首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Broadband receiver functions abstracted from teleseismicP waveforms recorded by a 3-component Streckeisen seismograph at Hyderabad, have been inverted to constrain the shear velocity structure of the underlying crust. Receiver functions obtained from the Hyderabad records of both shallow and intermediate focus earthquakes lying in different station-event azimuths, show a remarkable coherence in arrival times and shapes of the significant shear wave phases:Ps, PpPs, PsPs/PpSs, indicating horizontal stratification within the limits of resolution. This is also supported by the relatively small observed amplitudes of the tangential component receiver functions which are less than 10% of the corresponding radial component. Results of several hundred inversions of stacked receiver functions from closely clustered events (within 2°), show that the crust beneath the Hyderabad granites has a thickness of 36 ± 1 km, consisting of a 10 km thick top layer in which shear wave velocity is 3.54 ± 0.07 km/sec, underlain by a 26 ± 1 km thick lower crust in which the shear wave velocity varies uniformly with a small gradient of 0.02 km/sec/km. The shear wave velocity at its base is 4.1 ± 0.05 km/sec, just above the moho transition zone which is constrained to be less than 4 km thick, overlying a 4.74 ±0.1 km/sec half space.  相似文献   

2.
The effect of different crustal thickness on a regional gravity field may be differentiated, as a first approximation, into-three layers: 1) sedimentary, 2) granitic, and 3) basaltic. The study of complex “wave pictures” obtained in deep seismic sounding has lead to differentiation of the crust as continental, oceanic, and transitional, with a general relationship existing between the surface tectonics of the crust and its deeper structures. The crust is thickest in the mountain regions (40 km-80 km) as against an average for the platforms of about 25 km-35 km. It appears that there are two particularly conspicuous gravity and seismic discontinuities in the crust; one between the sedimentary mantle and the so-called crystalline layer and the other between the latter and the M surface. Tentative estimations of crustal thickness are as follows: the Russian Platform and the north of the western Siberian Platform; 30 km-34 km; the Black Sea about 24 km; the entire south, southeast and east of the U. S. S. R. are marked by greater depth with the Pamirs having a thickness of over 70 km; in the Caucasus the M surface lies below 45 km; in the Northern Kazakhstan the crust is 34 km-36 km thick; in the Altay thickness of around 50 km are indicated; in the Eurasian continent, Tibet has the thickest crust, the gravity minimum indicating about 85 km; in the Verkoyansk region the M surface is over 43 km. Large areas of the Arctic Ocean is occupied by the shelf with a thickness similar to that in the north of the country. This suggests that a considerable stretch of the ocean adjacent to the northern shores of the U. S. S. R. has a continental type. The crust thins rapidly to the north to about 10 km. Along the Pacific coast the M surface is about 33 km, the shelf zone is rather narrow including the Sea of Okhotsk. Toward the ocean and the Kuriles the crust thins rapidly to 10 km. -- C. E. Sears.  相似文献   

3.
The Urals are characterized by a depression of the Moho to a depth of 57 km. This structure is interpreted as a relic orogenic root, which has been conserved because no significant post-collisional processes occurred. However, there is evidence that voluminous post-collisional magmatism affected the lower crust. In this paper, we use thermal finite element models to quantify the influence of the post-collisional magmatism on the stabilization of the root. We show that at least 70% of the heat producing elements migrated in granitic melts from the lower crust to the upper crust. As a result the crustal heat flow reduced and the lithosphere could stabilize at a thickness of 180 km. Furthermore, we propose that a granulite metamorphic event during the thermal relaxation of the collision zone prevented the 57 km thick crust from delamination. These results strongly indicate that post-collisional processes were necessary for the stabilization of the Uralian crust and lithosphere.  相似文献   

4.
Indian shield comprising a number of Archean-Proterozoic cratons, forms one of the most dynamic, sheared and deformed continental segment amongst all stable areas of the earth. However, for a long time it has been believed that its lithosphere remained unaffected by episodic tectono-thermal and volcanic perturbations. Using available seismic data, an attempt has been made to study the seismic structure of the south Indian shield in order to examine the effects of such mantle processes on its overall crust-mantle structure. Our study suggests that by and large, Indian crust is intermediate to mafic in composition. On an average, only a couple of kilometers of the initially formed upper (granitic-gneissic) crust now remains in place and a thick chunk of the original lower crust has been consumed by the underlying thermally buoyant mantle due to sub-crustal erosion and then subsequently replaced by possibly as much as about 16 km thick magma layer on either side of the Moho. This study throws a new light on the geologic and geodynamic evolution of this region and contradicts the hitherto believed paleo-stability of the Indian shield.  相似文献   

