首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
文章评述了增生造山作用的研究历史和进展,认为增生造山作用贯穿地球历史,是大陆增生的重要方式。用大陆边缘多岛弧盆系构造理解造山带的形成演化,提出巨型造山系的形成与长期发育的大洋岩石圈俯冲制约的两侧或一侧的多岛弧盆系密切相关。在多岛弧盆系演化过程中的弧 弧和弧 陆碰撞,弧前和弧后洋盆的消减冲杂岩的增生,洋底高原、洋岛/海山、外来地块(体)拼贴等一系列碰撞和增生造山作用形成大陆边缘增生造山系。大洋岩石圈最终消亡形成对接消减带,大洋岩石圈两侧的多岛弧盆系转化的造山系对接形成造山系的联合体。拼接完成后往往要继续发生大陆之间的陆 陆碰撞造山作用、陆内汇聚(伸展)作用,后者叠加在增生造山系上,使造山过程更加复杂。对接消减带是认识造山系形成演化的关键。大洋两侧多岛弧盆系经历的各种造山过程可以从广义上理解为一个增生造山过程。多岛弧盆系研究对于划分造山带细结构非常重要,是理解造山系物质组成、结构和构造的基础,并制约了造山后陆内构造演化。大陆碰撞前大洋两侧多岛弧盆系及陆缘系统更完整地记录了威尔逊旋回,记录的信息更加丰富。根据多岛弧盆系的思路对特提斯大洋演化提出新的模式,认为西藏冈底斯带自石炭纪以来受到特提斯大洋俯冲制约,三叠纪发生向洋增生造山作用,特提斯大洋于早白垩世末最终消亡。  相似文献   

2.
The specific features of the oceanic lithosphere (the petrography, the mineral composition, and the petrochemistry of igneous rocks and restites) that indicate its formation at different spreading rates, from the extremely slow to fast, are considered. This evidence may be used for solution of the inverse problem of estimating, at least qualitatively, the rate of paleospreading from the structure and composition of rocks pertaining to the ophiolitic association. The use of petrochemical data as the criteria of paleospreading rate is limited. The anomalous composition and structure of the oceanic crust may be due to factors unrelated to the spreading rate. The well-studied cases of ophiolites interpreted as fragments of the ancient oceanic lithosphere formed under conditions of fast, slow, and extremely slow spreading rates are discussed. It is concluded tentatively that the fast spreading is typical of the ophiolites obducted on passive margins (the Periarabian, Uralian, and Appalachian-Caledonian belts) as fragments of ensimatic suprasubduction basins formed at the final stages of the evolution of paleooceans (Tethys and Iapetus). Ophiolites as products of slow spreading are commonly localized in accretionary (subduction-related) orogens at the present-day and older active continental margins.  相似文献   

3.
Studies in intra-continental and intra-oceanic shear zones reveal structures that may be developed during the formation of a sheared passive continental margin.During the intra-continental shear stage of margin development, rapid vertical movement of the crust may occur resulting in small, tectonically-active basins containing thick sedimentary sequences. At deeper levels in the continental crust, more plastic deformation may lead to a zone of strongly sheared rocks that widens downwards. The tectonic fabric in this zone may exert some control over the subsequent development of the continent-ocean transition under the influence of regional stresses.The thermal event related to asthenosphere upwelling at sheared margins is a transient one and thus of less effect than the event on rifted margins. Nevertheless, following the event the cooling and contraction of oceanic crust against the continent may throw the oceanic crust into tension and lead to normal, block faulting in the oceanic regions analogous to the faulting seen in oceanic fracture zones. The subsidence of oceanic crust as it ages at the margin will either drag down the adjacent continental crust or, more likely, cause the oceanic crust to slip down by normal faulting along the continent-ocean boundary. The kinds of compressional features observed in oceanic fracture zones may also occur at sheared margins.  相似文献   

