首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The coastal zone of Norrbotten, northern Sweden, was gradually inundated by the Ancylus Lake following the retreating ice margin and forming a highest coastline approximately 210 m above the present sea level. The succeeding shore displacement is reconstructed based on lithological investigations and radiocarbon datings of identified isolation sequences from 12 cored lake basins. The highest lake basins, along with two basins above the highest shoreline, suggest ice-free conditions already at 10 500 cal. yr BP. This is at least 500 years earlier than previously thought and implies rapid ice-sheet break-up in the Gulf of Bothnia. The shore displacement (RSL) curve represents a forced regression of successively decreasing rate through the Holocene, from 9 m/100 yr to 0.8 m/100 yr. During the first 1000-1200 years, the isostatic uplift is exponentially declining, followed by a constant uplift rate from c. 9500 cal. yr BP to 5500-5000 cal. yr BP. The last 5000 years seem to be characterized by a low but constant rebound rate. The development of the Ancylus Lake stage of the Baltic may also be discerned in the Norrbotten RSL curve, suggesting that the chronology of the Ancylus Lake stages may have to be revised. The Littorina transgression is also reflected by the RSL curve shape. In addition, a series of early to mid-Holocene beach terraces were OSL-dated to allow for comparison with the 14C-dated shore displacement curve. Interpretations of these ages and their relation to former sea levels were clearly more problematic than the dating of the lake basin isolations.  相似文献   

3.
The shore displacement during the Holocene in southeastern Ångermanland, Sweden, has been investigated by means of radiocarbon-dating of isolation intervals in sediment cores from a total of nine new basins. Results from earlier investigations have been used in complement. There is a forced regression in the area from c. 9300 BP ( c . 10500 cal. yr BP) until c . 8000 BP ( c . 9000 cal. yr BP), on average c . 8 m/100 years, after which there is a gradually slowing regression of c . 2.5–1.0 m/100 years up to the present time. The most rapid regression occurs during the later phase of the Ancylus Lake stage, 9500–9000 cal. yr BP. There is no evidence of halts in the regression. Crustal uplift in the area since deglaciation is c . 310 m. The deglaciation of southeastern Ångermanland took place c . 9300 BP ( c . 10500 cal. yr BP); this is c . 900 years earlier than the age given by clay varve dating. The shore displacement curve provides a means of estimating the difference between the clay varve time scale and calibrated radiocarbon dates, by comparison with varve-dated altitudes of alluvial deltas of the River Ångermanalven. From c. 2500 to c. 8000 cal. BP there is a deficit in clay varves of some 300 years; further back in time this discrepancy increases significantly. The main explanation for the discrepancy is most likely lacking varves in the time-span 8500–10200 cal. yr BP, located along the upper reaches of River Ångermanalven below the highest shore level.  相似文献   

4.
Shoreline displacement data from the Trondheimsfjord area have been collected and a synthesis of the Late Weichselian and Holocene relative uplift is presented. The isobase direction is N 30–35°E during the whole period. The gradients of the shorelines are 1.7? m/km at 11,800 years B.P., 1.3 m/km at 10,000 years B.P., gradually decreasing towards the present with a value of 0.2 m/km at 5,000 years B.P. Some irregularities in the shoreline gradient curve in the Late Weichselian and Preboreal chronozones may be ascribed to crustal readjustments by faults. An interpolation of the 9,500 years B.P. shoreline to the Ångermanland and Baltic area shows a relative uplift at 11,800 years B.P. of 400–450 m in the central area of glaciation. The island of Hitra was probably deglaciated at about 12,000 years B.P. and Ørlandet/Bjugn somewhat later. The Younger Dryas ice marginal deposits at Tautra have been deposited early in this chronozone, and deposits proximal to this at Hoklingen and Levanger were probably deposited in the late part of the same chronozone.  相似文献   

