首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the history of superposed deformations of the iron formations at the western border of the Kolar Gold Field in S India, an important event was the successive growth of broadly coaxial plane noncylindrical folds in course of a progressive deformation concomitant with development of ductile mesoscopic shear zones. The noncylindrical folds were initiated as active folds by the creation of a buckling instability at successive stages on newly developed foliation surfaces. The nucleation of noncylindrical folds and the subsequent axial-plane folding of the tightened mature folds are explained by the mechanical inhomogeneity of the rocks and the heterogeneous character of strain. The correlation between increasing tightness and increasing noncylindricity of the folds indicates that the initial curvatures of hinge lines were accentuated by an extension parallel to the subhorizontal stretching lineation. From the patterns of deformed lineations over folds of varying tightnesses, it is concluded that the passive accentuation of hinge-line curvatures was mostly achieved when the folds had already become isoclinal or very tight.  相似文献   

2.
In the Singhbhum Shear Zone of eastern India successive generations of folds grew in response to a progressive ductile shearing. During this deformation a mylonitic foliation was initiated and was repeatedly transposed. The majority of fold hinges were formed in an arcuate manner at low angles to the Y-axis in an E-W trending subhorizontal position and major segments of the fold hinges were then rotated towards the down-dip northerly plunging X-axis. The striping and intersection lineations were rotated in the same manner. The down-dip mylonitic lineation is a composite structure represented by rotated early lineations and newly superimposed stretching lineations. The consistent asymmetry of the folds, the angular relations between C and S surfaces and the evidence of two-dimensional boudinage indicate that the deformation was non-coaxial, but with a flattening type of strain with λ1λ2. The degree of non-coaxiality varied both in space and time. From the progressive development of mesoscopic structures it is concluded that the 2–3 km wide belt of ductile shear gave rise to successive anastomosing shear zones of mesoscopic scale. When a new set of shear lenses was superimposed on already sheared rocks, the preexisting foliation generally lay at a low angle to the lenses. No new folds developed where the acute angle was sympathetic to the sense of shear displacements. Where the acute angle was counter to the sense of shear, the pre-existing foliation, lying in the instantaneous shortening field, was deformed into a set of asymmetric folds.  相似文献   

3.
North Norfolk is a classic area for the study of glacial sediments with a complex glaciotectonic deformational history, but the processes leading to the formation of some structures can be ambiguous. Anisotropy of magnetic susceptibility (AMS) analyses, providing quantitative fabric data, have been combined with the analysis of visible structures and applied to the Bacton Green Till Member, exposed at Bacton, Norfolk. Thermomagnetic curves, low temperature susceptibility and acquisition of isothermal remanent magnetism (IRM) reveal that the magnetic mineralogy is dominated by paramagnetic phases. The magnetic foliation is parallel to fold axial planes and weakly inclined to bedding, whilst the magnetic lineation is orientated parallel to stretching, indicated by the presence of stretching lineations and the trend of sheath folds. Variations in the orientation of the magnetic lineation suggest that the Bacton section has been subject to polyphase deformation. After subaqueous deposition, the sequence was overridden by ice and glaciotectonically deformed which involved stretching initially north–south, then east–west. These results show that AMS can be used to detect strain in three dimensions through a glaciotectonite where paramagnetic mineralogy is dominant. This approach therefore provides further support to the use of AMS as a fast, objective and accurate method of examining strain within deformed glacial sediments.  相似文献   

4.
Progressive ductile shearing in the Phulad Shear Zone of Rajasthan, India has produced a complex history of folding, with development of planar, non-planar and refolded sheath folds. There are three generations of reclined folds, F1, F2 and F3, with a striping lineation (L1) parallel to the hinge lines of F1. The planar sheath folds of F1 have long subparallel hinge lines at the flanks joining up in hairpin curves at relatively small apices. L1 swerves harmoniously with the curving of F1 hinge line. There is a strong down-dip mineral lineation parallel to the striping lineation in most places, but intersecting it at apices of first generation sheath folds. Both the striping and the mineral lineation are deformed in U-patterns over the hinges of reclined F2 and F3. Folding of axial surfaces and hinge lines of earlier reclined folds by later folds was accompanied by very large stretching and led to the development of non-planar sheaths. The reclined folds of all the three generations were deformed by a group of subhorizontal folds. Each generation of fold initially grew with the hinge line at a very low angle with the Y-axis of bulk non-coaxial strain and was subsequently rotated towards the down-dip direction of maximum stretching. The patterns of deformed lineations indicate that the stretching along the X-direction was extremely large, much in excess of 6000 percent.  相似文献   

