首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most general circulation models (GCMs) project that climate will be warmer in the 21st century, especially in high latitudes. Climate warming will induce permafrost degradation, which would have great impacts on hydrology, ecosystems and soil biogeochemistry, and could destabilize the foundations of infrastructure. In this study, we simulated transient changes of permafrost distribution in Canada in the 21st century using a process-based permafrost model driven by six GCM-generated climate scenarios. The results show that the area underlain by permafrost in Canada would be reduced by 16.0–19.7% from the 1990s to the 2090s. This estimate was smaller than equilibrium projections because the ground thermal regime was in disequilibrium at the end of the 21st century and permafrost degradation would continue. The simulation shows significant permafrost thaw from the top: On average for the area where permafrost exists in all the years during 1990–2100, active-layer thickness increased by 0.3–0.7 m (or 41–104%), the depth to permafrost table increased by 1.9–5.0 m, and the area with taliks increased exponentially. Permafrost was also thawed from the bottom in southern regions.  相似文献   

2.
Permafrost warming in the Tien Shan Mountains, Central Asia   总被引:4,自引:0,他引:4  
The general features of alpine permafrost such as spatial distribution, temperatures, ice content, permafrost and active-layer thickness within the Tien Shan Mountains, Central Asia are described. The modern thermal state of permafrost reflects climatic processes during the twentieth century when the average rise in mean annual air temperature was 0.006–0.032 °C/yr for the different parts of the Tien Shan. Geothermal observations during the last 30 yr indicate an increase in permafrost temperatures from 0.3 °C up to 0.6 °C. At the same time, the average active-layer thickness increased by 23% in comparison to the early 1970s. The long-term records of air temperature and snow cover from the Tien Shan's high-mountain weather stations allow reconstruction of the thermal state of permafrost dynamics during the last century. The modeling estimation shows that the altitudinal lower boundary of permafrost distribution has shifted by about 150–200 m upward during the twentieth century. During the same period, the area of permafrost distribution within two river basins in the Northern Tien Shan decreased approximately by 18%. Both geothermal observations and modeling indicate more favorable conditions for permafrost occurrences and preservation in the coarse blocky material, where the ice-rich permafrost could still be stable even when the mean annual air temperatures exceeds 0 °C.  相似文献   

3.
Accurate temperature–depth profiles may help to assess the temperature variations associated with the climate changes in the past. Ninety-eight ground surface temperature histories inverted from the temperature–depth borehole logs drilled on the territory of the Czech Republic [Bodri, L., ermák, V., 1995. Climate changes of the last millennium inferred from borehole temperatures: results from the Czech Republic — Part I. Global Planet. Change 11, pp. 111–125; Bodri, L., ermák, V., 1997. Climate changes of the last two millennia inferred from borehole temperatures: results from the Czech Republic — Part II. Global Planet. Change 14, pp. 163–173.] are used to reconstruct the regional patterns of the respective climate change. The climate was mapped for the following periods: 1100–1300 A.D. (Little Climatic Optimum), 1400–1500 A.D., 1600–1700 A.D. (main phase of the Little Ice Age), and for the most recent climate trend after year 1960. Comparison of the obtained maps with the meteorological observations and proxy climatic reconstructions confirmed good applicability of the “geothermal” paleoclimatic reconstructions for the regional studies.  相似文献   

4.
Elevation dependency of climate change signals has been found over major mountain ranges such as the European Alps and the Rockies, as well as over the Tibetan Plateau. In this study we examined the temporal trends in monthly mean minimum temperatures from 116 weather stations in the eastern Tibetan Plateau and its vicinity during 1961–2006. We also analyzed projected climate changes in the entire Tibetan Plateau and its surroundings from two sets of modeling experiments under future global warming conditions. These analyses included the output of the NCAR Community Climate System Model (CCSM3) with approximately 150 km horizontal resolution for the scenario of annual 1% increase in atmospheric CO2 for future 100 years and physically-based downscaling results from the NCAR CAM3/CLM3 model at 10' × 10' resolution during three 20-year mean periods (1980–1999, 2030–2049 and 2080–2099) for the IPCC mid-range emission (A1B) scenario. We divided the 116 weather stations and the regional model grids into elevation zones of 500 m interval to examine the relationship of climatic warming and elevation. With these corroborating datasets, we were able to confirm the elevation dependency in monthly mean minimum temperature in and around the Tibetan Plateau. The warming is more prominent at higher elevations than at lower elevations, especially during winter and spring seasons, and such a tendency may continue in future climate change scenarios. The elevation dependency is most likely caused by the combined effects of cloud-radiation and snow-albedo feedbacks among various influencing factors.  相似文献   