5.
Based on geological and archaeological proxies from NW Russia and NE Estonia and on GIS‐based modelling, shore displacement during the Stone Age in the Narva‐Luga Klint Bay area in the eastern Gulf of Finland was reconstructed. The reconstructed shore displacement curve displays three regressive phases in the Baltic Sea history, interrupted by the rapid Ancylus Lake and Litorina Sea transgressions c. 10.9–10.2 cal. ka BP and c. 8.5–7.3 cal. ka BP, respectively. During the Ancylus transgression the lake level rose 9 m at an average rate of about 13 mm per year, while during the Litorina transgression the sea level rose 8 m at an average rate of about 7 mm per year. The results show that the highest shoreline of Ancylus Lake at an altitude of 8–17 m a.s.l. was formed c. 10.2 cal. ka BP and that of the Litorina Sea at an altitude of 6–14 m a.s.l., c. 7.3 cal. ka BP. The oldest traces of human activity dated to 8.5–7.9 cal. ka BP are associated with the palaeo‐Narva River in the period of low water level in the Baltic basin at the beginning of the Litorina Sea transgression. The coastal settlement associated with the Litorina Sea lagoon, presently represented by 33 Stone Age sites, developed in the area c. 7.1 cal. ka BP and existed there for more than 2000 years. Transformation from the coastal settlement back to the river settlement indicates a change from a fishing‐and‐hunting economy to farming and animal husbandry c. 4.4 cal. ka BP, coinciding with the time of the overgrowing of the lagoon in the Narva‐Luga Klint Bay area.  相似文献   

6.
7.
Studies were conducted on 16 sections of buried organic matter (pre-Ancylus Lake and pre-Litorina Sea) and associated Stone Age cultural layers in the Pärnu area, southwestern Estonia. Buried organic beds are each part of a sedimentary sequence, which is repeated, forming two overlying sets of an orderly succession of five layers. The organic sedimentation of the lower set (set 1) occurred about 10,800–10,200 years BP, and that of the upper set (set 2) about 9450–7800 years BP. Associated with set 1 is the Early-Mesolithic settlement of Pulli, and with set 2 are the Stone Age cultural layers at Sindi-Lodja. The Early- and Middle-Mesolithic sites in Estonia are concentrated on shores of rivers and lakes to utilise of a variability of resources. The hunters and fishermen followed the ancient Pärnu River downstream to the receding shoreline of the Yoldia Sea. After about 10,700 years BP, they were forced to retreat inland in front of the transgressive Ancylus Lake shore which first inundated the Paikuse area about 10,400 years BP, and Pulli and higher sites about 10,200 years BP. The total amplitude of the transgression preceded 11 m and reached up to 14 m a.s.l. in the area. The Litorina Sea transgression reached 7 m a.s.l. after 8000–7800 years BP. The Mesolithic, Neolithic and modern sites on top of each other in the Pärnu area may suggest that, although years apart, they were inhabited by the same group of people who stayed in the area and moved back and forth together with the shifting shoreline of the Baltic Sea.  相似文献   

8.
9.
A clay varve chronology has been established for the Late Weichselian ice recession east of Mt. Billingen in Västergötland, Sweden. In this area the Middle-Swedish end moraine zone was built up as a consequence of cold climate during the Younger Dryas stadial. A change-over from rapid to slow retreat as a result of climatic deterioration at the Alleröd/Younger Dryas transition cannot be traced with certainty in the varve sequences, but it seems to have taken place just before 11,600 varve years BP. The following deglaciation was very slow for about 700 years — within the Middle-Swedish end moraine zone the annual ice-front retreat was only c . 10 m on average. A considerable time-lag is to be expected between the Younger Dryas climatic event and this period of slow retreat. The 700 years of slow retreat were succeeded by 200 years of more rapid recession, about 50–75 m annually, and then by a mainly rapid and uncomplicated retreat of the ice-front by 100–200 m/year or more, characterizing the next 1500 years of deglaciation in south and central Sweden. The change from about 50–75 m to 100–200 m of annual ice-front retreat may reflect the Younger Dryas/Preboreal transition. Clay-stratigraph-ically defined, the transition is dated at c . 10,740 varve years BP, with an error of +100 to -250 years. In the countings of ice layers in Greenland ice cores (GRIP and GISP-2) the end of the Younger Dryas climatic event is 800–900 years older. However, a climatic amelioration after the cold part of the Younger Dryas and in early Preboreal should rapidly be reflected by for example chemical components and dust in Greenland ice cores, and by increasing δ13C content in tree rings. On the other hand, the start of a rapid retreat of the inland ice margin can be delayed by several centuries. This can explain at least a part of the discrepancy between the time-scales.  相似文献   