5.
Geochemical data on widely distributed igneous rocks of southern Tibet are used to reconstruct paleo-crustal thickness during the 50+ million years that have elapsed since the onset of the India-Asia collision. We use two approaches, one based on Nd isotopes and an assimilation-recharge model for granitic magma genesis and another empirical method based on trace element geochemistry (La/Yb). The focus is on granitic rocks of two age ranges in a segment of the southern Lhasa Block between approximately 89.5° and 92.5°E longitude. One age range, 45 to 62 Ma, spans the time of the onset of collision and for which we infer the geochemistry of granitic rocks reflects mainly pre-collision structure. The other age range is 21 to 9 Ma for the Nd isotopic approach, and 32 to 9 Ma for La/Yb, where the geochemistry must reflect post-collision structure. Our results suggest that the pre- and syn-collision southern margin of the Lhasa block, that portion now located within 50–60 km of the Indus-Yarlung suture (IYS) and south of 29.8°N latitude was relatively thin, about 25–35 km thick until 45 Ma. At approximately 29.8°-29.9°N latitude there was a pronounced crustal discontinuity, and north of that latitude (for a distance that we cannot constrain), the inferred crustal thickness was greater, at least 50–55 km, as indicated by latest Cretaceous and Early Tertiary granitoids and ignimbrites that have large fractions of assimilated continental crust and high La/Yb ratios. Post-collision Nd isotopic and La/Yb data from granitoids younger than 32 Ma suggest that the southern margin south of 29.8°N was thickened substantially to at least 55–60 km (based on Nd isotopes) and possibly as much as 70–75 km (based on La/Yb) by Early to mid-Miocene time. These observations require that thickening of the southern Lhasa Block margin in the period 45–32 Ma was non-uniform; the crust now within 60 km of the suture was thickened by approximately 40 km whereas the crust north of 29.9°N latitude was thickened much less, or not at all. The region currently between 29.8°N and the YTS may have been the highest elevation mountain terrane in the period from roughly 30 to 20 Ma. The amount of Miocene denudation reflects this difference, as there is evidence of substantially more denudation near the IYS than in the region north of 29.9°N. Some of the difference in thickening could be due to magmatic additions from the mantle in the region south of 29.8°N, but there is need for at least 30 km of tectonic thickening between 45 and 32 Ma. The non-uniform thickening suggests that the high elevations at the southern margin of the Himalaya-Tibet orogen propagated southward by about 200 km, from north of Lhasa to their present position, during the period from 50 to 20 Ma. Present crustal thickness requires an additional 10–15 km of more uniform post-Miocene thickening.  相似文献   

6.
Archaean crustal thickness for the Dharwar craton is estimated using potash index and Rb?Sr crustal thickness grid. The volcanics of the Dharwar greenstone belts appear to have evolved in a less than 20 km thick crust. Whereas the tonalite-trondhjemite pebbles of the Dharwar conglomerates (3250±150 m.y.) were derived from gneisses that evolved in a crust less than 20 km thick, the bulk of the peninsular gneisses and associated granitoids were emplaced in a crust 25 to 35 km thick. The 2000 m.y. old Closepet granite suite was emplaced in a crust thicker than 30 km. It is deduced that the continental crust in the region thickened from 15 to 35 km during a span of about 1000 m.y. between 3250±150 to 2000 m.y. ago. Calculations show that Archaean gecthermal gradients in Dharwar craton were three to four times steeper when compared to the present 10.5°C/km. The thin crust and the steep geothermal gradients are reflected by the emplacement of high magnesia basalts, layered igneous complexes and the strong iron enrichment trend shown by Dharwar metavolcanics.  相似文献   

7.
The crustal transfer functions have been obtained from long period P-waves of thirteen teleseismic events recorded at Hyderabad (HYB), India. The crustal structure beneath this seismograph station has been obtained after comparing these functions with the theoretical crustal transfer functions which were computed using the Thomson-Haskell matrix formulation. The method is suitable and economical for determining the fine crustal structure. The crust beneath Hyderabad is found to consist of three layers with total thickness of 36 km. The thicknesses of top, middle and bottom layers are 21 km, 8 km and 7 km, respectively.  相似文献   

