首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
长江口及其邻近海域富营养化状况评价   总被引:17,自引:1,他引:17  
通过对长江口及其邻近海域生态环境参数的背景值(20世纪50-60年代)和现状值(1997-2003年)的比较,应用欧盟“综合评价法”对长江口及其邻近海域的富营养化状况进行了评价。结果表明,长江向长江口海域输送总氮和总磷通量持续增大,长江口及其邻近海域无机氮浓度持续增高而硅浓度持续下降,并由此导致N/P/Si比值的显著变化;该海域叶绿素a浓度持续增大,浮游植物群落结构也发生了显著变化;该海域底栖生物种类和生物量都大大减少,底层水低氧区面积也显著扩大;该海域赤潮事件无论是规模还是频率都大大增加,藻类毒素DSP/PSP贻贝传染事件也时有发生。综合以上4类评价因子的评价结果得出结论:长江口及其邻近海域属于富营养化“问题海域”,即有充分证据表明,人为的富营养化已经对长江口及其邻近海域的海洋生态系统造成不良干扰。  相似文献   

2.
利用POM(Princeton Ocean Model)模型在长江口及其邻近海域建立了三维斜压动力学模式,该模式开边界处考虑了潮汐、潮流、台湾暖流、沿岸流和长江径流。模式成功地模拟了长江口及其邻近海域的潮汐特征和环流特征。此外2004年11月的实测数据分析结果表明在观测区域的水下河谷西侧位置的强表面羽状锋内,存在着高叶绿素a浓度分布。为了分析长江口外存在的高叶绿素浓度分布和长江口的营养盐输入的相关关系,进行了两次数值试验:(1)给定长江口的径流量和径流输入的营养盐,把长江口的输入作为营养盐输入的惟一源;(2)在开边界处,根据实测资料给定营养盐的输入,同时考虑径流营养盐输入。在(1)、(2)两种情况下,把硝酸盐作为保守物质,进行了平流扩散数值试验。模式的模拟结果和实测资料的对比分析表明:沿岸流、台湾暖流的营养盐输入和上升流从底部输入的营养盐是此高叶绿素浓度区营养盐的重要来源。  相似文献   

3.
长江口及邻近海域浮游植物现存量的上下行控制分析   总被引:2,自引:0,他引:2  
利用2010—2011年度3个季节的调查资料以及广义相加模型(GAM)分析,研究了长江口及邻近海域浮游植物现存量(以叶绿素a浓度表征)的上下行控制作用。调查结果显示,在叶绿素高值区,三航次营养盐含量均比整个海区平均值偏低,且春季呈现三季节最低的磷酸盐(PO4-P)和硅酸盐(SiO3-Si)浓度(平均值分别为0.48和8.96μmol/L)以及最高的氮磷比(DIN/P为43.3),为该海域春季甲藻赤潮频发提供了有利条件。夏季叶绿素高值区的硅氮比(Si/DIN)相对整个调查区较高,而春季和秋季却相近,这与夏季藻华种类主要是硅藻相一致。春、夏两季叶绿素高值区的悬浮物浓度(TSS)在时空比较上均显著低值。浮游动物高值区分布与叶绿素高值区分布虽不完全重合,但有交叉或两者相邻。GAM模型分析结果显示,各环境因子变化对长江口及邻近海域叶绿素变化的贡献可达70%以上,且主要影响因子为盐度和营养盐,而与TSS、浮游动物生物量和温度三因子的直接相关性不显著(p0.05)。受长江冲淡水的影响,盐度与DIN、PO4-P、SiO3-Si、TSS等因子间存在显著的相关关系(p0.001),说明盐度对叶绿素变化的影响可能体现了营养盐和光照条件等因子的作用。上述研究结果表明,在长江口及邻近海域,营养盐的上行效应是浮游植物现存量的主要控制作用,而光照条件和浮游动物生物量与浮游植物现存量虽然在时空分布上存在一定的联系,但非决定性控制因素。  相似文献   

4.
根据2009年8月“908”项目长江口补充调查总碱度(TAlk)、溶解无机碳(DIC)、pH值、溶解氧(DO)和叶绿素a(Chla)等数据的分析结果显示,长江口及邻近东海海域夏季溶解无机碳(DIC)含量分布范围在1 647.1~2 236.9 μmol/dm3之间,平均值为2 031.2 μmol/dm3;空间分布为由...  相似文献   