5.
通过野外观察、室内显微构造分析和磁组构测量方法,在桂北四堡地区浅变质地层中厘定出一条NE30°走向,南东倾,倾角约40°的大型左旋斜冲韧性剪切带——四堡韧性剪切带;该韧性剪切带内发育糜棱岩系列、糜棱面理、拉伸线理、A型褶皱、S-C组构、亚颗粒、显微分层及石英条带等宏观和微观构造特征;磁各向异性度测量结果显示四堡韧性剪切带由一宽约4 km的强应变带及边缘弱带组成,全带宽达10 km,长度超30 km;在对韧性剪切带运动学、构造年代学研究的基础上,结合区域地质资料,认为四堡韧性剪切带是华南加里东晚期华夏地块由南东向北西作低角度斜冲到扬子地块的产物。这一发现揭示了扬子地块与华夏地块碰撞拼合的方式,为深化华南构造演化提供了新资料。  相似文献   

6.
In the high‐grade (granulite facies) metamorphic rocks at Broken Hill the foliation is deformed by two groups of folds. Group 1 folds have an axial‐plane schistosity and a sillimanite lineation parallel to their fold axes; the foliation has been transposed into the plane of the schistosity by these folds. Group 2 folds deform the schistosity and distort the sillimanite lineation so that it now lies in a plane. Both groups of folds are developed as large folds. The retrograde schist zones are zones in which new fold structures have formed. These structures deform Group 1 and Group 2 folds and are associated with the formation of a new schistosity and strain‐slip cleavage. The interface between ore and gneiss is folded about Group 1 axial planes but about axes different from those in the foliation in the gneiss. On the basis of this, the orebody could not have been parallel to the foliation prior to the first recognizable structural and metamorphic events at Broken Hill. The orebody has been deformed by Group 2 and later structures.  相似文献   

7.
唐哲民  陈方远 《岩石学报》2009,25(7):1639-1644
位于苏鲁超高压变质地体南部的中国大陆科学钻探工程(CCSD)主孔岩石经历了超高压变形及多期折返变形。第一期折返变形为伸展折返变形,榴辉岩发生角闪岩相退变质作用,没有新生面理或线理的发育,基本保留了超高压阶段的S-L组构,并有显示熔融体特征的强退变榴辉岩发育。第二期折返变形为SEE-NWW向挤压折返变形,超高压变形期形成的不同岩石类型在本期变形中表现出不同的叠加变形现象,榴辉岩类岩石早期形成的S倾面理主体部分转为SEE倾,但拉伸线理产状与超高压变形期的近SN走向基本一致,反映早期面理沿NNE轴向的重褶作用,局部又被向SEE缓倾的韧性剪切带切割;而片麻岩类岩石在超高压变形期形成的S-L组构的主体部分已被新生成的总体向SEE缓倾的S-L组构置换,反映早期面理不仅重褶,而且大部分再度发生韧性剪切变形,具SEE向NWW的逆冲剪切指向,矿物普遍重新定向。第三期折返变形发育具NWW向SEE正滑剪切指向的韧性剪切带,并伴随大量“Z”型褶皱构造的发育。第四期折返变形以NWW向SEE正滑的张性或张扭性脆性断裂活动为主。探讨了苏鲁超高压变质地体折返变形的力学机制及CCSD主孔岩石面理变化的形成机制。  相似文献   

8.
徐兴旺  张学勤 《地质科学》1998,33(2):147-157
新疆觉罗塔格韧性挤压带发育于吐哈地块和中天山地块之间石炭系东西向火山-沉积建造中,由一组走向东西、产状陡立的透入性片理组成。眼球状结构、平行带状结构和菱形网状结构是韧性挤压带不同构造区亚带的排布格式,它们相对变形带主界面而言具有很好的对称性。片理构造、拉伸线理构造、同生褶皱构造、布丁构造、压力影构造、碎斑构造、粒内面理构造、位错构造和矿物光轴优选定向等韧性构造形迹发育,这些不同尺度的韧性变形构造形迹的组构都具以片理面为对称面而呈现出对称的特征。韧性挤压带横分为3个亚带,3个亚带岩石形变相变和应力应变等方面都呈横向对称状分布。“奶油饼”结构是韧性挤压带的应变结构。该韧性挤压带成因于南北两侧吐哈地块和中天山地块的南北向水平共轴挤压作用,形成于255Ma至280Ma(早二叠世),压扁机制是该韧性变形带的变形机制,它的力学性质表明该韧性变形带不应属于南北两大板块之间的俯冲-剪切带,其成因可能与板块孤后盆地的对称开合有关。  相似文献   