4.
ABSTRACT

The South China Sea (SCS) is an excellent site for studying the process of conjugate margin rifting, and the origin and evolution of oceanic basins. Compared with the well-defined northern margin of the SCS, the western and southern segments of the SCS margin have not been researched in significant detail. To investigate the regional structure of the southwestern SCS, a gravity model is constructed, along with the lithospheric thermal structure along a wide-angle seismic profile. The profile extends across the conjugate margins of the Southwest Sub-Basin (SWSB) of the SCS and is based on the latest multiple geophysical measurements (including heat flow and thermo-physical parameters). The results show that the average thicknesses of the crust and thermal lithosphere along the profile are about 15 km and 57 km, respectively. The overall amount of extension of continental crust and lithosphere is more than 200 km. Thermal structure of the lithosphere shows that the continental margins are in a warm thermal state. The southwest SCS is characterized by ultra-wide, thinned continental crust and lithosphere, high Moho heat flow, early syn-rift faulted basins, undeformed late syn-rifting, and high seismic velocities in the lower crust. These various pieces of evidence suggest that the break-up of the mantle lithosphere occurred before that of the continental crust favouring a depth-dependent extension of the southwestern SCS margin.  相似文献   

5.
The accretion of oceanic plateaus has played a significant role in continental growth during Earth's history, which is evidenced by the presence of oceanic island basalts (OIB) and plume-type ophiolites in many modern orogens. However, oceanic plateaus can also be subducted into the deeper mantle, as revealed by seismic tomography. The controlling factors of accretion versus subduction of oceanic plateaus remain unclear. Here, we investigate the dynamics of oceanic plateau accretion at active continental margins using a thermo-mechanical numerical model. Three major factors for the accretion of oceanic plateaus are studied: (1) a thinned continental margin of the overriding plate, (2) “weak” layers in the oceanic lithosphere, and (3) a young oceanic plateau. For a large oceanic plateau, the modes of oceanic plateau accretion can be classified into one-sided and two-sided subduction–collisional regimes, which mainly depend on the geometry of the continental margin (normal or thinned). For smaller-sized seamounts, accretion occurs only if all three factors are satisfied, of which a thinned continental margin is the most critical. Possible geological analogues for the two-sided subduction–collisional mode include the Taiwan orogenic belt and subduction of the Ontong Java Plateau. The accretion model for small oceanic plateaus applies to the Nadanhada Terrane in Northeast China.  相似文献   

6.
The continental margins of Atlantic Canada described in this paper show the effects of plate tectonic motions since Precambrian time and thus represent an ideal natural laboratory for geophysical studies and comparisons of ancient and modern margins. The Grenville Province shows vestiges of Helikian sedimentation on a pre-existing continental block beneath which there may have been southeastward late-Helikian subduction resulting in collision between the Grenville block and the continental block comprised of the older shield provinces to the north. The Grenville block was subsequently split in Hadrynian time along an irregular line so that the southeastern edge of the Grenville exhibited a series of promontories and re-entrants similar to those seen at the present Atlantic continental margin of North America. That margin, which had a passive margin history perhaps comparable with that of the present Atlantic margin, was separated by the lapetus ocean from the Avalon zone whose Precambrian volcanism has been attributed both to that associated with an island arc and with intra-cratonic rifting. However, the lapetus ocean appears to have been subducted in early Paleozoic time with a southeastward dip beneath the Avalon zone, leaving exposures of oceanic rocks in place as in Notre Dame Bay, or transported onto Grenville basement as at Bay of Islands.Plate motions proposed for Devonian and Carboniferous time are numerous, but resulted in the welding of the Meguma block to the Avalon zone of New Brunswick and northern Nova Scotia, extensive faulting within Atlantic Canada which can be correlated with contemporaneous European faulting and extensive terrestrial sedimentation within the fault zones. Graben formation, continental sedimentation and basaltic intrusion in the Triassic represent the tensional prelude to the Jurassic opening of the present Atlantic Ocean.This Jurassic opening produced a rifted margin adjacent to Nova Scotia and a transform margin along the southern Grand Banks. The width of the ocean-continent transition across the transform margin (approx. 50 km) is narrower than for the rifted margin (approx. 100 km). The eastern part of the transform margin is associated with a complex Cretaceous (?) volcanic province of seamounts and basement ridges showing evidence of subsidence. The western portion of the transform margin is non-volcanic, adjacent to which lies the 350 km wide Quiet Magnetic Zone floored by oceanic crust.Development of the margin east of Newfoundland was more complicated with continental fragments separated from the shelf by deep water basins underlain by foundered and atypically thin continental crust. Although thin, the crust appears unmodified, the similarities between the crustal sections of the narrow Flemish Pass and the wide Orphan Basin suggesting that the thinning is not simply due to stretching. The Newfoundland Basin shows evidence for two-stage rifting between the Grand Banks and Iberia with both lateral separation and rotation of Spain, leaving a wide zone of transitional crust in the south. The overall pattern of variations in crustal section for the margin east of Newfoundland is comparable with that of the British margin against which it is located on paleogeographical reconstructions.The major sedimentary unconformities on the shelves (such as the Early Cretaceous unconformity on the Grand Banks) reflect uplift accompanying rifting. Tracing of the sedimentary horizons across the shelf edge is complicated by paleocontinental slopes, which separate miogeocline and eugeocline depositional environments. The subsidence of the rifted margins is primarily due to cooling of the lithosphere and to sediment loading. The subsidence due to cooling has been shown to vary linearly with (time) , similar to the depth—age behaviour of oceanic crust. The consequent thermal history of the sediments is favourable for hydrocarbon generation where other factors do not preclude it.  相似文献   