10.
汪卫国  叶翔 《古地理学报》2009,11(3):348-354
为研究福建沿海的全新世气候环境变化,对取自晋江龙湖的柱样进行了沉积相、粒度、磁化率、有机碳、有机氮等分析,结合加速器14〖KG-*5〗C测年结果,对龙湖的形成演化以及该地区中晚全新世的气候环境变化进行了研究。认为,龙湖形成于约5580 calaBP〖DK〗.〖KG-*5〗,之前为河流相沉积;约5580~850 calaBP〖DK〗.〖KG-*5〗,该区为深灰色粉沙和砂质粉沙的湖泊相沉积;约850~470 calaBP〖DK〗.〖KG-*5〗,龙湖水位下降,变为沼泽湿地;之后,湖泊水位再次上升,再次形成湖相沉积。各种气候环境指标分析结果显示,自龙湖形成以来,当地的气候呈阶段性相对干、湿变化,并呈变化幅度逐渐减小的趋势。这一方面反映了福建沿海中晚全新世气候的不稳定性,还反映了当地气候环境变化与太阳辐射的长周期变化有关。沼泽湿地的形成,反映当地降水的进一步减少,而湿地的形成年代,可与太阳活动、北大西洋冰筏、亚洲季风等突发事件对比,说明该沼泽层的形成与叠加在气候长期变化趋势下的突发气候事件有关。龙湖沉积记录也表明,气候变冷,福建沿海与台风有关的降水将减少;反之,全球变暖,福建沿海台风降水将增加。  相似文献   

11.
The deglaciation pattern at Mt. Billingen, within the Middle Swedish end moraine zone, and its relationship with dramatic water level changes in the Baltic Ice Lake is a classic topic of Swedish Quaternary Geology. Based on data west of Mt. Billingen, the authors (in two earlier papers) presented a stratigraphic model associated with this subject. This study is an attempt to test the model east of Mt. Billingen, i.e. inside the Baltic Ice Lake itself. Lake Mullsjon is situated 30 km southeast of the drainage area of the Baltic Ice Lake and within the final drainage zone. About 8 m of Late Weichselian sediments (mostly varved clay) were recovered from the lake and analysed from different stratigraphic viewpoints, including lithology, grainsize, varve chronology, and pollen. These analyses show that the site was deglaciated in the later part of the Allerød Chronozone. Shortly thereafter the first drainage of the Baltice Ice Lake took place but without isolating Lake Mullsjon. After a short period of disturbed sedimentation varved clay continued to form as the glacier receded for another 120 varve years until the onset of the Younger Dryas cooling, as registered both in the pollen and in the varve stratigraphies. After c. another 120 varve years our analyses suggest that the Baltic Ice Lake was dammed once again. About 230 varve years of further ice readvance followed west of Mt. Billingen, while the ice margin in the east was more or less stationary. Rapid melting set in, at first producing coarse varves, but soon the clay was thin-varved and fine. This continued for 140 varve years until suddenly the lake became isolated. At this isolation thick beds of silty-sandy deposits were deposited on the lake floor. The isolation is dated to 10,400–10,500 14C years B.P., which corresponds to the assumed age of the final drainage of the Baltic Ice Lake. It was also isolated at the same time as lakes (on the same isobase) situated 20 m lower, but west of Mt. Billingen, were raised above sea level. This strongly suggests that Lake Mullsjön was isolated as an effect of the drainage of the Baltic Ice Lake. Significant differences between the clay-varve and the 14C chronologies are also presented.  相似文献   

