首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steerable wavelet analysis of CMB structures alignment   总被引:2,自引:0,他引:2  
This paper reviews the application of a novel methodology for analysing the isotropy of the universe by probing the alignment of local structures in the CMB. The strength of the proposed methodology relies on the steerable wavelet filtering of the CMB signal. One the one hand, the filter steerability renders the computation of the local orientation of the CMB features affordable in terms of computation time. On the other hand, the scale-space nature of the wavelet filtering allows to explore the alignment of the local structures at different scales, probing possible different phenomena. We present the WMAP first-year data analysis recently performed by the same authors (Wiaux et al.), where an extremely significant anisotropy was found. In particular, a preferred plane was detected, having a normal direction with a northern end position at (θ) = (34°, 331°), close to the northern end of the CMB dipole axis. In addition, a most preferred direction was found in that plane, with a northern end direction at (θ) = (71°, 91°), very close to the north ecliptic pole. This result synthesised for the first time previously reported anomalies identified in the direction of the dipole and the ecliptic poles axes. In a forthcoming paper (Vielva et al.), we have extended our analysis to the study of individual frequency maps finding first indications for discarding foregrounds as the origin of the anomaly. We have also tested that the preferred orientations are defined by structures homogeneously distributed in the sky, rather than from localised regions. We have also analysed the WMAP 3-year data, finding the same anomaly pattern, although at a slightly lower significance level.  相似文献   

2.
The statistical expectation values of the temperature fluctuations and polarization of cosmic microwave background (CMB) are assumed to be preserved under rotations of the sky. We investigate the statistical isotropy (SI) of the CMB maps recently measured by the Wilkinson microwave anisotropy probe (WMAP) using the bipolar spherical harmonic formalism proposed in Hajian and Souradeep [Hajian, A., Souradeep, T. (2003) Astrophys. J. Lett. 597, L5] for CMB temperature anisotropy and extended to CMB polarization in Basak, Hajian and Souradeep [Basak, S., Hajian, A., Souradeep, T. (2006) Phys. Rev. D74, 02130(R)]. The Bipolar Power Spectrum (BiPS) had been measured for the full sky CMB anisotropy maps of the first year WMAP data and now for the recently released three years of WMAP data. We also introduce and measure directional sensitive reduced Bipolar coefficients on the three year WMAP ILC map. Consistent with our published results from first year WMAP data we have no evidence for violation of statistical isotropy on large angular scales. Preliminary analysis of the recently released first WMAP polarization maps, however, indicate significant violation of SI even when the foreground contaminated regions are masked out. Further work is required to confirm a possible cosmic origin and rule out the (more likely) origin in observational artifact such as foreground residuals at high galactic latitude.  相似文献   

3.
The remarkable improvement in the estimates of different cosmological parameters in recent years has been largely spearheaded by accurate measurements of the angular power spectrum of cosmic microwave background (CMB) radiation. This has required removal of foreground contamination as well as detector noise bias with reliability and precision. Recently, a novel model-independent method for the estimation of CMB angular power spectrum from multi-frequency observations has been proposed and implemented on the first year WMAP (WMAP-1) data by Saha et al. [Saha, R., Jain, P., Souradeep, T., 2006. ApJL, 645, L89]. We review the results from WMAP-1 and also present the new angular power spectrum based on three years of the WMAP data (WMAP-3). Previous estimates have depended on foreground templates built using extraneous observational input to remove foreground contamination. This is the first demonstration that the CMB angular spectrum can be reliably estimated with precision from a self contained analysis of the WMAP data. The primary product of WMAP are the observations of CMB in 10 independent difference assemblies (DA) distributed over five frequency bands that have uncorrelated noise. Our method utilizes maximum information available within WMAP data by linearly combining DA maps from different frequencies to remove foregrounds and estimating the power spectrum from the 24 cross-power spectra of clean maps that have independent noise. An important merit of the method is that the expected residual power from unresolved point sources is significantly tempered to a constant offset at large multipoles (in contrast to the l2 contribution expected from a Poisson distribution) leading to a small correction at large multipoles. Hence, the power spectrum estimates are less susceptible to uncertainties in the model of point sources.  相似文献   