7.
Oblique-shear margins are divergent continental terrains whose breakup and early drift evolution are characterized by significant obliquity in the plate divergence vector relative to the strike of the margin. We focus on the Rio Muni margin, equatorial West Africa, where the ca. 70-km-wide Ascension Fracture Zone (AFZ) exhibits oblique–slip faulting and synrift half-graben formation that accommodated oblique extension during the period leading up to and immediately following whole lithosphere failure and continental breakup (ca. 117 Ma). Oblique extension is recorded also by strike–slip and oblique–slip fault geometry within the AFZ, and buckling of Aptian synrift rocks in response to block rotation and local transpression. Rio Muni shares basic characteristics of both rifted and transform margins, the end members of a spectrum of continental margin kinematics. At transform margins, continental breakup and the onset of oceanic spreading (drifting) are separate episodes recorded by discrete breakup and drift unconformities. Oceanic opening will proceed immediately following breakup on a rifted margin, whereas transform and oblique-shear margins may experience several tens of millennia between breakup and drift. Noncoeval breakup and drift have important consequences for the fit of the equatorial South American and African margins because, in reconstructing the configuration of conjugate continental margins at the time of their breakup, it cannot be assumed that highly segmented margins like the South Atlantic will match each other at their ocean–continent boundaries (OCBs). Well known ‘misfits’ in reconstructions of South Atlantic continental margins may be accounted for by differential timing of breakup and drifting between oblique-shear margins and their adjacent rifted segments.  相似文献   

8.
Quantitative geophysical calculations which take into consideration the isostatic loading of sediment overburden, the overlying water cover, and the thermal cooling history of the continental edge, and its adjacent oceanic lithosphere, demonstrate the foundering of the margins of the western Mediterranean had already commenced in the Aquitanian stage of the early Miocene. The calculations are based on magnitudes and rates of sediment accumulation observed along a profile of three commercial boreholes into the subsurface of the continental shelf of southern France. By the time of the late Miocene (Messinian) salinity crisis, the depth of the seafloor within the Balearic basin exceeded 2.5 km. Sea-level fluctuations induced by evaporitic draw-down permitted the exposure of large tracts of the former submerged continental margins to subaerial processes. The measured magnitude of sediment removal by erosion and channel incision near the outer shelf of the modern Gulf of Lion surpasses 1 km. The subsidence history of this shelf platform south of France provides new evidence that the continental lithosphere behaves as if it is rigidly coupled to its oceanic counterpart commencing with the initial phase of the pull-apart. No major vertical fault displacements have subsequently offset their overlying crustal layers. The sedimentary shaping and construction of the margin seaward of the Rhône delta resulted in a pronounced shelf edge migration and slope progradation during the pre-salinity crisis Miocene. It has taken 5 million years of predominant upbuilding to establish a new equilibrium profile similar in cross-section to the precrisis depositional surfaces created by outbuilding.  相似文献   