8.
Based on temperature measurements in three boreholes (one specially drilled for the purpose) and thermal conductivity determinations, heat flow density values were determined for three sites in the Archaean Hyderabad granitic batholith. A mean heat flow density value of 40± 1 (s.d.) mW m−2 has been obtained. The heat generation in its rocks (5.57 μW m−3) is significantly higher than in average crustal rocks. It has been proposed that the Hyderabad batholith has a layered structure with a thin ( ≈ 1 km) surface layer of high radioactivity. These results together with the already reported data have been used to estimate the conductive steady-state temperature within and at the base of the crust of the Southern Indian Shield, yielding values of the same order as found in the Western Australian Shield.  相似文献   

9.
With the super-wide band magnetotelluric sounding data of the Jilong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) which was completed in 2004,we obtained the strike direction of each MT station by strike analysis,then traced profiles that were perpendicular to the main strike direction,and finally obtained the resistivity model of each profile by nonlinear conjugate gradients (NLCG) inversion. With these two models,we described the resistivity structure features of the crust and the upper mantle of the center-southern Tibetan plateau and its relationship with Yalung Tsangpo suture: the upper crust of the research area is a resistive layer with resistivity value range of 200-3 000 ?·m. The depth of its bottom surface is about 15-20 km generally,but the bottom surface of resistive layer is deeper in the middle of these two profiles. At line 900,it is about 30 km deep,and even at line 800,it is about 38 km deep. There is a gradient belt of resistivity at the depth of 15-45 km,and a conductive layer is beneath it with resistivity even less than 5 ?·m. This conductive layer is composed of individual conductive bodies,and at the south of the Yalung Tsangpo suture,the conductive bodies are smaller with thickness about 10 km and lean to the north slightly. However,at the north of the Yalung Tsangpo suture,the conductive bodies are larger with thickness about 30 km and also lean to the north slightly. Relatively,the conductive bodies of line 900 are thinner than those of line 800,and the depth of the bottom surface of line 900 is also shallower. At last,after analyzing the effect factors to the resistivity of rocks,it was concluded that the very conductive layer was caused by partial melt or connective water in rocks. It suggests that the middle and lower crust of the center-southern Tibetan plateau is very thick,hot,flabby,and waxy.  相似文献   

10.
A 1000-km-long lithospheric transect running from the Variscan Iberian Massif (VIM) to the oceanic domain of the Northwest African margin is investigated. The main goal of the study is to image the lateral changes in crustal and lithospheric structure from a complete section of an old and stable orogenic belt—the Variscan Iberian Massif—to the adjacent Jurassic passive margin of SW Iberia, and across the transpressive and seismically active Africa–Eurasia plate boundary. The modelling approach incorporates available seismic data and integrates elevation, gravity, geoid and heat flow data under the assumptions of thermal steady state and local isostasy. The results show that the Variscan Iberian crust has a roughly constant thickness of 30 km, in opposition to previous works that propose a prominent thickening beneath the South Portuguese Zone (SPZ). The three layers forming the Variscan crust show noticeable thickness variations along the profile. The upper crust thins from central Iberia (about 20 km thick) to the Ossa Morena Zone (OMZ) and the NE region of the South Portuguese Zone where locally the thickness of the upper crust is <8 km. Conversely, there is a clear thickening of the middle crust (up to 17 km thick) under the Ossa Morena Zone, whereas the thickness of the lower crust remains quite constant (6 km). Under the margin, the thinning of the continental crust is quite gentle and occurs over distances of 200 km, resembling the crustal attitude observed further north along the West Iberian margins. In the oceanic domain, there is a 160-km-wide Ocean Transition Zone located between the thinned continental crust of the continental shelf and slope and the true oceanic crust of the Seine Abyssal Plain. The total lithospheric thickness varies from about 120 km at the ends of the model profile to less than 100 km below the Ossa Morena and the South Portuguese zones. An outstanding result is the mass deficit at deep lithospheric mantle levels required to fit the observed geoid, gravity and elevation over the Ossa Morena and South Portuguese zones. Such mass deficit can be interpreted either as a lithospheric thinning of 20–25 km or as an anomalous density reduction of 25 kg m−3 affecting the lower lithospheric levels. Whereas the first hypothesis is consistent with a possible thermal anomaly related to recent geodynamics affecting the nearby Betic–Rif arc, the second is consistent with mantle depletion related to ancient magmatic episodes that occurred during the Hercynian orogeny.  相似文献   