5.
根据2012年2、5、8和11月长江口4个季节航次综合调查资料,分析了长江口及其邻近海域溶解有机碳(DOC)时空分布特征,探讨了DOC分布与盐度、表观耗氧量(AOU)、化学耗氧量(COD)、叶绿素a以及颗粒有机碳(POC)间的关系。结果表明,2012年长江口区DOC的浓度范围在0.53~5.21mg/L之间,均值为1.86mg/L。DOC浓度秋季最高,夏季和冬季次之,春季最低。DOC空间分布整体呈现近岸高、远岸低的格局,高值区分布在口门内和近岸水域,外海区DOC浓度随着离岸距离的增加而逐渐降低。各季节DOC空间分布略有差异。DOC与盐度、COD以及POC的相关关系较强,与AOU和叶绿素a相关性较弱。2012年长江口有机碳以DOC为主,DOC对总有机碳(TOC)的平均贡献率为55.8%,其中冬季贡献最大(59.4%),其次为秋季(59.2%)和春季(55.3%),夏季贡献率最低(49.4%)。  相似文献   

6.
基于遥感数据,采用功率谱和相关性分析等方法,研究了长江口邻近海域海表温度(SST)的时空变化特征以及影响因素。结果表明:1982—2017年长江口邻近海域的SST 整体表现为每10 a升温约0.48 °C的趋势,且具有10.0,3.6,2.4和1.0 a的振荡周期。长期以来,冬、春、夏、秋四季的长江口邻近海域SST总体呈现升温趋势,其中春季的升温趋势最显著,而秋季变化趋势最不明显。研究海区的SST呈现明显西北—东南向温度递增的分布特征。此外,长江口径流量的变化对邻近海域的SST具有一定影响,从多年变化来看,径流量增大(减小),长江口邻近海域SST随之升高(降低),从月变化来看,3月、4月和9月的长江径流对SST有影响。气温对SST具有一定的强迫作用,大气温度的总体趋势是升高的,通过海气相互作用进行热传输,从而造成长江口邻近海域SST升温。  相似文献   

7.
长江口邻域叶绿素a和初级生产力的分布   总被引:46,自引:6,他引:40  
海水中的叶绿素a浓度是浮游植物现存量的重要指标,其分布反映出了水体中浮游植物的丰度及其变化规律.初级生产力反映了水域初级生产者通过光合作用生产有机碳的能力,是海洋生物链的第一个环节,是海洋生态系统研究的重要内容,也是海域生物资源评估的重要依据.河口及其邻近海域是人类活动较为频繁的海域,也是生物海洋学研究过程的重要区域.长江口是陆源物质输入东海的主要场所,径流把大量的悬浮泥沙和丰富的溶解营养盐带入海洋,造成了长江口邻近海域独特的生态环境特征,成为了诸多研究的焦点.  相似文献   

8.
2006 年 6 月 16 日和 20 日对长江口进行了叶绿素 a 浓度的现场周日监测.监测结果显示:叶绿素 a 浓度表层周日波动比中、底层明显,呈现出半日周期(~ 11 h)的变化,高潮时浓度达到峰值,低潮时浓度出现谷值.叶绿素 a 浓度的周日变化主要与海域特定的水动力条件(如潮汐、再悬浮作用和温盐跃层)密切相关,与各环境因子(温度、盐度、浊度、总无机氮、磷酸盐和硅酸盐)的周日波动没有显著的相关关系.  相似文献   

9.
本研究根据2003—2015年的叶绿素a浓度及海表温度、风速、光合有效辐射等环境资料的月平均数据,结合偏相关分析方法分析了黄、东海主要环境因子对9个生态特征区域浮游植物生长的影响,对黄、东海生态变化的预测具有重要意义。分析可得:黄、东海浮游植物生物量分布由大到小排列为长江口、台州列岛邻近海域、黄、东海交界处海域、东海南部,且外海浮游植物生物量小于近岸。叶绿素a浓度在黄、东海交界处海域外海与海表温度极显著负相关,在长江口与光合有效辐射显著正相关,在长江口外海与风速极显著负相关,在台州列岛与风速显著负相关,在南麂列岛与海表温度显著负相关,在福建近海与海表温度极显著负相关,在东海南部与风速极显著正相关,在黄、东海交界处的最相关环境因子有待增加其他环境因子进行分析。研究结果显示精细化研究每个生态代表性区域的最显著相关环境因子,能为海洋环境保护提供更精准的指导作用  相似文献   