9.
The main features of the volcanic and nonvolcanic passive margins of the North and Central Atlantic are considered. The margins are compared using rather well-studied reference tectonotypes as examples. The conjugate margins of the Norwegian-Greenland region and the margins of West Iberia and Newfoundland are chosen as tectonotypes of volcanic and nonvolcanic margins, respectively. The structural and magmatic features of the margins and their preceding history are discussed. A complex of interrelated attributes is shown for each tectonotype. The Norwegian-Greenland region close to the Iceland plume is distinguished by narrow zones of stretched continental crust, rapid localization of stretching with breakup of the continent, a high rate of subsequent spreading, and intense magmatism with the formation of a thick new crust at the margin and the adjacent oceanic zone. The Iberia-Newfoundland region, remote from the plumes, is characterized by wide zones of stretched continental crust, long-term and diachronous prebreakup extension propagating northward, extremely restricted mantle melting during rifting and initial spreading, and frequent occurrence of ancient crustal complexes and serpentinized mantle rocks at the margin. Crustal faults and a thin tectonized oceanic crust appear along the margin under conditions of slow spreading. A model of hot and fast spreading with a high degree of melting in the mantle is applicable to the Norwegian-Greenland region, whereas a model of cold and slow amagmatic rifting with a long pre-breakup stretching and thinning of the lithosphere is appropriate to the Iberia-Newfoundland margins. The differences in the development of the margins is determined by the interaction of many factors: deep temperature, rheology of the underlying lithosphere, heterogeneities in the previously formed crust, and the duration and rate of stretching. All of these factors can be related to the effect of deep plumes and propagation of the extension zone toward the segments of the cold Atlantic lithosphere. Both types of margins also reveal similar features, in particular asymmetry. It is suggested that the rotation forces superimposed on the general tectonomagmatic pattern controlled by plumes could have been the cause of structural asymmetry.  相似文献   

10.
Magmatism synchronous to the formation of passive margins of the North Atlantic is discussed. The main features and causes of the geochemical enrichment of the primary magmas at the margins have been established. This paper is based on the published data on the Norwegian-Greenland tectonotype of volcanic margins and the West Iberia-Newfoundland tectonotype of nonvolcanic margins. In the first tectonotype the hot rifting and active magmatism gave rise to the formation of a thick crust at the margin and the adjacent oceanic zone. The second tectonotype is characterized by cold amagmatic rifting and slow initial spreading, which led to the widespread occurrence of ancient continental complexes and serpentinized mantle rocks at the margin, as well as the thin and disturbed oceanic crust nearby. In order to characterize the magmatism and initial oceanic opening, the geological and geochemical data pertaining to the reference sections chosen for each margin were compared in detail. In particular, the geochemical and isotopic data on the flood basalts and suites of parallel dikes related to the pre- and synbreakup magmatic phases were involved for the Norwegian-Greenland region. The predominance of tholeiites enriched in lithophile elements and radiogenic isotopes, as well as a significant contribution of continental material to them, are typical of the volcanic margins. No less than two enriched magma sources for the lower part of the volcanic complex are suggested, whereas a depleted or slightly enriched source is established for the upper part. A more enriched source as compared with the volcanic margins of the Norwegian-Greenland region is suggested for the low-volume magmatic manifestations at the nonvolcanic Iberian margin. The tectonic settings of margins development and their relationships with the effect of deep plumes and the propagation of the extension zone toward the cold Atlantic lithosphere are discussed.  相似文献   

11.
A wide variety of data support the contention that the Troodos massif, Cyprus is a fragment of oceanic lithosphere formed at a constructive margin some 85 m.y. ago. However, Troodos rocks differ significantly in major and trace element content and mineral parageneses from those formed at present day active constructive margins. It is here argued that the geochemical and petrographic characteristics of the massif are compatible with its formation at the axis of a slow spreading ridge within a small, marginal ocean basin.  相似文献   

