首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The position of pre-main-sequence or protostars in the Hertzsprung–Russell diagram is often used to determine their mass and age by comparison with pre-main-sequence evolution tracks. On the assumption that the stellar models are accurate, we demonstrate that, if the metallicity is known, the mass obtained is a good estimate. However, the age determination can be very misleading, because it is significantly (generally different by a factor of 2 to 5) dependent on the accretion rate and, for ages less than about 106 yr, the initial state of the star. We present a number of accreting protostellar tracks that can be used to determine age if the initial conditions can be determined and the underlying accretion rate has been constant in the past. Because of the balance established between the Kelvin–Helmholtz, contraction time-scale and the accretion time-scale, a pre-main-sequence star remembers its accretion history. Knowledge of the current accretion rate, together with an HR-diagram position, gives information about the rate of accretion in the past, but does not necessarily improve any age estimate. We do not claim that ages obtained by comparison with these particular accreting tracks are likely to be any more reliable than those from comparisons with non-accreting tracks. Instead, we stress the unreliability of any such comparisons, and use the disparities between various tracks to estimate the likely errors in age and mass estimates. We also show how a set of coeval accreting objects do not appear coeval when compared with non-accreting tracks. Instead, accreting pre-main-sequence stars of around a solar mass are likely to appear older than those of either smaller or larger mass.  相似文献   

2.
We study the infrared (IR) emission from flared discs with and without additional optically thin haloes. Flux calculations of a flared disc in vacuum can be considered a special case of the more general family of models in which the disc is imbedded in an optically thin halo. In the absence of such a halo, flux measurements can never rule out its existence because the disc flaring surface defines a mathematically equivalent halo that produces the exact same flux at all IR wavelengths. When a flared disc with height H at its outer radius R is imbedded in a halo whose optical depth at visual wavelengths is  τhalo  , the system IR flux is dominated by the halo whenever  τhalo > (1/4) H / R   . Even when its optical depth is much smaller, the halo can still have a significant effect on the disc temperature profile. Imaging is the only way to rule out the existence of a potential halo, and we identify a decisive test that extracts a signature unique to flared discs from imaging observations.  相似文献   

3.
4.
5.
6.
We present a method of determining lower limits on the masses of pre-main-sequence (PMS) stars and so constraining the PMS evolutionary tracks. This method uses the redshifted absorption feature observed in some emission-line profiles of T Tauri stars, indicative of infall. The maximum velocity of the accreting material measures the potential energy at the stellar surface, which, combined with an observational determination of the stellar radius, yields the stellar mass. This estimate is a lower limit owing to uncertainties in the geometry and projection effects. Using available data, we show that the computed lower limits can be larger than the masses derived from PMS evolutionary tracks for M   0.5 M. Our analysis also supports the notion that accretion streams do not impact near the stellar poles but probably hit the stellar surface at moderate latitudes.  相似文献   

7.
We present high-resolution optical echelle spectroscopy for a large fraction of the Li-rich late-type stars recently discovered in the vicinity of the Lupus dark clouds. Our results confirm the high Li  i   λ 6708 equivalent widths previously estimated from medium-resolution spectra, thus adding strength to the conclusion that the large majority of these stars are still in the pre-main-sequence phase of their evolution, contrary to claims from other authors that many of them might be zero-age main-sequence stars. We present a statistical approach to derive a mean distance for the sample, and find that it is consistent with, or slightly lower than, the Hipparcos distance of the Lupus star-forming region. The radial velocities measured for part of these stars are consistent with those observed for the Lupus star-forming region, while stars outside the dark clouds show a mean difference of the order of 3 km s−1. The projected rotational velocities show a lack of slow rotators, which is interpreted as a consequence of the X-ray selection of the sample. The Li-rich stars in Lupus studied in this work yield a fairly 'clean' sample of very young stars, while in other star-forming regions a larger fraction of older zero-age main-sequence stars has been found among ROSAT -discovered Li-rich stars. We argue that this fact reflects the relation of these stars with the Gould Belt.  相似文献   

