首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid metal-liquid silicate partitioning of Fe, Ni, Co, P, Ge, W and Mo among a carbon-saturated metal and a variety of silicate melts (magnesian-tholeiitic-siliceous-aluminous-aluminosiliceous basalts) depends modestly to strongly upon silicate melt structure and composition. Low valency siderophile elements, Fe, Ni and Co, show a modest influence of silicate melt composition on partitioning. Germanium shows a moderate but consistent preference for the depolymerized magnesian melt. High valency siderophile elements, P, Mo, and W, show more than an order of magnitude decrease in metal-silicate partition coefficients as the silicate melt becomes more depolymerized. Detailed inspection of our and other published W data shows that polymerization state, temperature and pressure are more important controls on W partitioning than oxidation state. For this to be true for a high and variable valence element implies a secondary role in general for oxidation state, even though some role must be present. Equilibrium core segregation through a magma ocean of ‘ultrabasic’ composition can provide a resolution to the ‘excess’ abundances of Ge, P, W and Mo in the mantle, but the mantle composition alone cannot explain the excess abundances of nickel and cobalt in chondritic proportions.  相似文献   

2.
We determined the partition coefficients of 19 elements between metallic liquid and silicate liquid at 20 GPa and 2500°C, and between metallic liquid and silicate perovskite at 27 GPa and 2200°C. Remarkable differences were observed in the partitioning behaviors of Si, P, W, Re, and Pb among the silicate liquid, perovskite, and magnesiowüstite coexisting with metallic liquid, reflecting incompatibility of the elements in the silicate or oxide phase. We could not observe any significant difference in the partitioning behaviors of V, Cr, Mn, Co, Ni, and Cu among the phases coexisting with metallic liquid.

Comparison of the present partitioning data with those obtained previously at lower pressure and temperature suggests that the exchange partition coefficients, Kmet/sil, of Co, Ni, Mo, and W decrease, whereas those of V, Cr, and Mn increase and tend to approach unity with increasing pressure and temperature. We also made preliminary experiments to clarify the effect of sulfur on the partitioning behaviors. Sulfur lowers the exchange partition coefficients, Kmet/sil, of Mo and W between metallic liquid and silicate liquid significantly at 20 GPa and 2300°C.

The mantle abundances of Co, Ni, Cu, Mo, and W calculated for the metal-silicate equilibrium model are lower than those of the real mantle, whereas P, K, and Mn are overabundant in the calculated mantle. The discrepancies in the abundances of Co and Ni could be explained by the chemical equilibrium at higher pressure and temperature. Large discrepancies in Mo and W between the calculated and real mantles could be accounted for by the effect of sulfur combined with the effects of pressure and temperature on the chemical equilibrium. The mantle abundances of P, K, and Cu could be accounted for by volatile loss in the nebula, perhaps before accretion of the Earth, combined with the chemical equilibrium at higher pressure and temperature. Thus the observed mantle abundances of P, K, Co, Ni, Cu, Mo, and W may be consistent with a model of sulfur-bearing metal-silicate equilibrium in lower-mantle conditions.  相似文献   


3.
The elastic moduli of ScAlO3 perovskite, a very close structural analogue for MgSiO3 perovskite, have been measured between 300 and 600 K using high precision ultrasonic interferometry in an internally heated gas-charged pressure vessel. This new capability for high temperature measurement of elastic wave speeds has been demonstrated on polycrystalline alumina. The temperature derivatives of elastic moduli of Al2O3 measured in this study agree within 15% with expectations based on published single-crystal data. For ScAlO3 perovskite, the value of (∂KS/∂T)P is −0.033 GPa K−1 and (∂G/∂T)P is −0.015 GPa K−1. The relative magnitudes of these derivatives agree with the observation in Duffy and Anderson [Duffy, T.S., Anderson, D.L., 1989. Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res. 94, 1895–1912.] that |(∂KS/∂T)P| is typically about twice |(∂G/∂T)P|. The value of (∂KS/∂T)P for ScAlO3 is intermediate between those inferred less directly from V(P,T) studies of Fe-free and Fe- and Al-bearing MgSiO3 perovskites [Wang, Y., Weidner, D.J., Liebermann, R.C., Zhao, Y., 1994. PVT equation of state of (Mg,Fe)SiO3 perovskite: constraints on composition of the lower mantle. Phys. Earth Planet. Inter. 83, 13–40; Mao, H.K., Hemley, R.J., Shu, J., Chen, L., Jephcoat, A.P., Wu, Y., Bassett, W.A., 1991. Effect of pressure, temperature and composition on the lattice parameters and density of (Mg,Fe) SiO3 perovskite to 30 GPa. J. Geophys. Res. 91, 8069–8079; Zhang, Weidner, D., 1999. Thermal equation of state of aluminum-enriched silicate perovskite. Science 284, 782–784]. The value of |(∂G/∂T)|P for ScAlO3 is similar to those of most other mantle silicate phases but lower than the recent determination for MgSiO3 perovskite [Sinelnikov, Y., Chen, G., Neuville, D.R., Vaughan, M.T., Liebermann, R.C., 1998. Ultrasonic shear wave velocities of MgSiO3 perovskite at 8 GPa and 800K and lower mantle composition. Science 281, 677–679].