5.
The occurrence of permafrost in bedrock in northern Fennoscandia and its dependence on past and presently ongoing climatic variations was investigated with one- (1D) and two-dimensional (2D) numerical models by solving the transient heat conduction equation with latent heat effects included. The study area is characterized by discontinuous permafrost occurrences such as palsa mires and local mountain permafrost. The ground temperature changes during the Holocene were constructed using climatic proxy data. This variation was used as a forcing function at the ground surface in the calculations. Several versions of the present ground temperature were applied, resulting in different subsurface freezing–thawing conditions in the past depending on the assumed porosity and geothermal conditions.Our results suggest that in high altitude areas with a cold climate (present mean annual ground temperature between 0°C and −3°C), there may have been considerable variations in permafrost thickness (ranging from 0 to 150 m), as well as periods of no permafrost at all. The higher is the porosity of bedrock filled with ice, the stronger is the retarding effect of permafrost against climatic variations.Two-dimensional models including topographic effects with altitude-dependent ground temperatures and slope orientation and inclination dependent solar radiation were applied to a case of mountain permafrost in Ylläs, western Finnish Lapland, where bedrock permafrost is known to occur in boreholes to a depth of about 60 m. Modelling suggests complicated changes in permafrost thickness with time as well as contrasting situations on southern and northern slopes of the mountain.Extrapolating the climatic warming of the last 200 years to the end of the next century when the anticipated increase in the annual average air temperature is expected to be about 2 K indicates that the permafrost occurrences in bedrock in northern Fennoscandia would be thawing rapidly in low-porosity formations. However, already a porosity of 5% filled with ice would retard the thawing considerably.  相似文献   

6.
Because the Khumbu Himal of the Nepal Himalayas lacks long-term climate records from weather stations, mountain permafrost degradation serves as an important indicator of climate warming. In 1973, the permafrost lower limit was estimated to be 5200–5300 m above sea level (ASL) on southern-aspect slopes in this region. Using ground-temperature measurements, we examined the mountain permafrost lower limit on slopes with the same aspect in 2004. The results indicate that the permafrost lower limit was 5400–5500 m ASL in 2004. The permafrost lower limit was estimated to be 5400 to 5500 m on slopes with a southern aspect in the Khumbu Himal in 1991 using seismic reflection soundings. Thus, it is possible that the permafrost lower limit has risen 100–300 m between 1973 and 1991, followed by a stable limit of 5400 to 5500 m over the last decade. An increase in mean annual air temperature of approximately 0.2 to 0.4 °C from the 1970s to the 1990s has indicated a rise in the permafrost lower limit of 40 to 80 m at the Tibetan Plateau. The rise in the mountain permafrost lower limit in the Khumbu Himal exceeds that of the Tibetan Plateau, suggesting the possibility of greater climate warming in the Khumbu Himal.  相似文献   