11.
David E. James  Fenglin Niu  Juliana Rokosky   《Lithos》2003,71(2-4):413-429
High-quality seismic data obtained from a dense broadband array near Kimberley, South Africa, exhibit crustal reverberations of remarkable clarity that provide well-resolved constraints on the structure of the lowermost crust and Moho. Receiver function analysis of Moho conversions and crustal multiples beneath the Kimberley array shows that the crust is 35 km thick with an average Poisson's ratio of 0.25. The density contrast across the Moho is 15%, indicating a crustal density about 2.86 gm/cc just above the Moho, appropriate for felsic to intermediate rock compositions. Analysis of waveform broadening of the crustal reverberation phases suggests that the Moho transition can be no more than 0.5 km thick and the total variation in crustal thickness over the 2400 km2 footprint of the array no more than 1 km. Waveform and travel time analysis of a large earthquake triggered by deep gold mining operations (the Welkom mine event) some 200 km away from the array yield an average crustal thickness of 35 km along the propagation path between the Kimberley array and the event. P- and S-wave velocities for the lowermost crust are modeled to be 6.75 and 3.90 km/s, respectively, with uppermost mantle velocities of 8.2 and 4.79 km/s, respectively. Seismograms from the Welkom event exhibit theoretically predicted but rarely observed crustal reverberation phases that involve reflection or conversion at the Moho. Correlation between observed and synthetic waveforms and phase amplitudes of the Moho reverberations suggests that the crust along the propagation path between source and receiver is highly uniform in both thickness and average seismic velocity and that the Moho transition zone is everywhere less than about 2 km thick. While the extremely flat Moho, sharp transition zone and low crustal densities beneath the region of study may date from the time of crustal formation, a more geologically plausible interpretation involves extensive crustal melting and ductile flow during the major craton-wide Ventersdorp tectonomagmatic event near the end of Archean time.  相似文献   

12.
Group velocity dispersion data of fundamental-mode Rayleigh and Love waves for 12 wave paths within southeastern China have been measured by applying the multiple-filter technique to the properly rotated three-component digital seismograms from two Seismic Research Observatory stations, TATO and CHTO. The generalized surface wave inversion technique was applied to these group velocity dispersion data to determine the S-wave velocity structures of the crust and upper mantle for various regions of southeastern China. The results clearly demonstrate that the crust and upper mantle under southeastern China are laterally heterogeneous. The southern China region south of 25°N and the eastern China region both have a crustal thickness of 30 km. The eastern Tibet plateau along the 100°E meridian has a crustal thickness of 60 km. Central China, consisting mainly of the Yangtze and Sino-Korean platforms, has a crustal thickness of 40 km. A distinct S-wave low-velocity layer at 10–20 km depth in the middle crust was found under wave paths in southeastern China. On the other hand, no such crustal low-velocity layer is evident under the eastern Tibet plateau. This low-velocity layer in the middle crust appears to reflect the presence of a sialic low-velocity layer perhaps consisting of intruded granitic laccoliths, or possibly the remnant of the source zone of widespread magmatic activities known to have taken place in these regions since the late Carboniferous.  相似文献   

13.
A synthesis of crustal thickness estimates was made recently utilizing available field, geochemical, seismicity, shear wave velocity and gravity data in the Philippines. The results show that a significant portion of the Philippine archipelago is generally characterized by crust with a thickness of around 25 to 30 kilometers. However, two zones, which are made up of a thicker crust (from 30 to 65 km) have also been delineated. The Luzon Central Cordillera region is characterized by thick crust. Another belt of thickened crust is observed in the Bicol-Negros-Panay-Central Mindanao region. This paper examines the interplay of tectonic and magmatic processes and their role in modifying Philippine arc crust. The processes, which could account for the observed crustal thicknesses, are presented. The contributions of magmatic arcs as compared to the contribution of the emplacement and accretion of ophiolite complexes to crustal thickness are also discussed.  相似文献   