Combining the results from the previous studies and current measurements on ScAlO3 perovskite, we extracted the parameters (q and γ0) needed to fully specify its Mie–Grüneisen–Debye equation-of-state. In this study, we have demonstrated that acoustic measurements of KS(T), unlike V(P,T) data, tightly constrain the value of q. It is concluded that ScAlO3 has ‘normal’ γ0 (1.3) and high q (3.6). The high value of q indicates that ScAlO3 has very strong intrinsic temperature dependence of the bulk modulus; similar behaviour has been observed in measurements on Fe- and Al-bearing silicate perovskites (Mao et al., 1991; Zhang and Weidner, 1999).  相似文献   


4.
We present here a new model of core formation which is based on the current understanding of planetary accretion and discuss its implications for the chemistry of the Earth's mantle and core. Formation of the Earth by hierarchical accretion of progressively larger bodies on a time scale much longer than that of solid body differentiation in the nebula indicates that a significant fraction of metal in the core could be inherited from preterrestrially differentiated planetesimals. An analysis of the segregation of this iron to form the core suggests that most of the metal settles to the core without interaction with silicates; only a small fraction of the metal chemically equilibrates at high temperatures and pressures with the silicates. The siderophile element abundances in the mantle are considered to be a consequence of a two-step equilibration with iron, once preterrestrially in the planetesimals at low temperatures and pressures, and later in the Earth at high temperatures and pressures. The highly siderophile elements such as Re, Au and the platinum group elements in the mantle are essentially excluded from silicates from the preterrestrial equilibration. We attribute the abundances of these elements in the mantle to the later equilibration in the Earth at substantially reduced metal-silicate partition coefficients (Dmet/sil), for which there is a considerable experimental evidence now. Mass balance considerations constrain the fraction of core metal involved in such an equilibration at approximately 0.3 – 0.5%. The model accounts for the levels and the near-chondritic ratios of the highly siderophile elements in the mantle. The mantle abundances of the less siderophile elements are largely determined by preterrestrial metal-silicate equilibrium and are not significantly affected by the second equilibration. The extreme depletion of sulfur and the lack of silicate melt-sulfide signature in the noble metal abundances in the mantle are natural consequences of this mode of core formation. Sulfur was added to the magma ocean during the high-T, high-P equilibration in the Earth, not extracted from it by sulfide segregation to the core. Except for Ni and Co, the overall siderophile abundances of the mantle can be well matched in this two-step equilibration model.

The mantle characteristics of Ni and Co are unique to the Earth and hence suggest a terrestrial process as the likely cause. One such process is the flotation and addition of olivine to the primitive upper mantle. In our model of core formation, neither the elemental and isotopic data of Re---Os, nor the low sulfur content of the mantle remains as an objection to the existence of a magma ocean and olivine flotation.

The small fraction of core metal that equilibrates with silicates at high T and P suggests that the light elements O, Si or H are unimportant in the core, leaving S (and possibly C) as prime candidates. Sulfur, as FeS associated with incoming iron metal, is directly sequestered to the core along with the bulk of the iron metal. It appears unlikely that other light elements can be added to the core after its formation. U and Th are excluded from the core but the model allows for entry of some K; however, the extent to which K serves as a heat source in the core remains uncertain.

