首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present results from sunspot observations obtained by SUMER on SOHO. In sunspot plumes the EUV spectrum differs from the quiet Sun; continua are observed with different slopes and intensities; emission lines from molecular hydrogen and many unidentified species indicate unique plasma conditions above sunspots. Sunspot plumes are sites of systematic downflow. We also discuss the properties of sunspot oscillations  相似文献   

2.
High-resolution photographs of the photospheric network taken in the Caii K 3933 Å line and at 4308 Å are analysed in order to study the variation, in latitude and over the sunspot cycle, of its density (the density is defined as the number of network elements - also called facular points - per surface unity). It appears that the density of the photospheric network is not distributed uniformly at the surface of the Sun: on September 1983, during the declining phase of the current activity cycle, it was weakened at both the low (equatorial) and high (polar) active latitudes, while it was tremendously enhanced toward the pole. The density at the equator is varying in antiphase to the sunspot number: it increases by a factor 3 or more from maximum to minimum of activity. As a quantum of magnetic flux is associated to each network element, density variations of the photospheric network express in fact variations of the quiet Sun magnetic flux. It thus results that the quiet Sun magnetic flux is not uniformly distributed in latitude and not constant over the solar cycle: it probably varies in antiphase to the flux in active regions.The variation over the solar cycle and the latitude distribution of photospheric network density are compared to those of X-ray bright points and ephemeral active regions: there are no clear correlations between these three kinds of magnetic features.  相似文献   

3.
Junwei Zhao  Dean-Yi Chou 《Solar physics》2013,287(1-2):149-159
The continuous high spatial resolution Doppler observation of the Sun by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager allows us to compute a helioseismic kω power-spectrum diagram using only oscillations inside a sunspot. Individual modal ridges can be clearly seen with reduced power in the kω diagram that is constructed from a 40-hour observation of a stable and round sunspot. Comparing this with the kω diagram obtained from a quiet-Sun region, one sees that inside the sunspot the f-mode ridge is more reduced in power than the p-mode ridges, especially at high wavenumbers. The p-mode ridges all shift toward lower wavenumber (or higher frequency) for a given frequency (or wavenumber), implying an increase of phase velocity beneath the sunspot. This is probably because the acoustic waves travel across the inclined magnetic field of the sunspot penumbra. Line-profile asymmetries exhibited in the p-mode ridges are more significant in the sunspot than in the quiet Sun. Convection inside the sunspot is also highly suppressed, and its characteristic spatial scale is substantially larger than the typical convection scale of the quiet Sun. These observational facts demand a better understanding of magnetoconvection and interactions of helioseismic waves with magnetic field.  相似文献   

4.
The power of solar acoustic waves is reduced inside sunspots mainly due to absorption, emissivity reduction, and local suppression. The coefficients of these power-reduction mechanisms can be determined by comparing time – distance cross-covariances obtained from sunspots and from the quiet Sun. By analyzing 47 active regions observed by SOHO/MDI without using signal filters, we have determined the coefficients of surface absorption, deep absorption, emissivity reduction, and local suppression. The dissipation in the quiet Sun is derived as well. All of the cross-covariances are width corrected to offset the effect of dispersion. We find that absorption is the dominant mechanism of the power deficit in sunspots for short travel distances, but gradually drops to zero at travel distances longer than about 6°. The absorption in sunspot interiors is also significant. The emissivity-reduction coefficient ranges from about 0.44 to 1.00 within the umbra and 0.29 to 0.72 in the sunspot, and accounts for only about 21.5% of the umbra’s and 16.5% of the sunspot’s total power reduction. Local suppression is nearly constant as a function of travel distance with values of 0.80 and 0.665 for umbrae and whole sunspots respectively, and is the major cause of the power deficit at large travel distances.  相似文献   

5.
Phase perturbations due to inclined surface magnetic field of active region strength are calculated numerically in quiet Sun and simple sunspot models in order to estimate and compare the direct and indirect (thermal) effects of the fields on helioseismic waves. It is found that the largest direct effects occur in highly inclined field characteristic of penumbrae, and scale roughly linearly with magnetic field strength. The combined effects of sunspot magnetic and thermal anomalies typically yield negative travel-time perturbations in penumbrae. Travel-time shifts in umbrae depend on details of how the thermal and density structure differs from the quiet Sun. The combined shifts are generally not well approximated by the sum of the thermal and magnetic effects applied separately, except at low field strengths of around 1 kG or less, or if the thermal shift is small. A useful rule-of-thumb appears to be that travel-time perturbations in umbrae are predominantly thermal, whereas in penumbrae they are mostly magnetic.  相似文献   