12.
本文根据对已有地质资料的综合研究,系统论述了吐哈盆地南缘古生代活动陆缘残片的时空分布、岩石组合和岩石化学特征,在此基础上对古亚洲洋构造演化进行了简要的探讨。该区活动陆缘残片由奥陶纪-志留纪(?)、泥盆纪、石炭纪火山沉积岩系和泥盆纪、石炭纪深成岩组成。这些不同时代岩浆岩的时空分布揭示出该区弧岩浆前锋带的演化具有向南逐渐迁移的特点。这些不同时代的火山岩和深成岩在岩石组合和岩石化学方面都类似于钙碱系列弧岩浆岩。它们的这些特征,结合它们的区域地质背景,使我们得出如下初步结论:它们的形成演化与以南侧康古尔塔格碰撞带中的洋壳残片为代表的古洋岩石圈板块向西伯利亚古板块之下的俯冲有关;它们很可能是出露在阿尔泰山南侧、蒙古南部和大兴安岭中部等地的类似杂岩一起构成了古亚洲洋中西伯利亚古板块活动陆缘;该活动陆缘的发育,提示出古亚洲洋板块向西伯利亚古板块之下的俯冲在奥陶纪至古炭纪期间一直在持续进行。  相似文献   

13.
The continental margin orogenic systems of the western Americas are enormous features that formed along the Pacific margins of the North and South American plates during late Mesozoic through Cenozoic time. There has been considerable debate concerning their origin, and they are often compared with intra-oceanic fringing arc-trench systems more typical of the Australasian margins of the Pacific Ocean, in that both involve the subduction of oceanic lithosphere, often with similar convergent relative motion vectors. The onset of orogenesis in the two Cordilleras, as shown in reversal of sedimentary polarity from sources generally on the continent to sources along the Pacific margin, seems to date from shortly after emplacement of the oldest oceanic crust in that part of the Atlantic Ocaen east of each continent — i.e., about 170 Ma, or Middle Jurassic, in the case of the Central Atlantic, and about 135 to 100 Ma, or Early to mid-Cretaceous, in the case of the South Atlantic. These ages also seem to mark the onset of westward motion of the two continents over the Pacific Ocean basin and subsequent crustal thickening and uplift, with development of thrust belts, foreland basins, and foredeeps. Prior to this prolonged westward drift, both margins had been convergent for at least several hundred million years, but no massive mountain building had taken place. Instead, the margins were tectonically “neutral”, with typically submarine fringing arc-trench systems or shallow marine to continental margin arcs which stood “outboard” of shallow marine platformal shelves or basins whose main sedimentary polarity was from the continent. Although accretion of “suspect” terranes, high rates of convergence, and age of subducting lithosphere all may have influenced particularly local tectonic response and/or phases of orogenic activity in the two chains, the absolute motion of the two continental margins over the Pacific Ocean basin is considered to have been the dominant factor in Cordilleran tectonic evolution.  相似文献   

14.
The disturbance of mechanical and thermal equilibria in the upper shell of the Earth as a result of mantle or local within-plate processes related to periodic tectonic activity gives rise to the formation of convective flows in the low-viscosity asthenosphere. These flows affect the lithosphere and create domains of subsidence and uplift, which can continue to develop long after the cessation of active periods. If the density of the lithosphere does not decrease with depth, then small-scale flows increase uplift in zones of compression of the continental lithosphere and create domains of extension at their margins. In our opinion, small-scale convection is the main geodynamic factor that forms foredeeps. The results of detailed numerical modeling of foredeep formation at the margins of adjoining orogens are presented in the current paper. In order to set the initial conditions for the stage of continental collision, the precollision stages of the foldbelt evolution are considered, including the stage of trough formation on the thinned continental crust or on the oceanic lithosphere and the stage of sedimentary basin formation; depending on the degree of extension, this can be an inner sea or a passive continental margin. Such initial conditions were used in modeling of the compression stage (continental collision), when the orogen-foredeep system is formed. The parameters of the model and the tectonic processes are chosen so as to bring the results of numerical computation in line with the data on the Greater Caucasus and northern Forecaucasus, including the thickness of the crustal layers and sedimentary cover, structure of the foredeeps, rate of tectonic subsidence, heat flow, etc. Comparison of the numerical modeling results with the formation history of the Caucasus foredeeps confirms that the first stage of regional compression of the Greater Caucasus took place before the deposition of the Maikop sediments. At least three compression stages followed: 16.6–15.8 Ma (Tarchanian), 14.3–12.3 Ma (Konkian-early Sarmatian), and 7.0–5.2 Ma (Pontian). The next stage of regional compression is apparently occurring at present.  相似文献   