The model is testable in two ways. One is by investigation of the metal-silicate partitioning at high temperatures and pressures under magma ocean conditions to determine if the (Dmet/sil) values are lowered to the levels required in the model. The other is by experiments to determine if a solvus closure between metal and silicate liquids occurs at high temperatures relevant to a magma ocean.  相似文献   


5.
Recent understandings of planetary accretion have suggested that accumulation of a small number of large planetesimals dominates intermediate to final growth stages of the terrestrial planets, with impact velocity high enough to induce extensive melting of the planetesimal and target materials, resulting in formation of a large molten region in which gravitational segregation of silicate and metal, that is, core formation proceeds. In case of homogeneous accretion, volatiles contained in each planetesimal are likely subjected to partitioning among gas, silicate melt, and molten metallic iron at significantly high temperatures and pressures in such a massive molten region. Each phase would subsequently form the proto-atmosphere, -mantle, or-core, respectively. Such chemical reprocessing of H and C associated with core formation, which is followed by both degassing from mantle and atmospheric escape, may result in a diverse range of H2O/CO2 in planetary surface environments, which mainly depends on the H and C content relative to metallic iron in planetary building stones. This may explain inferred difference in volatile distribution between the Earth's (relatively H2O-rich, CO2-poor) and the martian (H2O-poor, CO2-rich) surface environments. Such volatile redistribution may be systematically described by using the retentivity of H2O, ξ, defined as follows: ξ = 1 − ([CO]0 + 2[CH4]0 + 2[C(gr)]0)/[H2O]0, where [i]0 represents mol number of species i partitioned into non-metallic phases, that is, gas and silicate melt in impact-induced molten region. When ξ > 0.5, relatively H2O-rich and CO2-poor surface environment may eventually evolve, although a small portion of H2O partitioned into the NON=metallic phases are possibly consumed by subsequent chemical reactions with reduced C-species with producing CO2 and H2. When ξ< 0.5, on the contrary, H2O consumption by the above reactions and selective loss of H2 to space may result in relative H2O-depleted and CO2-rich surface environment. Given the building stone composition by the two-component model by Ringwood (1977) and Wänke (1981), ξ is found to decrease with increasing the mixing fraction of the volatile-rich component: ξ > 0.5 for the mixing fraction smaller than about 15–20% and ξ < 0 for the mixing fraction larger than about 20–30%. This is not significantly dependent on temperature and pressure in molten region and H/C ratio in the building stone. The estimated mixing fraction of the volatile-rich component, about 10% for the Earth and 35% for Mars, is consistent with the observed difference in volatile distribution between the surfaces of both planets.  相似文献   

6.
New measurements of high field magnetisation (Is), remanence (Is), and coercive force (Hc) are presented between 4 and 300 K for x = 0.4, 0.5, 0.6 and 0.8 (Fe3−xTixO4). For x = 0.4 a pronounced minimum is found at T100 K and for X = 0.5 and 0.6 broad minima occur around T200 K, apparently coinciding with the temperature for K10. The magnetic properties below T60 K ar complex and were found to be significantly changed by cooling in the presence of a high magnetic field. With no applied field during cooling, a distinct decrease in Is is observed for T60 K, at which temperature there is a peak in the value of Irs. The effe cooling is to eliminate the sharp decrease in Is, reduce Hc and to increase Irs below 60 K to a value the peak value, giving essentially a square hysteresis loop. The results are interpreted in terms of a form of crystallographic phase transition coupled to the magnetisation direction, possibly by the magnetostriction. Square hysteresis loops in ferrites have been explained by the presence of Jahn-Teller ions and, in the present case, the low temperature of the observed effect may be a consequence of the weak Fe2+ Jahn-Teller ion coupled to other effects such as spin-lattice coupling.