4.
Here is discussed various ways by which the cosmic microwave background (CMB) radiation can be use to measure the velocities of matter in the universe. We include some new statistical techniques for using the kinetic Sunyaev–Zel’dovich (kSZ) effect and integrated Sachs–Wolfe (ISW) effect to determine velocities by correlating wide area CMB maps with overlapping large-scale structure (LSS) surveys.  相似文献   

5.
In the era of high precision CMB measurements, systematic effects are beginning to limit the ability to extract subtler cosmological information. The non-circularity of the experimental beam has become progressively important as CMB experiments strive to attain higher angular resolution and sensitivity. The effect of non-circular beam on the power spectrum is important at multipoles larger than the beam-width. For recent experiments with high angular resolution, optimal methods of power spectrum estimation are computationally prohibitive and sub-optimal approaches, such as the Pseudo-Cl method are used. We provide an analytic framework for correcting the power spectrum for the effect of beam non-circularity and non-uniform sky coverage (including incomplete/masked sky maps). The approach is perturbative in the distortion of the beam from non-circularity allowing for rapid computations when the beam is mildly non-circular. We advocate that when the non-circular beams are important, it is computationally advantageous to employ ‘soft’ azimuthally apodized masks whose spherical harmonic transforms die down fast with m.  相似文献   

6.
The COsmic Foreground Explorer (COFE) is a balloon-borne microwave polarimeter designed to measure the low-frequency and low-ℓ characteristics of dominant diffuse polarized foregrounds. Short duration balloon flights from the Northern and Southern Hemispheres will allow the telescope to cover up to 80% of the sky with an expected sensitivity per pixel better than 100 μK/deg2 from 10 GHz to 20 GHz. This is an important effort toward characterizing the polarized foregrounds for future CMB experiments, in particular the ones that aim to detect primordial gravity wave signatures in the CMB polarization angular power spectrum.  相似文献   

7.
Fast heuristically weighted, or pseudo-C, estimators are a frequently used method for estimating power spectra in CMB surveys with large numbers of pixels. Recently, Challinor and Chon showed that the E–B mixing in these estimators can become a dominant contaminant at low noise levels, ultimately limiting the gravity wave signal which can be detected on a finite patch of sky. We define a modified version of the estimators which eliminates E–B mixing and is near-optimal at all noise levels.  相似文献   

8.
The Atacama Cosmology Telescope is a project to map the microwave background radiation at arcminute angular resolution and high sensitivity in three frequency bands over substantial sky areas. Cosmological signals driving such an experiment are reviewed, and current progress in hardware construction is summarized. Complementary astronomical observations in other wavebands are also discussed.  相似文献   

9.
Wilkinson microwave anisotropy probe (WMAP) has provided us with the highest resolution all-sky maps of the cosmic microwave background (CMB). As a result of thermal Sunyaev–Zel’dovich effect, clusters of galaxies are imprinted as tiny, poorly resolved dips on top of primary CMB anisotropies in these maps. Here, I describe different efforts to extract the physics of intracluster medium (ICM) from the sea of primary CMB, through combining WMAP with low-redshift galaxy or X-ray cluster surveys. This finally culminates at a mean (universal) ICM pressure profile, which is for the first time directly constrained from WMAP 3 year maps, and leads to interesting constraints on the ICM baryonic budget.  相似文献   

10.
11.
12.
The Wilkinson Microwave Anisotropy Probe (WMAP) science team has released results from the first year of operation at the Earth–Sun L2 Lagrange point. The maps are consistent with previous observations but have much better sensitivity and angular resolution than the COBE DMR maps, and much better calibration accuracy and sky coverage than ground-based and balloon-borne experiments. The angular power spectra from these ground-based and balloon-borne experiments are consistent within their systematic and statistical uncertainties with the WMAP results. WMAP detected the large angular-scale correlation between the temperature and polarization anisotropies of the CMB caused by electron scattering since the Universe became reionized after the “Dark Ages”, giving a value for the electron scattering optical depth of 0.17 ± 0.04. The simplest ΛCDM model with n=1 and Ωtot=1 fixed provides an adequate fit to the WMAP data and gives parameters which are consistent with determinations of the Hubble constant and observations of the accelerating Universe using supernovae. The time-ordered data, maps, and power spectra from WMAP can be found at http://lambda.gsfc.nasa.gov along with 13 papers by the WMAP science team describing the results in detail.  相似文献   

