量序列详细信息,综合确定样本最佳变化节点,并对水文变化成因做了系统分析.在此基础上,对整体序列、变化前后序列用线性矩法推求广义极值分布参数以及不同重现期设计流量.结果表明:(1)西江大部以及北江流域最佳变化节点在1991年左右;东江流域最佳变化节点与该流域内3大控制性水库建成时间基本吻合;(2)变化后,西江、北江年最大流量持续增加,洪峰强度增大,尤其是西江干流年最大流量显著增加;东江流域年最大流量显著减小,洪峰强度降低;(3)变化后,西江与北江洪水风险增加,尤其是下游珠三角地区本身受人类活动显著影响,加之西江与北江持续增加的洪水强度,珠三角地区发生洪水的强度及频次加剧,而东江洪水风险减小.此研究对于珠江流域在变化环境下的洪水风险评估与防洪抗灾具有重要意义.  相似文献   

20.
This study analyses the differences in significant trends in magnitude and frequency of floods detected in annual maximum flood (AMF) and peak over threshold (POT) flood peak series, for the period 1965–2005. Flood peaks are identified from European daily discharge data using a baseflow-based algorithm and significant trends in the AMF series are compared with those in the POT series, derived for six different exceedence thresholds. The results show that more trends in flood magnitude are detected in the AMF than in the POT series and for the POT series more significant trends are detected in flood frequency than in flood magnitude. Spatially coherent patterns of significant trends are detected, which are further investigated by stratifying the results into five regions based on catchment and hydro-climatic characteristics. All data and tools used in this study are open-access and the results are fully reproducible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号