Details of this work can be found in Schmidbauer, E. and Readman, P.W., 1982. Low temperature magnetic properties of Ti-rich Fe---Ti spinels. J. Magn. Magn. Mat., 27: 114–118. A paper reporting further work on Fe2.4Ti0.6O0.4 is in preparation.  相似文献   


7.
Oyster tissues may be affected by the concentration of ions in the water (i.e. salinity) and by contaminants such as petroleum hydrocarbons and heavy metals. Oyster populations from three coastal lagoons (Mecoacan, Camen and Machona) in the Mexican state of Tabasco, in the southern Gulf of Mexico, were sampled for pollution studies during June, September and November 1992 and May 1993. No statistically significant relationships were found between the concentration of contaminants in the body tissues of organisms and their shell length, soft tissue weight and particulate matter; however, a significant correlation was found between condition index and salinity (r = −0.72). Generally, the lowest weights, shell lengths and indices of condition were found in Mecoacan. The concentrations of cadmium and zinc were inversely related to salinity (r = −0.52 and r = −0.32, respectively), so a riverine input is suspected. On average, 63% of the individual oysters showed histopathological lesions, which can be related to salinity and to the concentrations of cadmium and the unresolved fraction of hydrocarbons (UCM). The response of each of the tissues analysed was different. The percentage of individuals with damage in the digestive diverticulum increased linearly with UCM (r = 0.71), but in a saturation-response fashion (Y = B0B0/(1 + XB1) r = 0.66) with cadmium. The percentage of individuals with damage in the gills increased linearly with weight (r = 0.68), cadmium (r = 0.60) and UCM (r = 0.60). The lesions in the connective tissue decreased linearly (r = −0.82) with salinity, but increased in a saturation-response way (r = 0.83) with cadmium. Finally, the percentage of individuals with lesions in the digestive tube decreased linearly with salinity (r = −0.59). Only the damage to the gills and digestive diverticula were dependent on gonadal maturity, while damage to the connective tissue was dependent on the sex of the individual.  相似文献   

8.
The ferromagnetism of irons, stony-irons, E-, H-, L- and LL-chondrites and achondrites is due to a metallic phase comprising mostly Fe and Ni and small amounts of Co and P. The ferromagnetic constituent in non-metamorphosed C-chondrites is magnetite, but some metamorphosed C-chondrites contain FeNi metallic grains too.

Among the stony meteorites, the content of metals as determined by their saturation magnetization (IS) sharply decreases in the order E → H → L → LL → achondrites, whereas the IS value for magnetite and additional metals in C-chondrites ranges from the IS value of achondrites to that of L-chondrites.

With an increase of Ni-content in the metallic phase in chondrites of the order E → H → L → LL → C, the relative amount of Ni-poor kamacite magnetization, IS(), in the total IS decreases in the same order, from IS()/IS 1 for E-chondrites to IS()/IS 0 for C-chondrites. Thus, E-, H-, L-, LL- and C-chondrites and achondrites are well separated in a diagram of IS()/IS versus I, which could be called a magnetic classification diagram for stony meteorites.

As the surface skin layer of all meteorites is anomalously magnetized, it must be removed and the natural remanent magnetization (NRM) of the unaltered interior only must be examined for the paleomagnetic study. The NMR of C-chondrites is highly stable and that of achondrites is reasonably stable against AF-demagnetization, whereas the NMR of E-chondrites and ordinary chondrites as well as stony-iron meteorites is not very stable in most cases. Although the NRM of iron meteorites is reasonably stable, it is not attributable to the extraterrestrial magnetic field.

The paleointensity for Allende C3-chondrite is estimated to be about 1.0 Oe assuming that its NRM is of TRM origin. The paleointensity for other reasonably reliable C-chondrites (Orgueil, Mighei, Leoville and Karoonda) is also around 1 Oe.

The paleointensity for two achondrites has been determined to be about 0.1 Oe. The NRM of other achondrites also suggests that their paleointensity is roughly 0.1 Oe.

The NRM of ordinary chondrites is less stable than that of C-chondrites and achondrites so that the estimated paleointensity for ordinary chondrites is less reliable. The paleointensity for comparatively reliable ordinary chondrites ranges from 0.1 to 0.4 Oe.