6.
R. P. Kane 《Solar physics》2009,255(1):163-168
The number of coronal mass ejections (CMEs) erupting from the Sun follows a trend similar to that of sunspot numbers during the rising and maximum phase of the solar cycle. In the declining phase, the CME number has large fluctuations, dissimilar to those of sunspot numbers. In several studies of solar – interplanetary and solar – terrestrial relationships, the sunspot numbers and the 2800-MHz flux (F10) are used as representative of solar activity. In the rising phase, this may be adequate, but in the declining phase, solar parameters such as CMEs may have a different behaviour. Cosmic-ray Forbush decreases may occur even when sunspot activity is low. Therefore, when studying the solar influence on the Earth, one has to consider that although geomagnetic conditions at solar maximum will be disturbed, conditions at solar minimum may not be necessarily quiet.  相似文献   

7.
Spotless days (i.e., days when no sunspots are observed on the Sun) occur during the interval between the declining phase of the old sunspot cycle and the rising phase of the new sunspot cycle, being greatest in number and of longest continuous length near a new cycle minimum. In this paper, we introduce the concept of the longest spotless segment (LSS) and examine its statistical relation to selected characteristic points in the sunspot time series (STS), such as the occurrences of first spotless day and sunspot maximum. The analysis has revealed statistically significant relations that appear to be of predictive value. For example, for Cycle 24 the last spotless day during its rising phase should be about August 2012 (± 9.1 months), the daily maximum sunspot number should be about 227 (± 50; occurring about January 2014±9.5 months), and the maximum Gaussian smoothed sunspot number should be about 87 (± 25; occurring about July 2014). Using the Gaussian-filtered values, slightly earlier dates of August 2011 and March 2013 are indicated for the last spotless day and sunspot maximum for Cycle 24, respectively.  相似文献   

8.
Slitless spectra of the chromosphere, observed cinematographically at the total solar eclipse of 10 July 1972, were reduced. The surface brightness distribution of the helium D3 line in the undisturbed chromosphere was obtained in agreement with results by other observers. The available eclipse data on the D3 absolute brightness was analysed by means of theoretical curves of growth. Intensity data by some observers were found to be certainly too high. A trend was found that the D3 absolute brightness in the quiet chromosphere decreases with the increasing solar activity (sunspot number). This perhaps indicates a variation of the spicule number over the solar surface during a sunspot cycle.  相似文献   

9.
The shapes of the Ca ii H and K lines in sunspot umbral spectra vary from single asymmetric peaks near the centre of the disk to almost symmetric double peaks at the limb. In addition, there are other differences in the behaviour of both H and K lines in sunspots compared to the quiet Sun. The whole complex of the phenomena observed can not be explained by large scale chromosphere motions. Instead, a satisfactory model reproducing in detail peculiarities of the umbral emission reversals contains a cloud of emitting and absorbing gas located above the chromosphere, which flows into the sunspot. The radiation field parameters in such a cloud are consistent with the concept of weak quiescent prominences above the umbra.  相似文献   

10.
Spectra from 2678-2931 Å were obtained of an active region during the 19 June 1974, flight of the University of Hawaii rocket-borne echelle spectrograph. We report behavior of the Mg i and ii resonance line cores in quiet Sun, plage, sunspot, and filament structures. Among the interesting variations in these lines we discern a strong suppression of the red Mg ii emission peaks and possible rapid changes in the Mg i core in the spatially partially resolved sunspot.  相似文献   

11.
The large-scale structure of the solar magnetic field during the past five sunspot cycles (representing by implication a much longer interval of time) has been investigated using the polarity (toward or away from the Sun) of the interplanetary magnetic field as inferred from polar geomagnetic observations. The polarity of the interplanetary magnetic field has previously been shown to be closely related to the polarity (into or out of the Sun) of the large-scale solar magnetic field. It appears that a solar structure with four sectors per rotation persisted through the past five sunspot cycles with a synodic rotation period near 27.0 days, and a small relative westward drift during the first half of each sunspot cycle and a relative eastward drift during the second half of each cycle. Superposed on this four-sector structure there is another structure with inward field polarity, a width in solar longitude of about 100° and a synodic rotation period of about 28 to 29 days. This 28.5 day structure is usually most prominent during a few years near sunspot maximum. Some preliminary comparisons of these observed solar structures with theoretical considerations are given.  相似文献   