10.
基于2010年10月在长江口海域海洋综合调查,利用多参数CTD现场调查数据、悬浮体浓度测定数据,对该区悬浮体和叶绿素的空间分布及影响因素进行系统的研究,探讨三峡工程蓄水7a以来长江口的悬浮体和叶绿素的分布特征及变化.结果表明:浊度值与悬浮体浓度存在良好的线性关系,盐度对该线性关系没有明显的影响;长江口及其邻近海域悬浮体主要分布在123°E以西的海域,表现为近岸高、离岸低,表层低、底层高,其分布主要受到水团、长江输入、上升流等的影响;叶绿素在123°E往东的海域含量较高,近岸低,在123°E~124°E之间叶绿素含量最高,其分布主要受到水团、浮游植物种类和季节变化及营养盐的共同影响.与三峡工程蓄水前对比,悬浮体高值区的界限往西移动了近半个经度,同季节的叶绿素含量的平均值降低.  相似文献   

11.
秋季长江口水体颗粒有机碳年际变化及影响因素分析   总被引:1,自引:0,他引:1  
根据2007—2012年长江口及其邻近海域4个航次(11月)调查资料,探讨了长江口秋季颗粒有机碳(POC)时空分布特征;结合长江口环境要素和陆源输入(径流、输沙),分析了秋季POC分布的主要影响因素。结果表明:(1)2007—2012年秋季长江口POC浓度范围为0.03—16.95mg/L,均值2.30mg/L,底层POC浓度高于表层。长江口表层POC浓度存在显著的年际变化特征。(2)长江口区POC分布呈现沿长江径流入海方向降低的趋势,高值区出现在口门附近偏南部水域。口门内和近岸水域POC显著高于近海水域。口门水域POC年际间相对稳定,近岸和近海水域年际变化显著。(3)长江口POC分布与盐度呈非保守性变化,悬浮物是POC分布的主要控制因素,多数年份POC与叶绿素a相关程度较弱。(4)河口来水来沙量对POC浓度具有较强的制约性,径流的主要影响区域在口门内和近岸区,输沙的主要影响区域在最大浑浊带和长江口北部水域。(5)入海输沙量与长江口水域POC相关性最强。咸淡水交汇引起的悬浮物沉积和沉积物的再悬浮强度决定口门内水域POC浓度,浑浊度较高的近岸水体POC对陆源输入泥沙的依赖性较强,长江口外侧海域初级生产力水平成为POC浓度的重要影响因素。  相似文献   

12.
为剖析长江口邻近海域春季硅藻藻华后期藻类沉降与底层水体缺氧现象之间的关系,作者于2011年春季,在长江口南部赤潮区采集了表层沉积物样品,并通过高效液相色谱法(HPLC),对浮游植物色素进行了分析。结果表明,硅藻藻华发生后,表层沉积物中叶绿素a(Chl a)、岩藻黄素(Fuco)和19’-丁酰氧基岩藻黄素(But-Fuco)含量有显著增加,高值区主要分布在调查海域东南侧50 m等深线外侧,与底层低氧水体分布区基本吻合。因此,硅藻藻华后沉降的藻类对于该海域夏季缺氧区的形成应具有一定作用,其具体过程和机制仍有待于研究。  相似文献   

13.
于2013年3月和8月研究了长江口及其邻近海域叶绿素a的分布特征,并对环境因子和长江冲淡水对浮游植物生物量分布的影响进行了探讨。结果表明,叶绿素a浓度在丰水期较高,平均值为5.18μg/L,最高值达32.05μg/L,现场海水出现变色现象;与同期历史资料对比分析,发现该海域叶绿素a浓度呈现出波动增长趋势。丰水期与枯水期叶绿素a的相对高值区均位于冲淡水的中部,122.5°E~123°E之间;丰水期在调查海域出现溶解氧低值区与低氧区,最低值仅为0.64 mg/L;发现低氧区出现位置北移、面积扩大和溶解氧最低值下降的趋势。底层溶解氧低值区分布与表层叶绿素高值区大致吻合,表明低氧现象与表层浮游植物的生长和现存量密切相关,在跃层存在的水体中表层浮游植物的大量繁殖易造成底层低氧区的出现。  相似文献   