13.
14.
The absolute radiometer for cosmology, astrophysics, and diffuse emission (ARCADE) is a balloon-borne instrument designed to measure the temperature of the cosmic microwave background at centimeter wavelengths. ARCADE searches for deviations from a blackbody spectrum resulting from energy releases in the early universe. Long-wavelength distortions in the CMB spectrum are expected in all viable cosmological models. Detecting these distortions or showing that they do not exist is an important step for understanding the early universe. We describe the ARCADE instrument design, current status, and future plans.  相似文献   

15.
B-Pol is a medium-class space mission aimed at detecting the primordial gravitational waves generated during inflation through high accuracy measurements of the Cosmic Microwave Background polarization. We discuss the scientific background, feasibility of the experiment, and implementation developed in response to the ESA Cosmic Vision 2015-2025 Call for Proposals. See for the full list of collaboration members and a full copy of the B-Pol proposal.  相似文献   

16.
An Australia Telescope survey for CMB anisotropies   总被引:1,自引:0,他引:1  
We have surveyed six distinct 'empty fields' using the Australia Telescope Compact Array (ATCA) in an ultracompact configuration with the aim of imaging, with a high brightness sensitivity, any arcminute-scale brightness-temperature anisotropies in the background radio sky. The six well-separated regions were observed at a frequency of 8.7 GHz, and the survey regions were limited by the ATCA primary beams which have a full width at half-maximum of 6 arcmin at this frequency; all fields were observed with a resolution of 2 arcmin and an rms thermal noise of 24 μJy beam−1. After subtracting foreground confusion detected in higher resolution images of the fields, residual fluctuations in Stokes I images are consistent with the expectations from thermal noise and weaker (unidentified) foreground sources; the Stokes Q and U images are consistent with expectations from thermal noise.
Within the sensitivity of our observations, we have no reason to believe that there are any Sunyaev–Zeldovich holes in the microwave sky surveyed. Assuming Gaussian-form CMB anisotropy with a 'flat' spectrum, we derive 95 per cent confidence upper limits of Q flat<10–11 μK in polarized intensity and Q flat<25 μK in total intensity. The ATCA filter function peaks at l =4700 and has half-maximum values at l =3350 and 6050.  相似文献   

17.
We review recent findings that the universe on its largest scales shows hints of violations of statistical isotropy, in particular alignment with the geometry and direction of motion of the solar system, and missing power at scales greater than 60°. We present the evidence, attempts to explain it using astrophysical, cosmological or instrumental mechanisms, and prospects for future understanding.  相似文献   

18.
Fabio Noviello   《New Astronomy》2009,14(8):659-665
Phase transitions taking place during the inflationary epoch give rise to bubbles of true vacuum embedded in the false vacuum. These bubbles can imprint a distinctive signal on the Cosmic Microwave Background (CMB). We evaluate the feasibility of detecting these signatures with wavelets in CMB maps, such as those that will be made available by the European Space Agency’s (ESA) Planck mission.  相似文献   

19.
20.
The Boomerang experiment completed its final long duration balloon (LDB) flight over Antarctica in January 2003. The focal plane was upgraded to accommodate four sets of 145 GHz polarization sensitive bolometers (PSBs), identical to those to be flown on the Planck HFI instrument. Approximately, 195 hours of science observations were obtained during this flight, including 75 hours distributed over 1.84% of the sky and an additional 120 hours concentrated on a region covering 0.22% of the sky. We derive the angular power spectra of the cosmic microwave background (cmb) temperature and polarization anisotropies from these data. The temperature anisotropies are detected with high signal to noise on angular scales ranging from several degrees to 10 arcminutes. The curl-free (EE) component is detected at 4.8σ, and a two-sigma upper limit on the curl (BB) component of 8.6 μK2 is obtained on scales corresponding to 0.5°. Both the temperature and polarization anisotropies are found to be consistent with a concordance ΛCDM cosmology that is seeded by adiabatic density perturbations. In addition to the cmb observations, Boomerang03 surveyed a 300 square degree region centered on the Galactic plane. These observations represent the first light for polarization sensitive bolometers, which are currently operational in two South-Pole based polarimeters, as well as Planck HFI, at frequencies ranging from 100 to 350 GHz (3 mm to 850 μm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号