12.
We have used the “age selection methodology” (ASM) (Zappalá and Zuccarello 1991) to study the variability of the sunspot groups angular velocity during the activity cycle. The ASM allows us to separate the contribution of Young Sunspot Groups (YSG) from that of Recurrent ones (RSG) in the Ω(θ) determination and therefore to evaluate whether the increase in angular velocity during minima (reported in literature using all sunspot groups as tracers), is due to a greater statistical weight of YSG on RSG or whether it reflects a global characteristic of the Sun. The results obtained from the analysis of sunspot groups data collected during the period 1874‐1981 (Greenwich Photoheliographic Results) indicate that during minima, besides the fact that the percentage of RSG drops to ≤ 5%, both YSG and RSG show the same increase in angular velocity, i.e. 0.16 degrees/day. Comparing our results with those reported in literature and taking into account the internal angular velocity as deduced by p‐mode oscillations, it is possible to conclude that the observed higher angular velocity of the Sun during minima concerns several layers of the Sun.  相似文献   

13.
We present a preliminary analysis of spectral lines obtained with the SUMER instrument (Solar Ultraviolet Measurements of Emitted Radiation) onboard the Solar and Heliospheric Observatory (SOHO), as observed during three observing campaigns. From the 70 observed spectral lines, we selected 12, representing 9 ions or atoms, in order to analyse line intensities, shifts and widths in polar coronal holes as well as in the normal quiet Sun. We find that coronal lines show a distinct blueshift in coronal holes relative to the quiet Sun at equal heliospheric angle, while there is no evidence for such a shift for lines formed at temperatures below 105K. The widths of lines formed at temperatures above 3 – 104K are slightly increased inside the coronal hole, but unaffected for lower temperatures. Intensity measurements clearly show the center-to-limb variation, as well as an intensity diminution inside the coronal hole for lines formed above approximately 105K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
氢是太阳大气中最主要的元素。氢原子的赖曼(Lyman)谱线,尤其是赖曼阿尔法(Ly-α)谱线的辐射,是太阳色球和低过渡区能量损失的主要形式。在太阳的赖曼α像中,网络组织的辐射比较强,而辐射最强的地方是活动区。由于存在辐射转移效应,在宁静区,低阶赖曼谱线的谱形中央一般会形成一个凹陷,而在中央两侧则形成两个峰,两峰往往呈现出一定的不对称性。数值模拟和观测研究表明,赖曼谱线双峰的不对称性与高层大气中各种系统性流动有关。在太阳活动区,赖曼谱形在谱斑区与在宁静区类似;而在黑子区,赖曼谱形几乎没有中央凹陷。赖曼谱形也可用于诊断日珥、耀斑和日冕物质抛射等结构和现象的等离子体特性。该文回顾了赖曼谱线的观测历史,阐明了观测与模拟结果所揭示的物理过程,并结合笔者的认识进行了相应的评论。  相似文献   

15.
We present a model for the reconstruction of spectral solar irradiance between 200 and 400?nm. This model is an extension of the total solar irradiance (TSI) model of Crouch et al. (Astrophys.?J. 677, 723, 2008) which is based on a data-driven Monte Carlo simulation of sunspot emergence, fragmentation, and erosion. The resulting time-evolving daily area distribution of magnetic structures of all sizes is used as input to a four-component irradiance model including contributions from the quiet Sun, sunspots, faculae, and network. In extending the model to spectral irradiance in the near- and mid-ultraviolet, the quiet Sun and sunspot emissivities are calculated from synthetic spectra at T eff=5750?K and 5250?K, respectively. Facular emissivities are calculated using a simple synthesis procedure proposed by Solanki and Unruh (Astron. Astrophys. 329, 747, 1998). The resulting time series of ultraviolet flux is calibrated against the data from the SOLSTICE instrument on the Upper Atmospheric Research Satellite (UARS). Using a genetic algorithm, we invert quiet Sun corrections, profile of facular temperature variations with height, and network model parameters which yield the best fit to these data. The resulting best-fit time series reproduces quite well the solar-cycle timescale variations of UARS ultraviolet observations, as well as the short-timescale fluctuations about the 81 day running mean. We synthesize full spectra between 200 and 400?nm, and validate these against the spectra obtained by the ATLAS-1 and ATLAS-3 missions, finding good agreement, to better than 3?% at most wavelengths. We also compare the UV variability predicted by our reconstructions in the descending phase of sunspot cycle 23 to SORCE/SIM data as well as to other reconstructions. Finally, we use the model to reconstruct the time series of spectral irradiance starting in 1874, and investigate temporal correlations between pairs of wavelengths in the bands of interest for stratospheric chemistry and dynamics.  相似文献   