9.
The Emizözü shear zone is the west–northwest-trending ductile shear zone within the A?açören granitoid in central Turkey. Deformation that affected the granitoid along the Emizözü shear zone resulted in mylonites with mylonitic foliation and stretching lineation. The textural features of the deformed minerals suggest that mylonitization occurred under conditions of upper greenschist facies. The shear indicators, including asymmetric porphyroclasts, oblique foliation, and shear bands, suggest a down-dip (top-to-the-southwest) displacement. The orientation of stretching lineation, as well as kinematic indicators, indicates the extensional character of the Emizözü shear zone. Although it is not precisely dated, the available age constraints suggest that the zone formed at 78–71 Ma. According to field and micro-structural data, the A?açören granitoid was most likely emplaced during a regional deformation in central Turkey, and synchronously or shortly after was overprinted by the extensional Emizözü shear zone. The zone can also be correlated with the earlier stage development of the Tuzgölü basin in central Turkey.  相似文献   

10.
The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the Central Tianshan belt in Xinjiang, NW China and is composed of mylonitized Early Palaeozoic greywacke, volcanic rocks, ophiolitic blocks as a mélange complex, HP/LT-type bleuschist blocks and mylonitized Neoproterozoic schist, gneiss and orthogneiss. Nearly vertical mylonitic foliation and sub-horizontal stretching lineation define its strike-slip feature; various kinematic indicators, such as asymmetric folds, non-coaxial asymmetric macro- to micro-structures and C-axis fabrics of quartz grains of mylonites, suggest that it is a dextral strike-slip ductile shear zone oriented in a nearly E-W direction characterized by "flower" strusture with thrusting or extruding across the zone toward the two sides and upright folds with gently plunging hinges. The Aqqikkudug-Weiya zone experienced at least two stages of ductile shear tectonic evolution: Early Palaeozoic north vergent thrusting ductile shear and Late Carboniferous-Early Permian strike-slip deformation. The strike-slip ductile shear likely took place during Late Palaeozoic time, dated at 269(5 Ma by the40Ar/39Ar analysis on neo-muscovites. The strike-slip deformation was followed by the Hercynian violent S-type granitic magmatism. Geodynamical analysis suggests that the large-scale dextral strike-slip ductile shearing is likely the result of intracontinental adjustment deformation after the collision of the Siberian continental plate towards the northern margin of the Tarim continental plate during the Late Carboniferous. The Himalayan tectonism locally deformed the zone, marked by final uplift, brittle layer-slip and step-type thrust faults, transcurrent faults and E-W-elongated Mesozoic-Cenozoic basins.  相似文献   

11.
Blueschist-facies rocks of the central Seward Peninsula cropout over 8000 km2. Protoliths were Lower Paleozoic-Precambrian(?) shallow-water miogeoclinal sediments that were metamorphosed during the Middle Jurassic. Thermobarometric estimates yield ‘peak’ metamorphic conditions of 10–12 kbar at 460 ± 30°C. Crystallization of blueschist-facies minerals was synkinematic with development of a transposition foliation. This foliation is parallel to lithologic contacts and is axial planar to recumbent mesoscopic isoclinal folds. These folds are refolded by larger scale recumbent tight to isoclinal folds. Both fold sets have hinges parallel to a well-developed N—S stretching lineation. Sheath folds are also present. The long axes of the sheath folds also parallel the stretching lineation. This deformation was non-coaxial as indicated by microstructures and quartz c-axis fabrics. Folds nucleated, then rotated into parallelism with the stretching direction. Kinematic indicators show unequivocal top-to-the-north shear sense, compatible with blueschist formation during mid-Jurassic collision between the Brooks Range continental margin and a N-facing island arc (Yukon-Koyukuk). Convergence of these two plates is believed to have been nearly N—S (in present co-ordinates).  相似文献   