14.
分析了2012年春季渤海中部及其邻近海域32个站点叶绿素a和环境因子的空间分布特征及其相互关系。结果发现:渤海中部靠近黄河口邻近水域相对于其他水域,呈现出相对较高的水温和较低的盐度,这与黄河淡水输入以及近岸水深相对较浅有密切关系。营养盐浓度在空间分布上表现为黄河口附近海域较高,在垂直分布上表现为中、底层高于表层,显示出黄河水输入与沉积物营养盐再释放的影响;此外,营养盐浓度与结构显示,渤海海域存在明显的磷和硅限制,磷限制尤其严重。叶绿素a浓度的空间分布显示,表层叶绿素a浓度的高值区出现在渤海湾湾口处,而中层与底层的叶绿素a浓度高值区出现在渤海中部。主成分分析结果表明,磷酸盐和温度是影响表层叶绿素a浓度的重要因素,而中、底层叶绿素a浓度主要受磷酸盐的影响。  相似文献   

15.
通过2012年夏季第五次北极科学考察期间在楚科奇海及其邻近海域现场调查所获得的数据分析研究了海域的粒度分级叶绿素a浓度和初级生产力。结果表明,叶绿素a浓度和初级生产力的高值均出现在楚科奇海陆架区,并且远高于深海区。去程时调查海域水层平均叶绿素a浓度的变化范围为0.32~15.66mg/m3,平均(2.77±3.96)mg/m3,高值区出现在南部邻近白令海峡海域、北部阿拉斯加巴罗近岸和冰缘区;初级生产力的范围为50.11~943.28mg/(m2d),高值出现在冰缘水华区。返程时水层平均叶绿素a浓度的变化范围为0.07~1.52mg/m3,平均(0.41±0.40)mg/m3,高值仍出现在陆架区,但比去程时低了一个数量级;初级生产力的分布范围为12.31~41.35mg/(m2d),高值出现在陆架区。浮游植物粒度分级测定结果表明,在生物量较低的深海区,叶绿素a浓度和初级生产力的粒级结构以微微型浮游生物(Pico级份)占优势(其贡献率分别为46.1%和56.9%),小型(Net级份)和微型(Nano级份)对总叶绿素a浓度的贡献差异极小,分别为26.6%和27.3%,对总初级生产力的贡献分别为23.8%和19.3%;而在生物量较高的水深小于200m的陆架区,Net级份叶绿素a浓度所占百分比最高,Pico级份次之,Nano级份最低,分别为59.8%、27.9%和12.3%,初级生产力的粒级结构中叶绿素a浓度所占百分比由高到低同样是Net、Pico和Nano,所占百分比分别为60.6%,32.2%和7.2%。  相似文献   

16.
针对目前利用实测数据对长江口邻近海域水质状况进行分析研究相对偏少的情况,基于“淞航”号2018年春季航次对该海域的综合观测,利用实验室水样分析数据对船载温盐深仪(CTD)的测量数据进行校正,并对该区域2018年春季时节悬浮物(TSM)和叶绿素a(Chl-a)浓度的空间插值结果进行分析。研究结果表明:CTD观测数据与水样分析数据呈较强线性相关关系。反距离权重插值对TSM和Chl-a浓度空间分布具有整体最优的效果。TSM浓度在近岸和近海底较高,在观测区域内出现两个高值中心;Chl-a浓度在近岸海域较高,有较明显的片状高值结构,垂向上表层较高。TSM与Chl-a浓度分布在长江口南北表现出不同的特征,且两者具有一定的负相关性。长江径流、外海洋流、潮汐混合等水动力过程是影响该区域TSM和Chl-a浓度分布的主要因素。  相似文献   

