共查询到18条相似文献,搜索用时 93 毫秒
1.
针对高分辨率遥感影像上道路与相邻近地物的光谱信息相似导致提取道路不理想问题,提出多特征融合的最小二乘支持向量机(least squares support vector machine,LSSVM)遥感影像道路提取方法.该方法首先对原始影像进行色彩变换(HIS)提取光谱饱和度(Saturation,S)分量;然后,采用... 相似文献
2.
一种裸露土壤湿度反演方法 总被引:1,自引:0,他引:1
针对目前土壤湿度反演方法研究较少且缺少实时性的现状,该文提出一种土壤湿度反演方法——最小二乘支持向量机技术。以积分方程模型为正向算法,数值模拟不同雷达参数(频率、入射角及极化)下后向散射系数随土壤含水量和地表粗糙度的变化情况。经过数据敏感性分析,选取C-波段和X-波段、小入射角下的同极化后向散射系数作为支持向量回归的训练样本信息;经过适当的训练,利用支持向量回归技术对土壤含水量进行了反演研究;并考虑通过多频率、多极化、多入射角数据的组合,消除地表粗糙度的影响,提高反演精度。模拟结果表明,该方法反演土壤湿度具有较高的精度和较好的实时性;同时,与人工神经网络方法的结果比较,证明了该方法的有效性,为土壤湿度的反演研究提供了一种方法。 相似文献
3.
当前,随着遥感影像数据来源越来越丰富,且分辨率越来越高,传统的变化检测方法已经无法满足实际应用的需要。针对这一问题,提出了一种多特征融合的面向对象多源遥感影像变化检测方法。在对象获取和多种特征提取的基础上,利用SVM对高维数据分类的优异特性,将基于SVM的二类分类方法与对象级变化检测有机结合,提高了多源遥感影像变化检测的精度和可靠性。结合人工目视判读,设计了一种面向地物的指标计算方法。实验采用多源多时相的遥感影像进行,并对不同地物变化检测的精度进行统计,验证了提出方法的有效性。 相似文献
4.
分析在基于最小二乘支持向量机的卫星钟差预报中样本数据预处理的必要性,列举了归一化、标准化和相邻历元一次差3种数据预处理方法。然后结合实例,对比分析不同数据预处理方法对基于最小二乘支持向量机的钟差预报精度的影响,得出不同方法对钟差预报精度的影响不同,其中,基于一次差方法的预报精度最高。最后,将基于一次差方法的最小二乘支持向量机预报模型与常用的二次多项式模型和灰色系统模型进行比较,结果表明,最小二乘支持向量机模型的预报效果明显优于两种常规模型。 相似文献
5.
应用小波变换分解遥感影像,利用遥感影像自身的先验信息——空间分辨率确定高频域融合过程中的权值,使用最小二乘估计与小波重构完成影像融合。实验结果表明,相对于参考的其他融合方法,此方法在注入全色影像空间细节和保持多光谱影像的光谱信息方面性能更佳。 相似文献
6.
利用元胞自动机(Cellular Automata,CA)模拟土地利用变化,已经成为认识和理解其复杂动态演化过程的有效手段.传统的元胞自动机基于线性转换规则,较难表达土地利用变化的非线性边界问题.本文研究利用最小二乘支持向量机方法(LS-SVM),将原空间下的非线性可分问题,通过高斯径向基核函数映射到高维特征空间,简化... 相似文献
7.
多源遥感影像数据的融合方法探讨 总被引:1,自引:0,他引:1
孔庆楠 《测绘与空间地理信息》2008,31(4)
在分析和总结多源遥感影像数据融合的基础上,探讨了多源遥感影像数据融合的层次、模型、结构及其特点.归纳总结了多源遥感影像数据融合方法,目的是提高多光谱影像分辨率的同时保持色调不变,从另一个角度理解为在已知低分辨率多光谱影像和高分辨率全色影像的基础上,模拟生成高分辨率多光谱影像.本文介绍了遥感影像融合技术,系统阐述了几种常见的遥感影像融合方法及其应用. 相似文献
8.
9.
提出了一种基于小波变换和最小二乘支持向量机的卫星钟差预报方法 首先通过小波变换把钟差时间序列分解成具有不同频率特征的分量然后根据各分量的特点构建不同的最小二乘支持向量机模型进行预报最后将各分量的预报结果进行叠加得到最终的钟差预报值 实验结果表明该方法的预报效果优于单一的最小二乘支持向量机模型以及常规的二次多项式模型和灰色系统模型 相似文献
10.
将二次曲面、BP神经网络、最小二乘支持向量机应用与高程异常拟合,并用某地区数据进行了实验验证,结果表明,最小二乘支持向量机应用于高程异常拟合精度最优。 相似文献
11.