14.
中国岩石圈的基本特征   总被引:9,自引:2,他引:9  
李廷栋 《地学前缘》2010,17(3):1-13
中国及邻区岩石圈结构构造十分复杂,并具有若干明显的特点:中国大陆地壳西厚东薄、南厚北薄,青藏高原地壳平均厚度为60~65 km,最厚达80 km;东部地区一般为30~35 km,南中国海中央海盆平均只有5 km;中国大陆地壳平均厚度为476 km,大大超过全球地壳392 km的平均厚度。中国大陆及邻区岩石圈亦呈西厚东薄、南厚北薄的变化趋势,青藏高原及西北地区岩石圈平均厚度为165 km,塔里木盆地中东部、帕米尔与昌都地区岩石圈厚度可达180~200 km。大兴安岭-太行山-武陵山以东,包括边缘海为岩石圈减薄区,厚度为50~85 km。西部岩石圈、软流圈“层状结构”明显,反映了板块碰撞汇聚的动力学环境;东部岩石圈、软流圈呈“块状镶嵌结构”,岩石圈薄,软流圈厚,反映了地壳拉张、软流圈物质上涌的特点,并在东亚及西太平洋地区85~250 km深处形成一巨型低速异常体。中国东部上、下地壳及地壳、岩石圈地幔之间普遍存在“上老下新”年龄结构。  相似文献   

15.
《Tectonophysics》1987,140(1):49-63
In 1982 the U.S. Geological Survey collected six seismic refraction profiles in the Great Valley of California: three axial profiles with a maximum shot-to-receiver offset of 160 km, and three shorter profiles perpendicular to the valley axis. This paper presents the results of two-dimensional raytracing and synthetic seismogram modeling of the central axial profile. The crust of the central Great Valley is laterally heterogeneous along its axis, but generally consists of a sedimentary section overlying distinct upper, middle, and lower crustal units. The sedimentary rocks are 3–5 km thick along the profile, with velocities increasing with depth from 1.6 to 4.0 km/s. The basement (upper crust) consists of four units:
  • 1.(1) a 1.0–1.5 km thick layer of velocity 5.4–5.8 km/s,
  • 2.(2) a 3–4 km thick layer of velocity 6.0–6.3 km/s,
  • 3.(3) a 1.5–3.0 km thick layer of velocity 6.5–6.6 km/s, and
  • 4.(4) a laterally discontinuous, 1.5 km thick layer of velocity 6.8–7.0 km/s. The mid-crust lies at 11–14 km depth, is 5–8 km thick, and has a velocity of 6.6–6.7 km/s. On the northwest side of our profile the mid-crust is a low-velocity zone beneath the 6.8–7.0 km/s lid. The lower crust lies at 16–19 km depth, is 7–13 km thick, and has a velocity of 6.9–7.2 km/s. Crustal thickness increases from 26 to 29 km from NW to SE in the model.
Although an unequivocal determination of crustal composition is not possible from P-wave velocities alone, our model has several geological and tectonic implications. We interpret the upper 7 km of basement on the northwest side of the profile as an ophiolitic fragment, since its thickness and velocity structure are consistent with that of oceanic crust. This fragment, which is not present 10–15 km to the west of the refraction profile, is probably at least partially responsible for the Great Valley gravity and magnetic anomalies, whose peaks lie about 10 km east of our profile. The middle and lower crust are probably gabbroic and the product of magmatic or tectonic underplating, or both. The crustal structure of the Great Valley is dissimilar to that of the adjacent Diablo Range, suggesting the existence of a fault or suture zone throughout the crust between these provinces.  相似文献   

16.
A.P Singh  D.M Mall   《Tectonophysics》1998,290(3-4):285-297
In 1967 a major earthquake in the Koyna region attracted attention to the hitherto considered stable Indian shield. The region is covered by a thick pile of Deccan lava flows and characterized by several hidden tectonic features and complex geophysical signatures. Although deep seismic sounding studies have provided vital information regarding the crustal structure of the Koyna region, much remains unknown. The two available DSS profiles in the region have been combined along the trend of Bouguer gravity anomalies. Unified 2-D density modelling of the Koyna crust/mantle suggests a ca. 3 km thick and 40 km wide high velocity/high density anomalous layer at the base of the crust along the coastline. The thickness of this anomalous layer decreases gradually towards the east and ahead of the Koyna gravity low the layer ceases to be visible. Based on the seismic and gravity data interpretation in the geodynamical/rheological boundary conditions the anomalous layer is attributed to igneous crustal accretion at the base of the crust. It is suggested that the underplated layer is the imprint of the magmatism caused by the deep mantle plume when the northward migrating Indian plate passed over the Reunion hotspot.  相似文献   