16.
This paper deals with the observed data on the solar S-component sources at millimetre wavelengths. The observations were made in 1968 and 1969 using the 22-m radio telescope of the Crimean Astrophysical Observatory at six wavelengths: 2, 4, 6, 8, 13 and 17 mm. The enhanced intensity of the solar active region in comparison with the quiet Sun level varies proportionally to –2 if the wavelength is within the range of 2 ÷ 6 mm. In the wavelength band of 6 ÷ 17 mm almost flat spectra of the solar S-component sources is observed. Assuming the bremsstrahlung mechanism of the radio emission for the quiet Sun and the solar active regions an attempt has been made to treat the above presented data. It appears that the most probable explanation of the 2 ÷ 6 mm spectrum is that the S-component sources are opaque. In the 6 ÷ 17 mm wavelength band there are two possibilities: the active region may be either transparent or opaque. But in the last case the source brightness temperature must be proportional to 2. Some differences in the spectra of the sources, identified with flocculi and with bipolar sunspot groups, were mentioned. The cold regions (as compared with the quiet Sun) were observed up to = 2 mm and identified with the filaments. However, its visibility falls when the wavelength decreases.  相似文献   

17.
Settele  A.  Staude  J.  Zhugzhda  Y.D. 《Solar physics》2001,202(2):281-292
We investigate linear acoustic-gravity waves in three different semi-empirical model atmospheres of large sunspot umbrae. The sunspot filter theory is applied, that is, the resonant transmission of vertically propagating waves is modelled. The results are compared with observed linear sunspot oscillations. For three umbral models we present the transmission coefficients and the energy density of the oscillations with the maxima of transmission. The height dependence of the adiabatic coefficient (the ratio of specific heats) strongly influences the calculated resonance frequencies. The variable can explain the observed closely spaced resonance period peaks. The first resonance in the 3 min range is interpreted as a resonance of the upper chromosphere only, while the higher order peaks are resonances of the whole chromosphere.  相似文献   

18.
Evolution of spatial orientation of the heliospheric current sheet (HCS) has been studied in detail using synoptic maps of the HCS configuration over the period 1971–1989. Analysis involves all phases of the sunspot cycle except for two years of maximum solar activity. The helmet-like coronal streamers are confirmed to be structural elements of the HCS. The r.m.s. deviation of a real HCS configuration from a plane does not exceed about 10° during most of the sunspot cycle length. Hence, minimum-type corona should be observed every time the HCS is oriented parallel to the line-of-sight, independent of the cycle phase. Such occasions have been observed apart from the sunspot minimum epochs at the solar eclipses of 31 August, 1932 and 11 July, 1991.Regularities of variation of the two following parameters of the HCS orientation have been revealed: obliquity to the solar equator plane (heel or tilt) and longitudinal orientation (yawing). Behaviour of the above parameters is repeated in different cycles. However, heeling and yawing occur probably not synchronous but rather independent of one another.  相似文献   

19.
The sunspot penumbra is a transition zone between the strong vertical magnetic field area (sunspot umbra) and the quiet Sun. The penumbra has a fine filamentary structure that is characterized by magnetic field lines inclined toward the surface. Numerical simulations of solar convection in inclined magnetic field regions have provided an explanation of the filamentary structure and the Evershed outflow in the penumbra. In this article, we use radiative MHD simulations to investigate the influence of the magnetic field inclination on the power spectrum of vertical velocity oscillations. The results reveal a strong shift of the resonance mode peaks to higher frequencies in the case of a highly inclined magnetic field. The frequency shift for the inclined field is significantly greater than that in vertical-field regions of similar strength. This is consistent with the behavior of fast MHD waves.  相似文献   

20.
M. Haberreiter 《Solar physics》2011,274(1-2):473-479
We present spectral synthesis calculations of the solar extreme UV (EUV) in spherical symmetry carried out with the ‘Solar Modeling in 3D’ code. The calculations are based on one-dimensional atmospheric structures that represent a temporal and spatial mean of the chromosphere, transition region, and corona. The synthetic irradiance spectra are compared with the recent calibration spectrum taken with the EUV Variability Experiment during the Whole Heliospheric Interval. The good agreement between the synthetic and observed quiet Sun spectrum shows that the employed atmospheric structures are suitable for irradiance calculations. The validation of the quiet Sun spectrum for the present solar minimum is the first step toward the modeling of the EUV variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号