12.
Detailed geologic mapping of the San Andreas fault zone in Los Angeles County since 1972 has revealed evidence for diverse histories of displacement on branch and secondary faults near Palmdale. The main trace of the San Andreas fault is well defined by a variety of physiographic features. The geologic record supports the concept of many kilometers of lateral displacement on the main trace and on some secondary faults, especially when dealing with pre-Quaternary rocks. However, the distribution of upper Pleistocene rocks along branch and secondary faults suggests a strong vertical component of displacement and, in many locations, Holocene displacement appears to be primarily vertical. The most recent movement on many secondary and some branch faults has been either high-angle (reverse and normal) or thrust. This is in contrast to the abundant evidence for lateral movement seen along the main San Andreas fault. We suggest that this change in the sense of displacement is more common than has been previously recognized.The branch and secondary faults described here have geomorphic features along them that are as fresh as similar features visible along the most recent trace of the San Andreas fault. From this we infer that surface rupture occurred on these faults in 1857, as it did on the main San Andreas fault. Branch faults commonly form “Riedel” and “thrust” shear configurations adjacent to the main San Andreas fault and affect a zone less than a few hundred meters wide. Holocene and upper Pleistocene deposits have been repeatedly offset along faults that also separate contrasting older rocks. Secondary faults are located up to 1500 m on either side of the San Andreas fault and trend subparallel to it. Moreover, our mapping indicates that some portions of these secondary faults appear to have been “inactive” throughout much of Quaternary time, even though Holocene and upper Pleistocene deposits have been repeatedly offset along other parts of these same faults. For example, near 37th Street E. and Barrel Springs Road, a limited stretch of the Nadeau fault has a very fresh normal scarp, in one place as much as 3 m high, which breaks upper Pleistocene or Holocene deposits. This scarp has two bevelled surfaces, the upper surface sloping significantly less than the lower, suggesting at least two periods of recent movement. Other exposures along this fault show undisturbed Quaternary deposits overlying the fault. The Cemetery and Little Rock faults also exhibit selected reactivation of isolated segments separated by “inactive” stretches.Activity on branch and secondary faults, as outlined above, is presumed to be the result of sympathetic movement on limited segments of older faults in response to major movement on the San Andreas fault. The recognition that Holocene activity is possible on faults where much of the evidence suggests prolonged inactivity emphasizes the need for regional, as well as detailed site studies to evaluate adequately the hazard of any fault trace in a major fault zone. Similar problems may be encountered when geodetic or other studies, Which depend on stable sites, are conducted in the vicinity of major faults.  相似文献   

13.
Johnson, M. D. & Ståhl, Y. 2009: Stratigraphy, sedimentology, age and palaeoenvironment of marine varved clay in the Middle Swedish end‐moraine zone. Boreas, 10.1111/j.1502‐3885.2009.00124.x. ISSN 0300‐9483 Deglaciation of the Middle Swedish end‐moraine zone and age of the sediment in and between the moraines have been discussed for about a hundred years. The goal of this project was to determine the stratigraphy and age of the sediment in and between the moraines. Inter‐moraine flats are underlain by clay, 10–25 m thick, overlying thin sand and gravel or till on bedrock. The clay is overlain by a few metres of sand and gravel. Much of the clay beneath the flats consists of rhythmites that grade from grey to red and are 2–74 cm thick. Our interpretation of these rhythmites as being varves is supported by grain size and mineralogical and elemental variations. Foraminifera and ostracods show that the clay was deposited in an arctic marine environment, while radiocarbon dating of the microfossils indicates that the clay was deposited 12 150 cal. 14C years ago, during the Younger Dryas chronozone (YD). Most of the optical stimulated luminescence dates on the clay are much older, containing quartz sand that was insufficiently bleached. The stratigraphy indicates that the moraines are composed of YD clay pushed into ridge forms during ice‐front oscillations. It is not possible to determine how far north the Scandinavian Ice Sheet retreated prior to the YD advance. We neither support nor reject the suggestion that the ice margin retreated to the northern edge of Mt. Billingen during the Allerød, causing the Baltic Ice Lake to drain.  相似文献   