7.
To use basin stratigraphy for studying past climate change, it is important to understand the influence of evolving boundary conditions (river discharge and sediment flux, initial bathymetry, sea level, subsidence) and the complex interplay of the redistribution processes (plumes, turbidity currents, debris flows). To provide understanding of this complexity, we have employed source to sink numerical models to evaluate which process dominates the observed variability in a sedimentary record of two coastal Pacific basins, Knight Inlet in British Columbia and the Eel Margin of northern California.During the last glacial period, the Eel River supplied comparatively more sediment with a less variable flux to the ocean, while today the river is dominated by episodic events. Model results show this change in the variability of sediment flux to be as important to the deposit character as is the change in the volume of sediment supply. Due to the complex interaction of flooding events and ocean storm events, the more episodic flood deposits of recent times are less well preserved than the flood deposits associated with an ice-age climate.In Knight Inlet, the evolving boundary conditions (rapidly prograding coastline, secondary transport by gravity flows from sediment failures) are a strong influence on the sedimentary record. The delta and gravity flow deposits punctuate the sedimentary record formed by hemipelagic sedimentation from river plumes. Missing time intervals due to sediment failures can take away the advantage of the otherwise amplified lithologic record of discharge events, given the enclosed nature of the fjord basin.  相似文献   

8.
Climate changes and recent glacier behaviour in the Chilean Lake District   总被引:1,自引:1,他引:0  
Atmospheric temperatures measured at the Chilean Lake District (38°–42°S) showed contrasting trends during the second half of the 20th century. The surface cooling detected at several meteorological stations ranged from − 0.014 to − 0.021 °C a− 1, whilst upper troposphere (850–300 gpm) records at radiosonde of Puerto Montt (41°26′S/73°07′W) revealed warming between 0.019 and 0.031 °C a− 1. Regional rainfall data collected from 1961 to 2000 showed the overall decrease with a maximum rate of − 15 mm a− 2 at Valdivia st. (39°38′S/73°05′W). These ongoing climatic changes, especially the precipitation reduction, seem to be related to El Niño–Southern Oscillation (ENSO) phenomena which has been more frequent after 1976. Glaciers within the Chilean Lake District have significantly retreated during recent decades, in an apparent out-of-phase response to the regional surface cooling. Moreover, very little is known about upper troposphere changes and how they can enhance the glacier responses. In order to analyse their behaviour in the context of the observed climate changes, Casa Pangue glacier (41°08′S/71°52′W) has been selected and studied by comparing Digital Elevation Models (DEMs) computed at three different dates throughout the last four decades. This approach allowed the determination of ice elevation changes between 1961 and 1998, yielding a mean thinning rate of − 2.3 ± 0.6 m a− 1. Strikingly, when ice thinning is computed for the period between 1981 and 1998, the resulting rate is 50% higher (− 3.6 ± 0.6 m a− 1). This enhanced trend and the related area loss and frontal retreat suggests that Casa Pangue might currently be suffering negative mass balances in response to the upper troposphere warming and decreased precipitation of the last 25–30 yr, as well as debris cover would not prevent the glacier from a fast reaction to climate forcing. Most of recent glaciological studies regarding Andean glaciers have concentrated on low altitude changes, namely frontal variations, however, in order to better understand the regional glacier changes, new data are necessary, especially from the accumulation areas.  相似文献   

9.
New temperature logs in wells located in the grassland ecozone in the Southern Canadian Prairies in Saskatchewan, where surface disturbance is considered minor, show a large curvature in the upper 100 m. The character of this curvature is consistent with ground surface temperature (GST) warming in the 20th century. Repetition of precise temperature logs in southern Saskatchewan (years 1986 and 1997) shows the conductive nature of warming of the subsurface sediments. The magnitude of surface temperature change during that time (11 years) is high (0.3–0.4°C). To assess the conductive nature of temperature variations at the grassland surface interface, several precise air and soil temperature time series in the southern Canadian Prairies (1965–1995) were analyzed. The combined anomalies correlated at 0.85. Application of the functional space inversion (FSI) technique with the borehole temperature logs and site-specific lithology indicates a warming to date of approximately 2.5°C since a minimum in the late 18th century to mid 19th century. This warming represents an approximate increase from 4°C around 1850 to 6.5°C today. The significance of this record is that it suggests almost half of the warming occurred prior to 1900, before dramatic build up of atmospheric green house gases. This result correlates well with the proxy record of climatic change further to the north, beyond the Arctic Circle [Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamourex, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., Zielinski, G., 1997. Arctic environmental change of the last four centuries, Science 278, 1251–1256.].  相似文献   