15.
The salinity crisis of the Mediterranean during Messinian time was one of the most dramatic episodes of oceanic change of the past 20 or so million years, resulting in the deposition of kilometer thick evaporitic sequences. A large and rapid drawdown of the Mediterranean water level caused erosion and deposition of non-marine sediments in a large ‘Lago Mare’ basin. Both the surface loading by the Lower Messinian evaporites, and the removal of the water load resulted in isostatic/flexural rebound that significantly affected river canyons and topographic slopes. We use flexure models to quantitatively predict possible signatures of these events, and verify these expectations at well-studied margins. The highly irregular shape of the reconstructed basin calls for a three-dimensional model. Near basin margins, plate-bending effects are most pronounced which is why flexure is particularly important for a relatively narrow basin like the Mediterranean. We focus on one specific sea level scenario for the Messinian Salinity Crisis, where most of the evaporite load was deposited during a sea level highstand, followed by a rapid desiccation. Evaporite loading at current sea level is expected to cause subsidence of the deep basins by hundreds of meters and simultaneous uplift of continental parts of the margins. Differential uplift may lead to significant slope angle changes and thus gravity flows. The relative scarcity of Lower Evaporite sequences along the margins may be a result of these phenomena. Normal faulting of Lower Evaporite and older sediments and rocks is expected on the margins. Desiccation enhances erosion of the freshly exposed continental shelf and slope. Subsidence and riverbed sedimentation occurs on the continental margins, and significant uplift towards the basin center. Reverse faulting is predicted at the margins. Finally, regional isostatic uplift following Zanclean flooding is predicted to destabilize margin slope deposits, and to cause marginal uplift, river down-cutting, and normal faulting.  相似文献   

16.
何国琦  韩宝福 《地学前缘》1995,2(2):187-194
大陆岩石圈和大洋岩石圈有着深刻的差别,运用板块构造理论和模式研究大陆岩石圈会遇到许多特殊的问题。本文从陆缘演化和多个板块构造旋回叠加两方面做了初步探讨,提出岩浆型被动陆缘是独立的一类古陆缘;在辨认后续板块构造旋回叠加中,新构造成分和格局的确定有重要意义。本文还讨论了汲取大陆地质研究经验,在新的学科水平上重新解释传统大地构造学中一些有用概念的意义。  相似文献   

17.
The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle.As geological and geochemical data seem inconsistent with the existence of modernstyle ridges and arcs in the Archaean,a periodically-destabilized stagnant-lid crust system is proposed instead.Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle,perturbing Earth's heat generation/loss balance,eventually triggering mantle overturns.Archaean basalts were derived from fertile mantle in overturn upwelling zones(OUZOs),which were larger and longer-lived than post-Archaean plumes.Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods,allowing basal crustal cannibalism,garnetiferous crustal restite delamination,and coupled development of continental crust and sub-continental lithospheric mantle.Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB(mid-ocean ridge basalt)mantle.Only after the start of true subduction did sequestration of subducted slabs at the coremantle boundary lead to the development of the depleted MORB mantle source.During Archaean mantle overturns,pre-existing continents located above OUZOs would be strongly reworked;whereas OUZOdistal continents would drift in response to mantle currents.The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion,imbrication,subcretion and anatexis of unsubductable oceanic lithosphere.As Earth cooled and the background oceanic lithosphere became denser and stiffer,there would be an increasing probability that oceanic crustal segments could founder in an organized way,producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga.Plate tectonics today is constituted of:(1)a continental drift system that started in the Early Archaean,driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons;(2)a subduction-driven system that started near the end of the Archaean.  相似文献   