14.
This paper examines the Quaternary changes in the coastal zone of northwestern Portugal through the relationship between sediments and landforms. By interpolating the available data from geomorphology, lithostratigraphy, sedimentology and geochronology, it was possible to reconstruct existing palaeoenvironments, the oldest of which date back to the last interglacial. The main landforms are a high and a low platform bounded by scarps. River sands and silty sediments formed in a lacustrine environment (Antas Formation, MIS 5) are associated with the high platform. Two deposits are associated with the low platform: the Cepães Formation (MIS 3) consisting of a lower set of river sand beds and an upper gravel beach bed, and the Aguçadoura Formation (MIS 1) consisting of Holocene lagoonal beds. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, sediment texture, clay mineral composition, and δ 18O data on Globigerinoides ruber of a sediment core collected from a water depth of 250 m near Landfall Island, Bay of Bengal, is presented to understand paleoenvironmental shifts during the Mid–Late Holocene period. From the sediment core, five organic carbon-rich samples were radiocarbon dated and the reservoir-corrected ages range from 6,078 to 1,658 years BP. The marine sediment core is represented dominantly by clayey silt with incursions of coarser components that occur around 6,000, 5,400, and 3,400 years BP. The sedimentation of the coarser detritus is due to strengthened southwest monsoon (SWM) since 6,500 to 5,400 years BP. Clay minerals are represented by smectite, illite, kaolinite, and chlorite in varying amounts. High kaolinite content and K/C ratio indicate intense SWM and strong bedrock weathering from the hinterland (~6,500–5,400 years BP). Incidence of smectite (48.82 to 25.09 %) and chlorite/illite (C/I) ratio (0.56 to 0.28) indicate an overall weakened southwest monsoon since 6,000 to 2,000 years BP with a brief incursion of extremely reduced SWM around 4,400 to 4,200 years BP. This is corroborated with the oxygen isotope on G. ruber that reveals a significant shift in the isotopic values ~4,300 years BP (?3.39?‰), indicating weakening in SWM. Subsequently, fluctuations in the intensity of SWM are observed since 2,000 years to present.  相似文献   

16.
17.

最近20年位于东亚夏季风北部边缘的我国北方半干旱区遭遇更为频繁、更为严重的干旱事件。然而,有关该区域过去不同时间尺度气候干旱事件的特征及机制仍知之甚少。文章详细分析了内蒙古中东部达里湖DL04岩芯上部6.5 m沉积物中 < 38 μm碳酸盐的Ca和Mg含量、δ18O和δ13C值以及全样有机质TOC和TN含量、TOC/TN(C/N)比值,基于高精度的AMS14C年代标尺,恢复了最近6000年(日历年)湖区的水文、气候变化详细过程。结果表明:达里湖 < 38 μm碳酸盐主要为湖泊水体沉淀的内生方解石,其Ca和Mg含量、δ18O和δ13C值增大反映湖水蒸发量超过补给水量,进而指示湖区干旱事件。TOC和TN含量减少以及C/N比值减小总体反映地表径流减弱引起的陆生有机质入湖减少以及湖泊初始生产率下降。达里湖沉积内生碳酸盐和有机质地球化学数据表明,在6000~5300 cal.a B.P.、3200~2800 cal.a B.P.、1650~1150 cal.a B.P.和650~300 cal.a B.P.,流域地表径流显著减弱、湖面显著降低、湖泊生产率显著下降、湖区气候显著变干、东亚夏季风显著减弱。最近6000年东亚夏季风显著减弱事件在定年误差范围内与北大西洋冰漂碎屑事件一致,而与热带西太平洋海表温度变化和太阳活动变化相关性较差,表明千、百年尺度东亚夏季风突变主要受控于北半球高纬气候变冷。