The paleointensity values of 1 Oe for C-chondrites and 0.1 Oe for achondrites may represent the early solar nebula magnetic field about 4.5 × 109 years ago. A possibility that the paleomagnetic field for achondrites was a magnetic field attributable to a dynamo within a metallic core of their parent planet may also not be rejected.  相似文献   


9.
Experiments [T. Irifune (1994) Nature 370, 131–133; E. Ito et al. (1998) Geophys. Res. Lett. 25, 821–824; A. Kubo, M. Akaogi (2000) Phys. Earth Planet. Int. 121, 85–102] indicate that (Mg,Fe)SiO3 perovskite, commonly believed to be the most abundant mineral in the Earth, is the preferred host phase of Al2O3 in the Earth’s lower mantle. Aiming to better understand the effects of Al2O3 on the thermoelastic properties of the lower mantle, we use atomistic models to examine the chemistry and elasticity of solid solutions within the MgSiO3(perovskite)–Al2O3(corundum)–MgO(periclase) mineral assemblage under conditions pertinent to the lower mantle: low Al cation concentrations, P=25–100 GPa, and T=1000–2000 K. We assess the relative stabilities of two likely substitution mechanisms of Al into MgSiO3 perovskite in terms of reactions involving MgSiO3, MgO, and Al2O3, in a manner similar to the 0 Kelvin calculations of Brodholt [J.P. Brodholt (2000) Nature 407, 620–622] and Yamamoto et al. [T. Yamamoto et al. (2003) Earth Planet. Sci. Lett. 206, 617–625]. We determine the equilibrium composition of the assemblage by examining the chemical potentials of the Al2O3 and MgO components in solid solution with MgSiO3, as functions of concentration. We find that charge coupled substitution dominates at lower mantle pressures and temperatures. Oxygen vacancy-forming substitution accounts for 3–4% of Al substitution at shallow lower mantle conditions, and less than 1% in the deep mantle. For these two pressure regimes, the corresponding adiabatic bulk moduli of aluminous perovskite are 2% and 1% lower than that of pure MgSiO3 perovskite.  相似文献   

10.
A new method is described for estimating: (a) the meridional electric current density, jθ, (b) the vertical growth rate of the zonal magnetic field, ∂Bφ/∂r, or its scale-height, Bφ/∂Bφ/∂r) and (c) the vertical growth rate of the vertical current density, ∂jr/∂r, at a few isolated points on the top surface of the Earth's core from observations of the internal geomagnetic field at the Earth's surface. The theoretical technique rests on combining unaccelerated, gravitationally-driven Boussinesq fluid dynamics of the core with frozen-flux electromagnetism, the mantle being treated as a spherically symmetric insulator.

Insertion into this theory of main field models for epochs 1965, 1975 leads to preliminary values for these quantities of magnitude: (a) jθ 1 A/m2, (b) ∂Bφ/∂r 10−6 T/m or Bφ/(∂Bφ/∂r) 10 m, (c) ∂jr/∂r 10−6 A/m3. Some geophysical implications of these estimates are discussed.  相似文献   


11.
The paper deals with continuous-state reservoirs in discrete time, in terms of the (continuous) Moran transform Ut = Zt + Xt of the (discontinuous) storage levels Zt. In the non-seasonal case, if the inflows Xt have a first-order Markov structure, the modified storage levels Ut have a second-order Markov structure. It is shown that, for each value of u, the limit p(u,v) as t → ∞ of the joint density pt + 1 (u, v) of Ut+ 1 at u and Ut at v satisfies a certain non-standard first-order linear integral equation of the form
or, equivalently, a standard second-order equation of the form
In the seasonal case, with two seasons, the corresponding bivariate density p(u,v) for consecutive seasons satisfies a second-order integral equation of the form
the kernel being a function of the season-to-season inflow transition densities.  相似文献   

12.
Melting relations of β-quartz were experimentally determined at 1.0 GPa (1900±20 °C), 1.5 GPa (2033±20 °C), and 2.0 GPa (2145±20 °C) using a new high-pressure assembly in a piston–cylinder apparatus and substantial differences were found with data previously reported. The new melting data of β-quartz were combined and optimized with all available thermodynamic, volumetric, and phase equilibria data for β-cristobalite, β-quartz and coesite to produce a PT liquidus diagram for silica valid up to 6.0 GPa. Using the new optimized thermodynamic parameters, the invariant point β-cristobalite+β-quartz+liquid and β-quartz+coesite+liquid were determined to lie at 1687±17 °C and 0.457 GPa, and 2425±25 °C and 5.00 GPa, respectively.  相似文献   