12.
Two series of experiments were carried out with soft model-materials in order to assess the relative importance of initial homogeneous strain, external rotation and late-stage strain in reorienting early lineations during superposed buckle-folding. In the first series cylindrical buckling folds were produced in embedded planar sheets containing a “lineation”. In the second series noncylindrical folds were produced by compression of a set of cylindrical folds. The experiments indicate that the ratio of buckle shortening to layer-parallel strain is much smaller when the principal extension is parallel to the fold-axis than in the case when the principal extension is perpendicular to the fold-axis. In very competent rocks, the reorientation of old lineations is mainly by external rotation and by the associated concentric longitudinal strain. In moderately competent rocks, the orientation of early lineations always changes by initial homogeneous strain before buckling becomes significant. Because of the unlike amounts of initial strain in layers of different competences, orientations of unrolled lineations may not be parallel in disharmonically folded layers of unlike competences. Under certain conditions the early lineation may become virtually parallel to the later fold-axis. The experiments indicate that the effects of late-stage strain in buckle-folding are largely restricted to the incompetent layers of a multilayer. Hence, if orientation data of early lineations in both competent and incompetent rocks are lumped together, the pattern of orientation may become quite complex. Even for a single competent layer, the pattern of early lineations can locally become complex because of the complex nature of concentric longitudinal strain (and strain resulting from stretching of middle surface of the layer), development of conical folds, development of shear strain along hinge zones of deformed early folds and also because of the development of different orders of folds in both the first and the second deformations.  相似文献   

13.
《Gondwana Research》2001,4(3):319-328
Examination of Landsat TM images, reconnaissance field traverses and the published geological maps from the Eastern Ghats Mobile Belt (EGMB), India, reveal a network of major ductile shear zones both within and at the margins. These shear zones are characterized by mylonitic foliation, grain size reduction, metamorphic retrogression, stretching lineations and distinct signatures of alkaline, anorthositic and granitic magmatism. These shear zones divide the EGMB into distinct terranes, which are heterogeneously deformed with extensive tracts of foliated mylonitic gneisses and ultramylonites. The main gneissic foliation in all the terranes is refolded in near non-coaxial manner generally about the axis subparallel to the elongation of the terrane.Structural history in each terrane is distinct in the orientation of stretching lineations, attitude of gneissosity and early fold axial planes, lithological assemblages and available geochronological data. It is possible to recognise nine large terranes within the EGMB and the characteristics of each terrane have been described. The terrane distribution in the EGMB could well fit a thrust tectonic, allochthonous model of amalgamation and accretion. Different terranes could be different thrust nappes or allochthonous tectonic sheets representing tectono-stratigraphic terranes.  相似文献   

14.
大别-苏鲁超高压和高压变质带构造演化   总被引:12,自引:0,他引:12  
大别—苏鲁是世界上超高压 (UHP) ( >2 .7GPa)和高压 (HP)变质岩石出露最为广泛的地区。通过区域研究 ,尤其是在选择的 30多个关键位置上不同尺度构造记录的深入观察 ,结合已有的可利用的变质、热事件及同位素年代学资料分析 ,揭示出它们曾遭受过一个复杂的从深俯冲到折返构造演化历程 ,识别出 5个主要的构造变质事件 :( 1)由块状榴辉岩中发育的微弱面理和线理所代表的第 1期变形变质事件 (D1) ;( 2 )面状榴辉岩中发育的含拉伸线理的透入性主面理、中小型鞘状褶皱及网络状韧性剪切带 ,代表第 2期构造变质事件 (D2 ) ;( 3)第 3期变形事件主体发生于麻粒岩 /角闪岩相后成合晶形成之后 ,主要构造记录是区域性陡倾斜面理及不均一置换的成分层、榴辉岩透镜体及布丁群、面理内褶皱、网状韧性剪切带系统以及减压部分熔融作用形成的混合岩和含榴花岗质岩石组构 ;( 4)区域性的碰撞期后地壳韧性薄化及剪张作用 (D4)形成缓倾斜角闪岩相主面理及线理、穹状及弧形构造和多层韧性拆离带 ,它们主导了现今观察到的大别—苏鲁超高压和高压变质带的区域构造几何图像 ;( 5 )第 5期构造热事件 (D5)表现为不均一断块抬升、红色沉积盆地发育及大规模的岩体和岩脉就位 ,代表造山晚期的构造揭顶及坍陷作用 ,该期构造控制着造山带  相似文献   