  相似文献   

18.
The New Madrid seismic zone (NMSZ) is an intraplate right-lateral strike-slip and thrust fault system contained mostly within the Mississippi Alluvial Valley. The most recent earthquake sequence in the zone occurred in 1811–1812 and had estimated moment magnitudes of 7–8 (e.g., [Johnston, A.C., 1996. Seismic moment assessment of stable continental earthquakes, Part 3: 1811–1812 New Madrid, 1886 Charleston, and 1755 Lisbon. Geophysical Journal International 126, 314–344; Johnston, A.C., Schweig III, E.S, 1996. The enigma of the New Madrid earthquakes of 1811–1812. Annual Reviews of Earth and Planetary Sciences 24, 339–384; Hough, S.E., Armbruster, J.G., Seeber, L., Hough, J.F., 2000. On the modified Mercalli intensities and magnitudes of the New Madrid earthquakes. Journal of Geophysical Research 105 (B10), 23,839–23,864; Tuttle, M.P., 2001. The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. Journal of Seismology 5, 361–380]). Four earlier prehistoric earthquakes or earthquake sequences have been dated A.D. 1450 ± 150, 900 ± 100, 300 ± 200, and 2350 B.C. ± 200 years using paleoliquefaction features, particularly those associated with native American artifacts, and in some cases surface deformation ([Craven, J. A. 1995. Paleoseismology study in the New Madrid seismic zone using geological and archeological features to constrain ages of liquefaction deposits. M.S thesis, University of Memphis, Memphis, TN, U.S.A.; Tuttle, M.P., Lafferty III, R.H., Guccione, M.J., Schweig III, E.S., Lopinot, N., Cande, R., Dyer-Williams, K., Haynes, M., 1996. Use of archaeology to date liquefaction features and seismic events in the New Madrid seismic zone, central United States. Geoarchaeology 11, 451–480; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43(2002), 313–349; Tuttle, M.P., Schweig, E.S., Sims, J.D., Lafferty, R.H., Wolf, L.W., Haynes, M.L., 2002. The earthquake potential of the New Madrid seismic zone, Bulletin of the Seismological Society of America, v 92, n. 6, p. 2080–2089; Tuttle, M.P., Schweig III, E.S., Campbell, J., Thomas, P.M., Sims, J.D., Lafferty III, R.H., 2005. Evidence for New Madrid earthquakes in A.D. 300 and 2350 B.C. Seismological Research Letters 76, 489–501]). The two most recent prehistoric and the 2350 B.C. events were probably also earthquake sequences with approximately the same magnitude as the historic sequence.Surface deformation (faulting and folding) in an alluvial setting provides many examples of stream response to gradient changes that can also be used to date past earthquake events. Stream responses include changes in channel morphology, deviations in the channel path from the regional gradient, changes in the direction of flow, anomalous longitudinal profiles, and aggradation or incision of the channel ([Merritts, D., Hesterberg, T, 1994. Stream networks and long-term surface uplift in the New Madrid seismic zone. Science 265, 1081–1084.; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313–349]). Uplift or depression of the floodplain affects the frequency of flooding and thus the thickness and style of vertical accretion or drowning of a meander scar to form a lake. Vegetation may experience trauma, mortality, and in some cases growth enhancement due to ground failure during the earthquake and hydrologic changes after the earthquake ([VanArdale, R.B., Stahle, D.W., Cleaveland, M.K., Guccione, M.J., 1998. Earthquake signals in tree-ring data from the New Madrid seismic zone and implications for paleoseismicity. Geology 26, 515–518]). Identification and dating these physical and biologic responses allows source areas to be identified and seismic events to be dated.Seven fault segments are recognized by microseismicity and geomorphology. Surface faulting has been recognized at three of these segments, Reelfoot fault, New Madrid North fault, and Bootheel fault. The Reelfoot fault is a compressive stepover along the strike-slip fault and has up to 11 m of surface relief ([Carlson, S.D., 2000. Formation and geomorphic history of Reelfoot Lake: insight into the New Madrid seismic zone. M.S. Thesis, University of Arkansas, Fayetteville, Arkansas, U.S.A]) deforming abandoned and active Mississippi River channels ([Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313–349]). The New Madrid North fault apparently has only strike-slip motion and is recognized by modern microseismicity, geomorphic anomalies, and sand cataclasis ([Baldwin, J.N., Barron A.D., Kelson, K.I., Harris, J.B., Cashman, S., 2002. Preliminary paleoseismic and geophysical investigation of the North Farrenburg lineament: primary tectonic deformation associated with the New Madrid North Fault?. Seismological Research Letters 73, 393–413]). The Bootheel fault, which is not identified by the modern microseismicity, is associated with extensive liquefaction and offset channels ([Guccione, M.J., Marple, R., Autin, W.J., 2005, Evidence for Holocene displacements on the Bootheel fault (lineament) in southeastern Missouri: Seismotectonic implications for the New Madrid region. Geological Society of America Bulletin 117, 319–333]). The fault has dominantly strike-slip motion but also has a vertical component of slip. Other recognized surface deformation includes relatively low-relief folding at Big Lake/Manila high ([Guccione, M.J., VanArdale, R.B., Hehr, L.H., 2000. Origin and age of the Manila high and associated Big Lake “Sunklands”, New Madrid seismic zone, northeastern Arkansas. Geological Society of America Bulletin 112, 579–590]) and Lake St. Francis/Marked Tree high ([Guccione, M.J., VanArsdale, R.B., 1995. Origin and age of the St. Francis Sunklands using drainage patterns and sedimentology. Final report submitted to the U. S. Geological Survey, Award Number 1434-93-G-2354, Washington D.C.]), both along the subsurface Blytheville arch. Deformation at each of the fault segments does not occur during each earthquake event, indicating that earthquake sources have varied throughout the Holocene.  相似文献   