13.
It has been proposed that the high concentrations of moderately siderophile elements (e.g. Ni and Co) in the Earth’s mantle are the result of metal–silicate equilibration at the base of a deep magma ocean that formed during Earth’s accretion. According to this model, liquid metal ponds at the base of the magma ocean and, after equilibrating chemically with the overlying silicate liquid at high pressure (e.g. 25–30 GPa), descends further as large diapirs to form the core. Here we investigate the kinetics of metal–silicate equilibration in order to test this model and place new constraints on processes of core formation. We investigate two models: (1) Reaction between a layer of segregated liquid metal and overlying silicate liquid at the base of a convecting magma ocean, as described above. (2) Reaction between dispersed metal droplets and silicate liquid in a magma ocean. In the liquid-metal layer model, the convection velocity of the magma ocean controls both the equilibration rate and the rate at which the magma ocean cools. Results indicate that time scales of chemical equilibration are two to three orders of magnitude longer than the time scales of cooling and crystallization of the magma ocean. In the falling metal droplet model, the droplet size and settling velocity are critical parameters that we determine from fluid dynamics. For likely silicate liquid viscosities, the stable droplet diameter is estimated to be ∼1 cm and the settling velocity ∼0.5 m/s. Using such parameters, liquid metal droplets are predicted to equilibrate chemically after falling a distance of <200 m in a magma ocean. The models indicate that the concentrations of moderately siderophile elements in the mantle could be the result of chemical interaction between settling metal droplets and silicate liquid in a magma ocean but not between a segregated layer of liquid metal and overlying silicate liquid at the base of the magma ocean. Finally, due to fractionation effects, the depth of the magma ocean could have been significantly different from the value suggested by the apparent equilibration pressure.  相似文献   

14.
In this study, three receiver function stacking methods are used to study the detailed crust and upper mantle structure beneath south-central Alaska. We used teleseismic waveform data recorded by 36 stations in the Broadband Experiment Across the Alaska Range (BEAAR) and 4 permanent stations in Alaska. H − κ stacking method using P-to-S converted wave and its multiply reflected waves between the Earth's surface and the Moho discontinuity is adopted to estimate the crustal thickness (H) and average crustal VP/VS ratio (κ) in this region. The receiver function results for 24 stations show that the crustal thickness under Alaska ranges from 26.0 to 42.6 km with an average value of 33.8 km, and the VP/VS ratio varies from 1.66 to 1.94 with an average value of 1.81 which corresponds to an average Poisson's ratio of 0.277 with a range from 0.216 to 0.320. High Poisson's ratios under some stations are possibly caused by partial melting in the crust and the uppermost mantle. Common converted point (CCP) stacking results of receiver functions along three lines show clear Moho and slab images under this subduction zone. The depths of the slab from our CCP stacking images are consistent with those estimated from the Wadati–Benioff Zone (WBZ). In the area between two stations DH2 (147.8°W, 63.3°N) and DH3 (147.1°W, 63.0°N), a Moho depth offset of about 10 km is found by both the H − κ and CCP stacking techniques. Common depth point (CDP) stacking of receiver functions shows not only the 410-, 520- and 660-km discontinuities, but also significant variations (−30 to 15 km) in the transition zone thickness under the southwest and southeast parts of the study region. The transition zone becomes thinner by 20–30 km, indicating that the temperature there is 150–200 K higher than that of the normal mantle.  相似文献   

15.
The oxygen fugacity (f(O2)) values recorded by diamondiferous peridotite and eclogite xenoliths from Siberia indicate that the redox state of the ancient lithosphere is heterogeneous on a scale of at least four log units, mainly in the range between the wüstite-magnetite (WM) and iron-wüstite (IW) oxygen buffers. Highly reduced peridotites can be interpreted as relict from earlier lower f(O2). The f(O2) values recorded by ‘fertile’ and less modified spinel peridotites from Mongolia, Baikal and Tien-Shan show that the redox state of the lithosphere beneath central Asia and Tien-Shan is heterogeneous on a scale of 2–3 log units, mainly in the range between the WM and IW + 1 oxygen buffers. These data provide evidence for the presence of a lower-f(O2) regime of carbon-bearing mantle beneath the Baikal rift zone and Tien-Shan, and the oxidation of diapirs ascending from the asthenosphere. The ‘dry’ xenoliths from Mongolia primarily reflect closed system behavior in the upper mantle, the f(O2) of which is buffered by ferric-ferrous redox equilibrium. The observed evolution of f(O2) values is closely linked to the distribution of volatile species in the mantle. H2O and CO2 are the dominant volatiles for the more depleted and oxidized part of peridotites, and CH4 for the more reduced and less modified part. It is proposed that the upper mantle was originally more reduced and has become progressively more oxidized, resulting perhaps largely from the preferential loss of hydrogen and carbon during melting. The oxygen budget of the upper mantle results from the opposing contributions of crustal recycling and transfer of carbon-bearing material from the deep mantle.  相似文献   