10.
Using a recently developed global vegetation distribution, topography, and shorelines for the Early Eocene in conjunction with the Genesis version 2.0 climate model, we investigate the influences that these new boundary conditions have on global climate. Global mean climate changes little in response to the subtle changes we made; differences in mean annual and seasonal surface temperatures over northern and southern hemispheric land, respectively, are on the order of 0.5°C. In contrast, and perhaps more importantly, continental scale climate exhibits significant responses. Increased peak elevations and topographic detail result in larger amplitude planetary 4 mm/day and decreases by 7–9 mm/day in the proto Himalayan region. Surface temperatures change by up to 18°C as a direct result of elevation modifications. Increased leaf area index (LAI), as a result of altered vegetation distributions, reduces temperatures by up to 6°C. Decreasing the size of the Mississippi embayment decreases inland precipitation by 1–2 mm/day. These climate responses to increased accuracy in boundary conditions indicate that “improved” boundary conditions may play an important role in producing modeled paleoclimates that approach the proxy data more closely.  相似文献   

11.
Joint analysis of surface air temperature series recorded at weather stations together with the inversion of the temperature-depth profiles logged in the near-by boreholes enables an estimate of the conditions existing prior to the beginning of the meteorological observation, the so-called pre-observational mean (POM) temperature.Such analysis is based on the presumption of pure diffusive conditions in the underground. However, in real cases a certain subsurface fluid movement cannot be excluded and the measured temperature logs may contain an advective component. The paper addresses the correction for the hydraulic conditions, which may have perturbed the climate signal penetrating from the surface into the underground. The method accounts for vertical conductive and vertical advective heat transport in a 1-D horizontally layered stratum and provides a simultaneous evaluation of the POM-temperature together with the estimate of the Darcy fluid velocity. The correction strategy is illustrated on a synthetic example and its use is demonstrated on temperature logs measured in four closely spaced boreholes drilled near Tachlovice (located about 15 km SW of Prague, Czech Republic). The results revealed that in a case of moderately advectively affected subsurface conditions (fluid velocities about 10−9 m/s), the difference between POM-values assessed for a pure conductive approach and for combined vertical conductive/advective approach may amount up to 0.3–0.5 K, the value comparable with the amount usually ascribed to the 20th century climate warming.  相似文献   

12.
The “overshoot scenario” is an emissions scenario in which CO2 concentration in the atmosphere temporarily exceeds some pre-defined, “dangerous” threshold (before being reduced to non-dangerous levels). Support for this idea comes from its potential to achieve a balance between the burdens of current and future generations in dealing with global warming. Before it can be considered a viable policy, the overshoot scenario needs to be examined in terms of its impacts on the global climate and the environment. In, particular, it must be determined if climate change cause by the overshoot scenario is reversible or not, since crossing that “dangerous” CO2 threshold could result in climate change from which we might not be able to recover. In this study, we quantify the change in several climatic and environmental variables under the overshoot scenario using a global climate model of intermediate complexity. Compared to earlier studies on the overshoot scenario, we have an explicit carbon cycle model that allows us to represent carbon-climate feedbacks and force the climate model more realistically with CO2 emissions rates rather than with prescribed atmospheric pCO2. Our standard CO2 emissions rate is calculated on the basis of historical atmospheric pCO2 data and the WRE S650 non-overshoot stabilization profile. It starts from the preindustrial year 1760, peaks in the year 2056, and ends in the year 2300. A variety of overshoot scenarios were constructed by increasing the amplitude of the control emissions peak but decreasing the peak duration so that the cumulative emissions remain essentially constant. Sensitivity simulations of various overshoot scenarios in our model show that many aspects of the global climate are largely reversible by year 2300. The significance of the reversibility, which takes roughly 200 years in our experiments, depends on the time horizon with which it is viewed or the number of future generations for whom equity is sought. At times when the overshoot scenario has emissions rates higher then the control scenario, the transient changes in atmospheric and oceanic temperatures and surface ocean pH can be significant, even for moderate overshoot scenarios that remain within IPCC SRES emissions scenarios. The large transient changes and the centennial timescale of climate reversibility suggest that the overshoot might not be the best mitigation approach, even if it technically follows the optimal economic path.  相似文献   