15.
康古尔韧性剪切带变形特征及控矿作用   总被引:2,自引:0,他引:2  
康古尔韧性剪切带具明显的遥感影像特征和区域重、磁异常变化特征。韧性剪切引起的变质作用表现为强应力下的岩石变质、变形,变质相序从绿片岩相到角闪岩相,变质岩石类型为千枚岩、片岩、变粒岩、糜棱岩及糜校岩化的岩石。韧性剪切变形和塑性流动形成的面理、线理、招皱、韧性断裂等构造形迹十分明显,构成一条东百长1000多千米,南北宽20~30km的狭长线形构造带(强应变带);它经历了多期次、多种构造作用交替叠加的变化过程,按性质分类属大型平移断裂系统。康古尔韧性剪切带控制着重要的金矿、铜镍矿床及稀有金属等矿产,是新疆东部有重要找矿意义的成矿带。  相似文献   

16.
The Wadi Fatira area occurs at the southern margin of the Northern Eastern Desert (NED) of Egypt and is occupied by highly sheared metavolcanics tectonically alternated with banded iron formations and intruded by Barud tonalite–granodiorite, post-tectonic gabbroic and granitic intrusions. Detailed structural investigation showed that the schists and migmatitic amphibolites are formed by shearing in metavolcanics and syntectonic Barud tonalite–granodiorite due to movement along the Wadi Fatira shear zone (WFSZ). This shear zone starts as a NW–SE striking fault along Wadi Barud Al Azraq and the Eastern part of Wadi Fatira and turns to a E–W trending fault to the north of Wadi Fatira. Microstructural shear sense indicators such as asymmetric geometry of porphyroclasts such as σ-type and asymmetric folds deforming fine-grained bands which are frequently found around porphyroclasts indicate sinistral sense of shearing along the WFSZ. This shear zone is characterized by transitions from local convergence to local extension along their E–W and NW–SE trending parts, respectively. The NW–SE part of the WFSZ is of about 200 m in width and characterized by synmagmatic extensional features such as intrusion of synkinematic tonalite, creation of NE–SE trending normal faults, and formation of migmatitic amphibolites and schlieric tonalites. This part of the shear zone is metamorphosed under synthermal peak metamorphic conditions (725°C at 2–4 kbar). The E–W compressional part of the WFSZ is up to 3 km in width and composed of hornblende, chlorite, actinolite, and biotite schists together with sheared intermediate and acidic metatuffs. Contractional and transpressional structures in this part of the WFSZ include E–W trending major asymmetrical anticline and syncline, nearly vertical foliation and steeply pitching stretching lineations, NNE dipping minor thrusts, and minor intrafolial folds with their hinges parallel to the stretching lineation. PT estimates using mineral analyses of plagioclase and hornblende from schists and foliated metavolcanics indicate prograde metamorphism under medium-grade amphibolite facies (500–600°C at 3–7 kbar) retrogressed to low-grade greenschist facies (227–317°C). The foliation in Barud tonalite–granodiorite close to the E–W part of the WFSZ runs parallel to the plane of shearing and the tonalite show numerous magmatic flow structures overprinted by folding and ductile shearing. The WFSZ is similar to structures resulted from combined simple shear and orthogonal shortening of oblique transpressive shear zones and their sense of movement is comparable with the characteristics of the Najd Fault System.  相似文献   

17.
胶南地区的伸展作用——以胶南—诸城一带为例   总被引:11,自引:0,他引:11  
胶南地区的胶南—诸城一带存在两期不同方向的伸展构造。早期以形成近EN向的拉伸线理为特征,并在不同构造层次上显示出不同的变形。出露于研究区中部桃林尚庄隆起的含榴辉岩片麻岩中,主要以LS的组构为特征,显示出早期伸展作用下地壳岩石的垂直轴缩短、EW向拉伸的共轴应变;而在把下地壳含榴辉岩片麻岩与以变沉积岩为主的中上地壳岩石分开的韧性滑脱带上,此期伸展作用则表现为从东向西剪切的非共轴简单剪切变形,具有近水平的拉伸线理及近水平的EW向剪切褶皱和鞘褶皱枢纽。晚期伸展作用表现为近SN的伸展垮塌作用,形成向北和向南倾斜的两条韧性正剪切带,且遭受低角闪岩高绿片岩相条件下的透入性均匀简单剪切变形,剪切方向分别向北和向南。  相似文献   