19.
High-resolution palaeoecological proxies of pollen, macrofossils and diatoms from an isolation lake provide a long-term record of the Holocene landscape history and shoreline displacement on the Biskopsmåla Peninsula in central Blekinge, SE Sweden. During the Preboreal/Boreal transition, the peninsula was sparsely vegetated by woodlands, along with lateglacial dwarf shrub/steppe communities. The lake basin was isolated from the shallow Yoldia Sea during this time. The regional climate improved from 10 700 cal. BP, evident as progressive expansion of Pinus-dominated mixed forest with deciduous trees. The lake basin was probably connected with the Ancylus Lake during the period 10700–10 100 cal. BP. Subsequently the basin became isolated again, corresponding to the Early Littorina Sea phase. Replacement of freshwater diatoms by those with brackish-water affinity at 8100 cal. BP indicates the initial transgression of the Littorina Sea in this basin. But not until 7500 cal. BP were brackish conditions fully established. Peaks of brackish-marine diatoms and dinoflagellates during 7500–7000 cal. BP indicate increased saltwater inflow to the Baltic Sea in response to global meltwater pulse 3. However, interactive changes in seagrass and stonewort macrofossil concentrations suggest that three minor transgressions during 5900–5300, 5000–4700 and 4400–4000 cal. BP occurred locally, associated with centennial-scale variations in regional wind pattern or coastal storminess. By 3000 cal. BP, the lake basin was finally isolated from the Baltic, and thereafter the landscape on the peninsula became gradually more influenced by human activities.  相似文献   

20.
In the Sikkim region of north‐east India, the Main Central Thrust (MCT) juxtaposes high‐grade gneisses of the Greater Himalayan Crystallines over lower‐grade slates, phyllites and schists of the Lesser Himalaya Formation. Inverted metamorphism characterizes rocks that immediately underlie the thrust, and the large‐scale South Tibet Detachment System (STDS) bounds the northern side of the Greater Himalayan Crystallines. In situ Th–Pb monazite ages indicate that the MCT shear zone in the Sikkim region was active at c. 22, 14–15 and 12–10 Ma, whereas zircon and monazite ages from a slightly deformed horizon of a High Himalayan leucogranite within the STDS suggest normal slip activity at c. 17 and 14–15 Ma. Although average monazite ages decrease towards structurally lower levels of the MCT shear zone, individual results do not follow a progressive younging pattern. Lesser Himalaya sample KBP1062A records monazite crystallization from 11.5 ± 0.2 to 12.2 ± 0.1 Ma and peak conditions of 610 ± 25 °C and 7.5 ± 0.5 kbar, whereas, in the MCT shear zone rock CHG14103, monazite crystallized from 13.8 ± 0.5 to 11.9 ± 0.3 Ma at lower grade conditions of 525 ± 25 °C and 6 ± 1 kbar. The P–T–t results indicate that the shear zone experienced a complicated slip history, and have implications for the understanding of mid‐crustal extrusion and the role of out‐of‐sequence thrusts in convergent plate tectonic settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号