16.
Phase relations in Mg0.5Fe0.5SiO3 and Mg0.25Fe0.75SiO3 were investigated in a pressure range from 72 to 123 GPa on the basis of synchrotron X-ray diffraction measurements in situ at high-pressure and -temperature in a laser-heated diamond-anvil cell (LHDAC). Results demonstrate that Mg0.5Fe0.5SiO3 perovskite is formed as a single phase at 85–108 GPa and 1800–2330 K, indicating a high solubility of FeO in (Mg,Fe)SiO3 perovskite at high pressures. Post-perovskite appears coexisting with perovskite in Mg0.5Fe0.5SiO3 above 106 GPa at 1410 K, the condition very close to the post-perovskite phase transition boundary in pure MgSiO3. The coexistence of perovskite and post-perovskite was observed to 123 GPa. In addition, post-perovskite was formed coexisting with perovskite also in Mg0.25Fe0.75SiO3 bulk composition at 106–123 GPa. In contrast to earlier experimental and theoretical studies, these results show that incorporation of FeO stabilizes perovskite at higher pressures. This could be due to a larger ionic radius of Fe2+ ion, which is incompatible with a small Mg2+ site in the post-perovskite phase.  相似文献   

17.
In the present work, we built a mathematical model of polychlorinated biphenyl (PCB) bioaccumulation in Perna viridis, namely, a one-compartment model with a time dependent incorporation rate R (μg g−1 lipid per ppb water per day), with positive substrate cooperativity as the underlying physical mechanism. The temporal change of the PCB concentration Q (μg g−1 lipid) in the soft tissues of the mussel depends on the competition of the input rate RW and the output rate kQ, where W is the concentration of PCB in water (ppb water) and k is the elimination rate (per day). From our experimental data, k=0.181±0.017 d−1. The critical concentration in water Wc for positive substrate cooperativity was found to be 2.4 ppb. Below Wc, R is a constant. For a water concentration of 0.5 ppb Aroclor 1254, R=24.0±2.4 μg g−1 lipid ppb−1 d−1. Above Wc, positive substrate cooperativity comes into effect and R becomes a function of time and dependent on the concentration Q in a form RQ/(Q+δ). This is the case for a water concentration of 5 ppb Aroclor 1254, where γ=15.1 μg g−1 lipid ppb−1 d1 and δ≈200 μg g−1 lipid. From this model, the uptake is exponentially increasing when the PCB concentration in the mussel is small compared to 200 μg g−1 lipid, and hyperbolically increasing when the concentration is large compared to 200 μg g−1 lipid, which are consistent with the experimental data. The model is useful for understanding the true processes taking place during the bioaccumulation and for risk assessment with higher confidence. Future experimental data which challenge the present model are anticipated and in fact desirable for improvement and perfection of the model.  相似文献   

18.
Numerical modeling of mantle convection by Liu (1994, Science, 264: 1904–1907) favors a two-layer convection, if the results are reinterpreted for the correct phase relations in (Mg,Fe)2SiO4. The resulting chemical isolation of the upper and lower mantle suggests a highly differentiated and layered upper mantle to account for the discrepancy between the observed compositions of mantle xenoliths and the cosmic abundances of elements. It is shown that a layered upper mantle with a hidden reservoir can have a structure consistent with the observed seismic velocity profiles and an average bulk composition corresponding to the cosmic abundances. The evolution of the upper mantle and the origin of komatiites are discussed in the context of the proposed model.  相似文献   