13.
Permafrost and climatic change in China   总被引:8,自引:0,他引:8  
The permafrost area in China is about 2.15×106 km2, and is generally characterized by altitudinal permafrost. Permafrost in China can be divided into latitudinal and altitudinal types, the latter can be further divided into plateau and alpine permafrost. Altitudinal permafrost also can be divided into five thermal stability types. The permafrost environment has changed significantly since the Late Pleistocene. In northeastern China, the southern limit of permafrost extended to 41–42°N during the last glaciation maximum; in the Holocene megathermal, it retreated northward. The ice wedges and permafrost formed during the Late Pleistocene are still present in the northern part of the Da-Xing'anling Mountains. The inactive ice wedges at Yitulihe indicate a cooling and subsequent permafrost expansion during the Late Pleistocene. The lower limit of altitudinal permafrost in western China has elevated from 800 to 1500 m since the last glaciation maximum. Compared with that in northern Europe and North America, latitudinal permafrost in northeastern China is less sensitive to climatic warming, but altitudinal permafrost, especially permafrost on the Qinghai–Tibet Plateau (QTP), is sensitive to climatic warming. Since the early 20th century, significant permafrost degradation has occurred and is occurring in most permafrost regions in China. Due to the combined influence of climatic warming and increasing anthropogenic activities, substantial retreat of permafrost is expected on the QTP and in northeastern China during the 21st century. Permafrost degradation has and will cast great influence on engineering construction, water resources and environments in the cold regions of China. The wetlands in the cold regions of China emit significant amounts of CH4 and N2O to the atmosphere and uptake atmospheric CO2 at a considerable rate, which might contribute to the global atmospheric carbon budget and feedback to climatic systems. However, uncertainties about permafrost changes, rates of changes and their environmental impacts are still large and call for intensive studying.  相似文献   

14.
A pollen record from the core sediments collected in the northern part of Lake Baikal represents the latest stage of the Taz (Saale) Glaciation, Kazantsevo (Eemian) Interglacial (namely the Last Interglacial), and the earliest stage of the Zyryanka (Weichselian) Glaciation. According to the palaeomagnetic-based age model applied to the core, the Last Interglacial in the Lake Baikal record lasted about 10.6 ky from 128 to 117.4 ky BP, being more or less synchronous with the Marine Isotope Stage 5e. The reconstructed changes in the south Siberian vegetation and climate are summarised as follows: a major spread of shrub alder (Alnus fruticosa) and shrub birches (Betula sect. Nanae/Fruticosae) in the study area was a characteristic feature during the late glacial phase of the Taz Glaciation. Boreal trees e.g. spruce (Picea obovata) and birch (Betula sect. Albae) started to play an important role in the regional vegetation with the onset of the interglacial conditions. Optimal conditions for Abies sibiricaP. obovata taiga development occurred ca. 126.3 ky BP. The maximum spread of birch forest-steppe communities took place at the low altitudes ca. 126.5–125.5 ky BP and Pinus sylvestris started to form forests in the northern Baikal area after ca. 124.4 ky BP. Re-expansion of the steppe communities, as well as shrubby alder and willow communities and the disappearance of forest vegetation occurred at about 117.4 ky BP, suggesting the end of the interglacial succession. The changes in the pollen assemblages recorded in the sediments from northern Baikal point to a certain instability of the interglacial climate. Three phases of climate deterioration have been distinguished: 126–125.5, 121.5–120, and 119.5–119 ky BP. The penultimate cooling signal may be correlated with the cool oscillation recorded in European pollen records. However, such far distant correlation requires more careful investigation.  相似文献   