18.
Tonga and Mariana fore-arc peridotites, inferred to representtheir respective sub-arc mantle lithospheres, are compositionallyhighly depleted (low Fe/Mg) and thus physically buoyant relativeto abyssal peridotites representing normal oceanic lithosphere(high Fe/Mg) formed at ocean ridges. The observation that thedepletion of these fore-arc lithospheres is unrelated to, andpre-dates, the inception of present-day western Pacific subductionzones demonstrates the pre-existence of compositional buoyancycontrast at the sites of these subduction zones. These observationsallow us to suggest that lateral compositional buoyancy contrastwithin the oceanic lithosphere creates the favoured and necessarycondition for subduction initiation. Edges of buoyant oceanicplateaux, for example, mark a compositional buoyancy contrastwithin the oceanic lithosphere. These edges under deviatoriccompression (e.g. ridge push) could develop reverse faults withcombined forces in excess of the oceanic lithosphere strength,allowing the dense normal oceanic lithosphere to sink into theasthenosphere beneath the buoyant overriding oceanic plateaux,i.e. the initiation of subduction zones. We term this conceptthe ‘oceanic plateau model’. This model explainsmany other observations and offers testable hypotheses on importantgeodynamic problems on a global scale. These include (1) theorigin of the 43 Ma bend along the Hawaii–Emperor SeamountChain in the Pacific, (2) mechanisms of ophiolite emplacement,(3) continental accretion, etc. Subduction initiation is notunique to oceanic plateaux, but the plateau model well illustratesthe importance of the compositional buoyancy contrast withinthe lithosphere for subduction initiation. Most portions ofpassive continental margins, such as in the Atlantic where largecompositional buoyancy contrast exists, are the loci of futuresubduction zones. KEY WORDS: subduction initiation; compositional buoyancy contrast; oceanic lithosphere; plate tectonics; mantle plumes; hotspots; oceanic plateaux; passive continental margins; continental accretion; mantle peridotites; ophiolites  相似文献   

19.
In classical rift models, deformation is either uniformly distributed leading to symmetric fault bounded basins overlying stretched ductile lower crust (e.g. pure shear McKenzie model) or asymmetric and controlled by large scale detachment faulting (simple shear Wernicke model). In both cases rifting is considered as a mono-phase process and breakup is instantaneous resulting in the juxtaposition of continental and oceanic crust. The contact between these two types of crusts is often assumed to be sharp and marked by a first magnetic anomaly; and breakup is considered to be recorded as a major, basin wide unconformity, also referred to as breakup unconformity. These classical models, are currently challenged by new data from deep rifted margins that ask for a revision of these concepts. In this paper, we review the pertinent observations made along the Iberia-Newfoundland conjugate margins, which bear the most complete data set available from deep magma-poor margins. We reevaluate and discuss the polyphase nature of continental rifting, discuss the nature and significance of the different margin domains and show how they document extreme crustal thinning, retardation of subsidence and a complex transition into seafloor spreading. Although our study is limited to the Iberia-Newfoundland margins, comparisons with other margins suggest that the described evolution is probably more common and applicable for a large number of rifted margins. These new results have major implications for plate kinematic reconstructions and invite to rethink the terminology, the processes, and the concepts that have been used to describe continental rifting and breakup of the lithosphere.  相似文献   

20.
提出全球规模最大的白云鄂博稀土矿受亚洲洋向华北克拉通北缘俯冲的洋板块地质演化控制.探讨了白云鄂博地区亚洲洋洋板块地质构造发育过程、亚洲洋向华北克拉通北缘俯冲过程中相继发育的新元古代,早、晚古生代俯冲增生杂岩带的地质构造特征.探讨了白云鄂博稀土矿成因,认为稀土矿成矿碳酸岩岩浆产在华北克拉通北缘的所谓特殊的远端弧后构造环境(far backarc settings),也有人称为远离弧后背景或者变形的大陆边缘环境(deformed continental margins),不在大洋俯冲过程中发育的岩浆弧环境中.相对于大陆边缘弧,远端弧后构造环境位于向克拉通或向弧后更远的位置,它是控制白云鄂博深部成矿物质向浅部地表运移聚集成大型矿床、矿集区的关键储运空间.远端弧后构造环境远离大洋汇聚带或俯冲带向大陆或向弧后位置的克拉通边缘上,即在华北克拉通北缘岩石圈与亚洲洋造山带的岩石圈分界上的伸展构造中,受大规模岩石圈不连续系统或深切岩石圈的断裂带系统控制.成矿碳酸岩岩浆可能来自携带大量铁与REE的亚洲洋洋壳沉积物,于晚元古-早古生代向华北克拉通俯冲消减到华北克拉通陆下岩石圈地幔SCLM深循环过程中,在深切华北克拉通边缘的岩石圈的不连续构造系统中出溶形成岩浆碳酸岩及其携带的REE矿床.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号