18.
Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e., the hanging wall contains a variety of rocks namely calc-silicates, pelites and amphibolites and the southwestern unit, i.e., the footwall unit contains only granitic rocks. Systematic investigation of the granites of the southwestern unit indicate a gradual change in the intensity of deformation from a distance of about 1 km west of the shear zone to the shear zone proper. The granite changes from weakly deformed granite to a mylonite/ultramylonite as we proceed towards the PSZ. The weakly deformed granite shows a crude foliation with the same attitude of mylonitic foliation of the PSZ. Microscopic study reveals the incipient development of C and S fabric with angle between C and S varying from 15 ° to 24 °. The small angle between the C and S fabric in the least deformed granite variety indicates that the deformation has strong pure shear component. At a distance of about 1 m away from the PSZ, there is abrupt change in the intensity of deformation. The granite becomes intensely foliated with a strong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite shows stretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. The angle between the C and S fabric is further reduced and finally becomes nearly parallel. In most places, S fabric is gradually replaced by C fabric. Calculation of sectional kinematic vorticity number ( Wn) from the protomylonitic and mylonite/ultramylonite granites varies from 0.3 ± 0.03 to 0.55 ± 0.04 indicating a strong component of pure shear. The similarity of the geometry of structures in the PSZ and the granites demonstrates that the deformation of the two units is broadly synchronous and the deformation in both the units is transpressional.  相似文献   

19.
In the Ormiston Nappe Complex, west of Alice Springs, central Australia, a deformed zone up to 0.7 km thick is developed in the sedimentary Heavitree Quartzite. The deformed zone is adjacent to a major thrust fault and is defined by mylonitic foliation, which is parallel to the thrust plane and by isoclinal folds. Recognition of original detrital quartz grains allows strain ellipsoids to be measured across the zone. The strain generally plots in the flattening field and many specimens show pure flattening strain. The mylonitic foliation is an axial-plane structure to the folds and is parallel to the XY-plane of the strain ellipsoid. A quartz elongation lineation may be present within the foliation and is parallel to the principal extension direction (the X-axis) of the strain ellipsoid.Strain is accommodated principally by intracrystalline plastic deformation of the quartz grains. In detail the strain is not homogeneous and may vary even between adjacent grains of the same specimen. Quartz optic axis fabrics reflect this strain inhomogeneity. If the strain ellipsoid is an oblate spheroid, c-axes lie in small-circle girdles about the principal shortening axis (the Z-axis). With general triaxial strain, the c-axes lie in a great-circle girdle or girdles which intersect the foliation parallel to the intermediate strain axis (the Y-axis) and lie symmetrically about the Z-axis. A random population of grains from a specimen often shows a composite c-axis pattern between these two types.With approach to the thrust there is an increase in the amount of strain within the specimens. The increasing strain correlates with an increase in the degree of c-axis preferred orientation of the deformed detrital grains and in the amount of new strain-free grains present in the deformed quartzite. Adjacent to the thrust the quartzite is completely composed of polygonal new grains. The new grains probably formed under syntectonic conditions caused by movement along the thrust. The bulk of the new grains developed by increasing misorientation between the subareas of an initially polygonized old grain. There is no evidence of any marked host control on new-grain orientation, but new grain c-axis plots are generally similar to the corresponding old-grain plots from the same specimen.  相似文献   

20.
Abstract

The schists and gneisses of the Kanmantoo Group in the eastern Mt. Lofty Ranges show a well marked foliation and lineation. The foliation seen in the field is usually parallel to the bedding. The micas have a preferred orientation parallel to the lineation, resulting in girdles or partial girdles in the fabric diagrams. Quartz does not appear to have any preferred orientation. The lineations plunge to the S.S.E. or N.N.W., the mean plunge being about 20° to the S.S.E. This agrees with the plunge of the fold axes measured in the field and with the plunge of major structures deduced from field mapping. The area is thus one in which all the lineations are “b” lineations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号