17.
南海北部海域叶绿素a浓度时空特征遥感分析   总被引:4,自引:1,他引:3  
利用2007-2010年MODIS的L2级叶绿素a浓度产品作为数据基础, 对叶绿素a浓度年平均和月平均数据进行分级分区处理, 研究南海北部海域叶绿素a浓度时空分布特征及其与海洋环境因素的关系。初步研究结果表明:2007-2010年在南海北部海域叶绿素a浓度的高值区(>5.0 mg/m3)主要分布在广东省沿岸河流的入海口, 分布范围在夏季最大, 在春秋次之, 在冬季最小;叶绿素a浓度的次高值区(1.0~5.0 mg/m3)主要分布在海岸线到50 m等深线之间的海域, 分布范围夏冬较大, 能扩展到50 m等深线附近, 而春秋较小, 会退缩到50 m等深线以内;叶绿素a浓度的中值区(0.3~1.0 mg/m3)主要分布在50 m到100 m等深线之间的海域, 时空变化复杂;叶绿素a浓度的低值区(<0.3 mg/m3)主要分布在100 m等深线以外的海域, 其区域平均值夏季最低, 春秋次之, 冬季最高, 同时该区域叶绿素a浓度在春夏秋三季空间分布较均匀, 而冬季受季风和黑潮入侵影响空间分布较为复杂。南海北部海域海表叶绿素a浓度的时空变化特征与季风、沿岸河流、海流、海表温度等海洋环境因素的变化有关。  相似文献   

18.
依据2011年春、夏两季黄、东海调查资料,分析了叶绿素a和初级生产力的空间分布和季节变化特征,并分析了主要影响因素。南黄海、东海北部春季叶绿素a平均含量为74.83mg/m2,夏季为23.84mg/m2,春季明显高于夏季。春季大部分海域叶绿素a含量垂直分布均匀,夏季则出现较为明显的分层现象,在次表层出现最大值。初级生产力水平春季为993.9mgC/(m2.d),夏季为1274mgC/(m2.d),与1984—1985年相比有所升高。春季高值区出现在黄海中部及长江口附近海域;夏季高值区主要分布在山东半岛南岸近海海域、长江口外的黄、东海交界海域以及浙江省沿岸海域。春季整个调查海区叶绿素a浓度与磷酸盐浓度呈显著负相关,与氮磷比呈显著的正相关性,表明黄、东海春季磷酸盐可能成为浮游植物生长的一个限制因子。  相似文献   

19.
黑潮源区及其邻近海域叶绿素a浓度的季节分布   总被引:6,自引:0,他引:6  
2001年冬季、2002年春季和秋季在琉球群岛、台湾岛和吕宋岛以东的西北太平洋黑潮源区及其邻近海域观测叶绿素a浓度季节分布及其粒级结构。结果表明,冬季表层平均叶绿素a浓度高于春季和秋季,台湾岛及以北岛链东南部的北部测区叶绿素a浓度高于巴士海峡及吕宋岛以东的南部海区。叶绿素a垂直分布呈真光层内随垂直深度增加而浓度增大,真光层下至水深200m随垂直深度增加而浓度降低的分布趋势。春季和秋季叶绿素a浓度粒级结构表明,微微型光合浮游生物(Pico级份)对总叶绿素a的贡献占优势,微型(Nano级份)次之,小型(Micro级份)所占比例最小。表层水光合浮游植物细胞丰度在(1.3~13.5)×103cells/dm3,以小粒径的硅藻占优势。呈现出微微型光合浮游生物在观测海区的重要性。  相似文献   

20.
绿硫细菌(green sulfur bacteria)的特征色素及其衍化产物,如细菌叶绿素d、细菌叶绿素e、绿硫菌烯(chlorobactene)和异海绵烯(isorenieratene)等可以作为标志物,指示水体真光层的无氧事件,以及水生生态系统在缺氧环境下的演变过程。但是,由于缺少色素标准品,相关研究工作受到制约。为此,本研究培养了两种典型绿硫细菌——Chlorobium phaeovibrioides(DSM269,褐色菌株)和Prosthecochloris vibrioformis(DSM260,绿色菌株),并应用高效液相色谱仪分析了两种细菌所产色素情况。结果在两株细菌中检测到了细菌叶绿素d(DSM260)、细菌叶绿素e(DSM269)和异海绵烯(DSM269),并获得各类色素的特征吸收光谱和保留时间。依据上述方法,对底层水体缺氧问题突出的长江口南部邻近海域表层沉积物样品进行了初步分析,但未检测到绿硫细菌色素。考虑到长江口邻近海域底层水体缺氧问题正在不断加剧,有必要将绿硫细菌色素作为一类重要的指标作进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号