15.
Analysis and modelling of temperature anomalies from 25 selected deep wells in Alberta show that the differences between GST (ground surface temperature) warming for the northern Boreal Forest ecozone and the combined Prairie Grassland ecozone and Aspen Parkland transition region to the south occur during the latter half of this century. This corresponds with recent changes in surface albedo resulting from permanent land development in the northern areas and also to increases in natural forest fires in the past 20 years. Differences between GST and SAT (surface air temperature) warming are much higher in the Boreal Forest ecozone than in the Prairie Grassland ecozone and Aspen Parkland transition region. Various hypotheses which could account for the existing differences between the GST and SAT warming in the different ecozones of Alberta, and western Canada in general, are tested. Analysis of existing data on soil temperature, hydrological piezometric surfaces, snowfall and moisture patterns, and land clearing and forest fires, indicate that large areas of Alberta, characterised by anomalous GST warming, have experienced widespread changes to the surface landscape in this century. It is postulated that this has resulted in a lower surface albedo with a subsequent increase in the absorption of solar energy. Heat flow modelling shows that, after climatic SAT warming, permanent clearing of the land is the most effective and likely cause of the observed changes in the GST warming. The greater GST warming in the Boreal Forest ecozone in the latter half of this century is related to landscape change due to land development and increasing forest fire activity. It appears to account for a portion of the observed SAT warming in this region through a positive feedback loop with the overlying air. The anthropogenic effect on regional climatic warming through 20th century land clearing and landscape alteration requires further study. In future, more accurate quantification of these various forcings will be necessary in order to distinguish between, and to detect, the variety of natural and anthropogenic influences and on climate.  相似文献   

16.
We utilize a regional climate model with detailed land surface processes (RegCM2) to simulate East Asian monsoon climates at 0 ka, 6 ka and 21 ka BP, and evaluate the changes in hydrology process, including vapor transportation, precipitation, evapotranspiration and runoff in the eastern and western China during these periods. Results indicate that the Tibetan Plateau climate presents a wet–cold status during the LGM while it exhibits a wet–warm climate at 6 ka BP. The LGM wetter climate over the Tibetan Plateau mainly results from the increased vapor inflow through its south boundary, while the increase in the vapor import over the Tibetan Plateau at 6 ka BP mostly sources from its west boundary. The increase in the LGM runoff over the Tibetan Plateau is mainly caused by the decrease in evapotranspiration, while the increase in runoff at the 6 ka BP mainly by the enhanced precipitation. Eastern China (including southern China) presents a dry status during the LGM, which precipitation and runoff decreases significantly due largely to weakened Asian summer monsoon that results in the decreased vapor inflow through the south boundary of eastern China. The variation pattern in the hydrological cycle in eastern China is contrary to that in western China during the LGM. The increase in precipitation and runoff at 6 ka BP in eastern China is tightly related to the strong Asian summer monsoon that leads to increased vapor import through the south boundary. Long term decrease trend in precipitation and runoff in northern China since the last 20 000 years may be attributed to the steady increase in vapor export through the east boundary as a result of the changes of East Asian monsoon and the adjustments of local atmospheric circulations in this area.  相似文献   

17.
Thirty borehole temperature–depth profiles in the central and southern Urals, Russia were scrutinized for evidence of ground surface temperature histories. We explored two inversion schemes: a simple ramp inversion in which solutions are parameterized in terms of an onset time and magnitude of change and a more sophisticated functional space inverse algorithm in which the functional form of the solution is left unspecified. To enhance and potentially identify latitudinal differences in the ground surface temperature signal, we subdivided the data into three groups based on geographic proximity and simultaneously inverted the borehole temperature–depth logs. The simultaneous inversions highlighted 13 temperature–depth logs that could not both fit a common ground surface temperature history and a priori models within reasonable bounds. Our results confirm that this is an effective way to reduce site-specific noise from an ensemble of boreholes. Each inversion scheme gives comparable results indicating locally variable warming on the order of 1°C starting between 1800 and 1900 AD. Similarly surface air temperature records from 12 nearby meteorological stations exhibit locally variable warming also on the order of 1°C of warming during the 20th century. To explore the degree to which borehole temperatures and surface air temperature (SAT) time series are responding to the same signal, we average the SAT data into the same three groups and used these averages as a forcing function at the Earth's surface to generate synthetic transient temperature profiles. Root mean square (RMS) misfits between these synthetic temperature profiles and averaged temperature–depth profiles are low, suggesting that first-order curvature in borehole temperatures and variations in SAT records are correlated.  相似文献   