全球定位系统干涉反射测量(GPS-IR)是一种新型的遥感技术,可用于估算近地表土壤水分含量。本文从多卫星融合角度出发,提出了一种基于多星融合的地表土壤湿度估算方法。首先通过低阶多项式拟合分离出卫星反射信号;然后建立反射信号正弦拟合模型,获取相对延迟相位;最后基于多卫星相对延迟相位建立多元线性回归模型。利用美国板块边界观测计划(PBO)提供的监测数据,对比分析不同建模序列长度的反演效果,从而确定最佳的建模长度。试验结果表明,采用多元线性回归模型可实现多颗卫星的有效融合,运用于土壤湿度估算是可行的。 相似文献
12.
Besides amplitude, frequency and phase, the polarization is another basic property of the electromagnetic wave. In
the remote sensing field, the polarization is mainly applied in active detection systems of radar and lidar. This paper presents the
quantitative relationship between soil moisture and polarization signatures in a certain type of soil in a farm. And this
relationship is expected to be introduced on agriculture and hydrology ultimately. The experiments were performed both in the
laboratory and the field. Soil samples with different moisture contents were measured at three wavebands on visible spectrum,
and at several viewing angles in the plane of incidence. The polarization signature was indicated by the multi-band and
multi-angle degree of linear polarization (DOLP) in this paper. The soil moisture were divided into five levels according to the
properties of DOLP curves, namely, the quasi-quantitative relationship between soil moisture and its polarization signature were
established. The percentages of soil moisture of the five levels are: ≤10%, 10%—20%, 20%—40%, 40%—56% and >56%,
respectively. Although this division for soil moisture is on a rather large scale, it will meet the precision of application
agricultural and hydrologic remote sensing. 相似文献
13.
14.
使用高级积分方程模型,模拟多个地表参数条件下的风云三号B星微波成像仪(FY-3B/MWRI)资料。基于模拟数据,分析地表微波辐射特性,利用粗糙地表发射率Qp模型,建立我国西部地区裸露地表土壤湿度反演模型。将该模型用于我国西部地区4个日期(2011年10月8日、10月18日、10月28日和11月8日)的土壤湿度反演,并将反演结果用实测数据进行交叉验证。结果表明:反演土壤湿度与实测土壤湿度的决策系数R2为0.604,均方根误差为0.030 5 cm3/cm3,反演模型具有较高的反演精度。 相似文献
15.
粒子群优化神经网络的土壤有机质高光谱估测 总被引:2,自引:0,他引:2
针对提高土壤有机质高光谱估测精度的问题,该文对山东省泰安市的92个棕壤样本进行光谱去噪,剔除异常样本处理后,对光谱反射率进行11种变换,发现一阶微分变换最佳;然后计算土壤有机质含量与变换后光谱反射率的相关系数,选取5个特征波段,分别利用多元线性回归、BP神经网络、支持向量机、粒子群优化神经网络4种方法建立土壤有机质含量高光谱估测模型并进行精度比较。实验结果表明,多元线性回归、BP神经网络、支持向量机和粒子群优化神经网络模型的决定系数R2分别为0.520 3、0.665 4、0.735 0和0.853 0,均方根误差分别为2.12、1.99、1.45和1.08。研究结果表明,粒子群优化神经网络的反演精度高、稳定性强,可有效提高土壤有机质的光谱估测能力。 相似文献
16.
耕地污染日益严重,耕地土壤的重金属高光谱信息属于非线性的微弱信号。小波变换作为常用的非线性微弱信号处理手段,在保留更多微弱信号的基础上可以更好的提取出土壤重金属的微弱光谱信息。文中研究在Db4小波对土壤原始光谱进行分解与重构的基础上提取特征波段,利用特征波段与重金属含量的相关性建立偏最小二乘模型反演土壤重金属铬含量。研究表明,利用Db4小波函数对原始光谱进行分解和重构可以有效提取土壤重金属铬的特征光谱信息;利用小波分解与重构所提取的特征光谱信息与重金属铬含量之间的相关性所建立的PLS模型的决定系数明显高于基于传统一阶微分处理土壤光谱所建立的PLS模型的决定系数。 相似文献
17.
根据离散方法建模垄行结构农田表面微波发射率,与地基多频率微波辐射计实测发射率比较发现:二者之间的平均绝对偏差小于0.01 ,证实了利用离散化方法建模农田表面微波发射率的可行性.在给定条件下不同观测方位角农田表面微波发射率与平坦表面的发射率差值在0.02 与0.05 之间,这说明农田结构微波辐射具有各向异性,行结构对发射率的影响在农田电磁波辐射建模过程中不可忽略.本文分析了不同土壤湿度条件下农田垄行结构可能引起的土壤湿度反演误差,结果表明,土壤湿度变化范围是0.02—0.5 cm3/cm3,垄行结构引起的土壤湿度反演误差为0—0.1 cm3/cm3, 此误差超过了土壤湿度反演的容限值,因此在进行农田参数的遥感提取过程中不可忽略周期性垄行结构对表面发射率的影响. 相似文献