19.
Chemical and isotopic ratio (He, C, H and O) analysis of hydrothermal manifestations on Pantelleria island, the southernmost active volcano in Italy, provides us with the first data upon mantle degassing through the Sicily Channel rift zone, south of the African–European collision plate boundary. We find that Pantelleria fluids contain a CO2–He-rich gas component of mantle magmatic derivation which, at shallow depth, variably interacts with a main thermal (100°C) aquifer of mixed marine–meteoric water. The measured 3He/4He ratios and δ13C of both the free gases (4.5–7.3 Ra and −5.8 to −4.2‰, respectively) and dissolved helium and carbon in waters (1.0–6.3 Ra and −7.1 to −0.9‰), together with their covariation with the He/CO2 ratio, constrain a 3He/4He ratio of 7.3±0.1 Ra and a δ13C of ca. −4‰ for the magmatic end-member. These latter are best preserved in fluids emanating inside the active caldera of Pantelleria, in agreement with a higher heat flow across this structure and other indications of an underlying crustal magma reservoir. Outside the caldera, the magmatic component is more affected by air dilution and, at a few sites, by mixing with either organic carbon and/or radiogenic 4He leached from the U–Th-rich trachytic host rocks of the aquifer. Pantelleria magmatic end-member is richer in 3He and has a lower (closer to MORB) δ13C than all fluids yet analyzed in volcanic regions of Italy and southern Europe, including Mt. Etna in Sicily (6.9±0.2 Ra, δ13C=−3±1‰). This observation is consistent with a south to north increasing imprint of subducted crustal material in the products of Italian volcanoes, whose He and C (but also O and Sr) isotopic ratios gradually evolve towards crustal values northward of the African–Eurasian plate collision boundary. Our results for Pantelleria extend this regional isotopic pattern further south and suggest the presence of a slightly most pristine or ‘less contaminated’, 3He-richer mantle source beneath the Sicily Channel rift zone. The lower than MORB 3He/4He ratio but higher than MORB CO2/3He ratio of Pantelleria volatile end-member are compatible with petro-geochemical evidence that this mantle source includes an upwelling HIMU–EM1-type asthenospheric plume component whose origin, according to recent seismic data, may be in the lower mantle.  相似文献   

20.
We have investigated the hypothesis that mantle Pb isotope ratios reflect continued extraction of Pb into the Earth's core over geologic time. The Pb, Sr and Nd isotopic compositions, and the abundance of siderophile and chalcophile elements (W, Mo and Pb) and incompatible lithophile elements have been determined for a suite of ocean island and mid-ocean ridge basalt samples. Over the observed range in Pb isotopic compositions for oceanic rocks, we found no systematic variation of siderophile or chalcophile element abundances relative to abundances of similarly incompatible, but lithophile, elements. The high sensitivity of theMo/Pr ratio to segregation of Fe-metal or S-rich metallic liquid (sulfide) and the observed constantMo/Pr ratio rules out the core formation model as an explanation for the Pb paradox. The mantle and crust have the sameMo/Pr and the sameW/Ba ratios, suggesting that these ratios reflect the ratio in the Earth's primitive mantle.

Our data also indicate that thePb/Ce ratio of the mantle is essentially constant, but the presentPb/Ce ratio in the mantle ( 0.036) is too low to represent the primitive value ( 0.1) derived from Pb isotope systematics. HigherPb/Ce ratios in the crust balance the lowPb/Ce of the mantle, and crust and mantle appear to sum to a reasonable terrestrialPb/Ce ratio. The constancy of thePb/Ce ratio in a wide variety of oceanic magma types from diverse mantle reservoirs indicates this ratio is not fractionated by magmatic processes. This suggests crust formation must have involved non-magmatic as well as magmatic processes. Hydrothermal activity at mid-ocean ridges may result in significant non-magmatic transport of Pb from mantle to crust and of U from crust to mantle, producing a higherU/Pb ratio in the mantle than in the total crust. We suggest that the lower crust is highly depleted in U and has unradiogenic Pb isotope ratios which balance the radiogenic Pb of upper crust and upper mantle. The differences between thePb/Ce ratio in sediments, this ratio in primitive mantle, and the observed ratio in oceanic basalts preclude both sediment recycling and mixing of primitive and depleted reservoirs from being important sources of chemical heterogeneities in the mantle.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号