首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
黄河三角洲是陆海交界地带,陆地海洋相互作用显著,泥沙所引起的岸滩演变、港口航道的淤积、水动力环境的改变等问题比较复杂。该文采用三维HEM-3D数值模型对黄河三角洲海域流场变化、盐度、悬浮泥沙浓度及海岸冲淤分布进行了潮流周期内的数值模拟分析。结果表明,黄河三角洲海域的悬浮泥沙浓度分布与潮流场变化和河口泥沙输入有密切的关系,在三角洲北部受五号桩外强潮流区的影响,近岸海底的泥沙发生明显的再悬浮,并在涨潮流向南输送,含沙量达1.5 g/L左右。在三角洲南部(现行河口区域和莱州湾区域),受现行河口入海泥沙扩散的影响显著。海域年冲淤分布,在北部废弃三角洲区域,由于海洋动力作用强烈,浅水冲刷,海底侵蚀显著,形成了明显呈沿岸展布的侵蚀中心,在侵蚀中心以外,侵蚀快速减弱。在现行河口区域,以淤积为主,在羽状流扩散的控制下,泥沙入海后向南输运,至莱州湾区域逐渐减弱。数值模拟的结果与卫星遥感解译的岸线变化基本一致,效果良好。  相似文献   

2.
Since 2002, an artificial water and sediment regulation(AWSR) has been carried out, which largely reduced water and sediment discharged from the Yellow River into the Bohai Sea. Although the sediment transport in the Yellow River Mouth(YRM) has been observed and modeled intensively since AWSR, but preferentially for the non-storm conditions. In this study, a three-dimensional current-wave-sediment coupled model, DHI-MIKE numerical model, was used to examine the seasonal suspended-sediment transport in the YRM after the AWSR. Results show that the seasonal distribution of suspended-sediments in the YRM is dominated by wind and wave rather than river input. The major transport pathway of suspended-sediments is from the western Laizhou Bay to the Bohai Strait during the winter monsoon, especially in storm events. In addition, about 66% of the river sediments deposit within 30 km of the YRM, which is smaller than previous estimations. It suggests that the YRM has been eroded in recent decades.  相似文献   

3.
One of the largest known megafloods on earth resulted from a glacier dam-break,which occurred during the Late Quaternary in the Altai Mountains in Southern Siberia.Computational modeling is one of the viable approaches to enhancing the understanding of the flood events.The computational domain of this flood is over 9460 km2 and about 3.784 × 106 cells are involved as a 50 m × 50 m mesh is used,which necessitates a computationally efficient model.Here the Open MP(Open Multiprocessing) technique is adopted to parallelize the code of a coupled 2D hydrodynamic and sediment transport model.It is shown that the computational efficiency is enhanced by over 80% due to the parallelization.The floods over both fixed and mobile beds are well reproduced with specified discharge hydrographs at the dam site.Qualitatively,backwater effects during the flood are resolved at the bifurcation between the Chuja and Katun rivers.Quantitatively,the computed maximum stage and thalweg are physically consistent with the field data of the bars and deposits.The effects of sediment transport and morphological evolution on the flood are considerable.Sensitivity analyses indicate that the impact of the peak discharge is significant,whilst those of the Manningroughness,medium sediment size and shape of the inlet discharge hydrograph are marginal.  相似文献   

4.
A two-dimensional finite element method (FEM) model that incorporates faults, elastic rock physical properties, topographical load due to gravity and far-field plate velocity boundary conditions was used to recognize the seismogenic stress state along the fold-and-thrust belt of the Precordillera-Sierras Pampeanas ranges of western Argentina. A plane strain model with nine experiments was presented here to examine the fault strength with two major rock phyical properties: cohesion and angle of internal friction. Mohr-Coulomb failure criterion with bulk rock properties were applied to analyse faults. The stress field at any point of the model was assumed to be comprised of gravitational and tectonic components. The analysis was focused to recognize the seismogenic shear strain concentrated in the internal-cristaline domain of the orogene shown by the modeling. Modeling results are presented in terms of four parameters, i. e., (i) distributions, orientations, and magnitudes of principal stresses (σ1 and σ3), (ii) displacement vector1 (iii) strain distribution, and (iv) maximum shear stress (τmax) contour line within the model. The simulation results show that the compressive stress is distributed in and around the fault systems. The overall orientation of of σ1 is in horizontal directions, although reorientations do occur within some stress weaker parts, especially subsequent to the faults. A large-scale shear stress is accumulating along the active faults of Tapias-Villicum Fault (TVF), Salinas-Berros Fault (SBF), Ampacama-Niquizanga Fault (ANF) and Las Charas Fault (CF), which could act as local stress and strain modulators to localize the earthquakesoccurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号