17.
Crustal structure across the passive continental margin of the northeastern South China Sea (SCS) is presented based on a deep seismic survey cooperated between Taiwan and China in August 2001. Reflection data collected from a 48-hydrophone streamer and the vertical component of refraction/reflection data recorded at 11 ocean-bottom seismometers along a NW–SE profile are integrated to image the upper (1.6–2.4 km/s), lower (2.5–2.9 km/s), and compacted (3–4.5 km/s) sediment, the upper (4.5–5.5 km/s), middle (5.5–6.5 km/s) and lower (6.5–7.5 km/s) crystalline crust successively. The velocity model shows that the thickness (0.5–3 km) and the basement of the compacted sediment are strongly varied due to intrusion of the magma and igneous rocks after seafloor spreading of the SCS. Furthermore, several volcanoes and igneous rocks in the upper/middle crust (7–10 km thick) and a high velocity layer (0–5 km thick) in the lower crust of the model are identified as the ocean–continent transition (OCT) below the lower slope in the northeastern margin of the SCS. A thin continent NW of the OCT and a thick oceanic crust SE of the OCT in the continental margin of the northeastern SCS are also imaged, but these transitional crusts cannot be classified as the OCT due to their crustal thickness and the limited amount of the volcano, the magma and the high velocity layer. The extended continent, next to the gravity low and a sag zone extended from the SW Taiwan Basin, may have resulted from subduction of the Eurasian Plate beneath the Manila Trench whereas the thick oceanic crust may have been due to the excess volcanism and the late magmatic underplating in the oceanic crust after seafloor spreading of the SCS.  相似文献   

18.
The lithospheric structure of Antarctica has been investigated from P- (PRF) and S- receiver functions (SRF) using the seismological data from Trans-Antarctic Mountain Seismic Experiment (TAMSEIS). For the stations deployed on the thick ice sheet, estimation of crustal parameters from PRF may be erroneous as the Moho conversions may interfere with the reverberations within the thick ice sheet. However, the free surface multiples are well observed in PRF. On the other hand, in SRFs, the primary conversions of interest and multiples are separated by the mother S-phase. Therefore, it is advantageous to interpret PRF and SRF jointly for the regions where we have thick low velocity layer at the top such as ice or sediments. The crustal structure and corresponding parameters have already been estimated by various workers, but here we interpret the PRF and SRF jointly to minimize the ambiguity and map the lithospheric architecture below TAM. Our analysis reveals that the average crustal thickness beneath the east Antarctica craton is ~44 km with Vp/Vs ranging between ~1.7 and 1.9. Below Trans-Antarctic Mountain (TAM), the average crustal thickness is ~36 km with higher Vp/Vs of ~1.8–2.0. The rift and the volcanic affected coastal region show erratic depths and Vp/Vs, primarily due to the absence of either primary conversion or multiples in the receiver functions. A small number of stations far from the volcano show that the crust is thinnest (~26 to 34 km thick) in the coastal part. The contribution of this study is the mapping of the lithospheric configuration, not done so far using SRF. The SRF section along a profile spanning E-, W- Antarctica and TAM reveals that the lithospheric thickness in the coast is ~80 km and below TAM it is ~120 km. In the central thick ice cover region, the lithosphere thickens upto ~150 km towards Vostok highlands. The most intriguing feature in our SRF section is that the crust and lithosphere are shallow below TAM compared to the E- Antarctica. Further, we observe a mid-lithospheric low velocity layer confined mostly below TAM, suggesting that the thermal buoyancy could be the prime cause for the upliftment of TAM.  相似文献   

19.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

20.
The magnetotelluric (MT) profile traverses the southeastern edge of the Siberian craton and the adjacent Paleozoic Olkhon collision zone, both being within the influence area of the Baikal rifting. The processed MT data have been integrated with data on the crust structure and composition, as well as with magnetic, gravity, and seismic patterns. Large resistivity lows are interpreted with reference to new geothermal models of rifted crust in the Baikal region. The northwestern and southeastern flanks of the profile corresponding, respectively, to the craton and the collision zone differ markedly in the crust structure and composition and in the intensity of rifting-related processes, the difference showing up in the resistivity pattern. The high-grade metamorphic and granitic crust of the craton basement in the northwestern profile flank is highly resistive but it includes a conductor (less than 50 ohm · m) below 16–20 km and a nearly vertical conductive layer in the upper crust. The crust in the southeastern part, within the collision zone, is lithologically heterogeneous and heavily faulted. High resistivities are measured mainly in the upper crust composed of collisional plutonic and metamorphic complexes. Large and deep resistivity lows over the greatest part of the section are due to Cenozoic activity and rift-related transcrustal faults that vent mantle fluids constantly recharged from deeper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号