18.
The anticipated change of climatic conditions within the next decades is thought to have far reaching consequences for agricultural cropping systems. The success of crop production in China, the world's most populous country, will also have effects on the global food supply. More than 30% of the cropping area in China is irrigated producing the major part of the agricultural production. To model the effects of climate change on irrigation requirements for crop production in China a high-resolution (0.25°, monthly time series for temperature, precipitation and potential evapotranspiration) gridded climate data set that specifically allows for the effects of topography on climate was integrated with digital soil data in a GIS. Observed long-term trends of monthly means as well as trends of interannual variations were combined for climate scenarios for the year 2030 with average conditions as well as ‘best case’ and ‘worst case’ scenarios.Regional cropping calendars with allowance for multiple cropping systems and the adaptation of the begin and length of the growing season to climatic variations were incorporated in the FAO water balance model to calculate irrigation amounts to obtain maximum yields for the period 1951–1990 and the climate scenarios.During the period 1951–1990 irrigation demand displayed a considerable variation both in temporal and spatial respects. Future scenarios indicate a varied pattern of generally increasing irrigation demand and an enlargement of the subtropical cropping zone rather than a general northward drift of all zones as predicted by GCM models. The effects of interannual variability appear to have likely more impact on future cropping conditions than the anticipated poleward migration of cropping zones.  相似文献   

19.
Most areas of arid and semiarid China are covered by aeolian sand dunes, sand sheets, and desert steppes, and the existence of the nearly 80 million people who live in this region could be seriously jeopardized if climate change increases desertification. However, the expected trends in desertification during the 21st century are poorly understood. In the present study, we selected the ECHAM4 and HadCM3 global climate models (after comparing them with the results of the GFDL-R30, CGCM2, and CSIRO-Mk2b models) and used simulations of a dune mobility index under IPCC SRES climate scenarios A1FI, A2a, A2b, A2c, B1a, B2a, and B2b to estimate future trends in dune activity and desertification in China. Although uncertainties in climate predictions mean that there is still far to go before we can develop a comprehensive dune activity estimation system, HadCM3 simulations with most greenhouse forcing scenarios showed decreased desertification in most western region of arid and semiarid China by 2039, but increased desertification thereafter, whereas ECHAM4 simulation results showed that desertification will increase during this period. Inhabitants of thecentral region will benefit from reversed desertification from 2010 to 2099, whereas inhabitants of the eastern region will suffer from increased desertification from 2010 to 2099. From 2010 to 2039, most regions will not be significantly affected by desertification, but from 2040 to 2099, the environments of the western and eastern regions will deteriorate due to the significant effects of global warming (particularly the interaction between precipitation and potential evapotranspiration), leading to decreased livestock and grain yields and possibly threatening China's food security.  相似文献   

20.
In this paper we present a study concerning the climatic behaviour of two principal observables, temperature and precipitation as obtained from the measurements carried out at 50 Italian meteorological stations, since 1961. Analyses of WMO Climate Normals (CliNo) from 1961 to 1990 have been performed dividing the 50 Italian stations in three different classes: mountain (11 stations), continental (17) and coastal areas (21).The comparison of the CliNo 1961–1990 with the trend of temperature and precipitation for the period 1991–2000 showed a sharp significant increase of summer temperatures over Italy starting from 1980. This phenomenon was particularly evident for mountain stations, where a significant temperature increase has been recorded also during the autumn. Moreover, the analysis of precipitation data permitted to point out that, starting from 1980, mountain stations have been affected by a significant increase of precipitation events during autumn and winter, while for the rest of the Italian territory a reduction of precipitations has been recorded during early spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号