8.
The X-ray observations of the ROSAT -PSPC All-Sky Survey have revealed bright and energetic coronae for a number of late-type main-sequence stars, many of them flare stars. We have detected 31 X-ray flares on 14 stars. A search for simultaneous X-ray and EUV (extreme ultraviolet) flares using ROSAT Wide Field Camera survey data revealed a large number of simultaneous flares. These results indicate that the heating mechanisms of the X-ray and EUV‐emitting regions of the stellar coronae are similar. We find X-ray quiescent variability for nine of the 14 stars and simultaneous X-ray and EUV quiescent variability for seven of these nine stars. These results imply that the stellar coronae are in a continuous state of low-level activity. There are tight linear correlations of X-ray flare luminosity with the 'quiescent' X-ray as well as with the stellar bolometric luminosity. The similarity between the X-ray-to‐EUV quiescent and flare luminosity ratios suggests that the two underlying spectra are also similar. Both are indeed consistent with the previously determined Einstein two-temperature models. We suggest that both the variability and spectral results could indicate that the quiescent emission is composed of a multitude of unresolved flares.  相似文献   

9.
10.
11.
We use the Hipparcos colour–magnitude diagram of field stars with Tycho colours to make a new minimum age estimate for the Galactic disc. The method is based on fits to the red envelope of subgiants in the Hipparcos colour–magnitude diagram with synthetic isochrones covering the range of disc metal abundance. The colours and luminosities of the isochrones as a function of abundance are checked using new techniques involving 'red-clump' stars in the giant branch region and on the main sequence using G and K dwarfs. We derive a minimum disc age of 8 Gyr, in good agreement with other methods.  相似文献   

12.
13.
Abundances of O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Fe, Ni and Ba are determined for 30 nearby lower-main-sequence stars in the Northern sky using high-resolution, high signal-to-noise ratio spectra. Our results show an equilibrium of  [Fe/H]I  and  [Fe/H]II  and a much smaller star-to-star scatter of the abundance ratios as a function of metallicity compared with the results of Kotoneva et al. The non-local thermodynamic equilibrium (non-LTE) corrections for oxygen are considered and found to be small  (∼−0.04 dex)  . A flat trend of [O/Fe] exists over the whole metallicity range. The non-LTE effects for some important elements are discussed, and it is found that the abundance pattern for our programme stars is very similar to that of F and G dwarfs.  相似文献   

14.
15.
Emission-line stars in young open clusters are identified to study their properties, as a function of age, spectral type and evolutionary state. 207 open star clusters were observed using the slitless spectroscopy method and 157 emission stars were identified in 42 clusters. We have found 54 new emission-line stars in 24 open clusters, out of which 19 clusters are found to house emission stars for the first time. About 20 per cent clusters harbour emission stars. The fraction of clusters housing emission stars is maximum in both the 0–10 and 20–30 Myr age bin (∼40 per cent each). Most of the emission stars in our survey belong to Classical Be class (∼92 per cent) while a few are Herbig Be stars (∼6 per cent) and Herbig Ae stars (∼2 per cent). The youngest clusters to have Classical Be stars are IC 1590, NGC 637 and 1624 (all 4 Myr old) while NGC 6756 (125–150 Myr) is the oldest cluster to have Classical Be stars. The Classical Be stars are located all along the main sequence (MS) in the optical colour–magnitude diagrams (CMDs) of clusters of all ages, which indicates that the Be phenomenon is unlikely due to core contraction near the turn-off. The distribution of Classical Be stars as a function of spectral type shows peaks at B1–B2 and B6–B7 spectral types. The Be star fraction [N(Be)/N(B+Be)] is found to be less than 10 per cent for most of the clusters and NGC 2345 is found to have the largest fraction (∼26 per cent). Our results indicate there could be two mechanisms responsible for the Classical Be phenomenon. Some are born Classical Be stars (fast rotators), as indicated by their presence in clusters younger than 10 Myr. Some stars evolve to Classical Be stars, within the MS lifetime, as indicated by the enhancement in the fraction of clusters with Classical Be stars in the 20–30 Myr age bin.  相似文献   

16.
Optical UBV(RI) C and infrared JHK photometry is presented of a small sample of giant stars with short periods in the Hipparcos catalogue. Observations were limited, but were sufficient to rule out most of the Hipparcos periods. Radial velocity measurement were also made for a few stars, over six successive nights. Low-level variability was detected in a few stars. It is argued that in most cases the brightness variations are primarily due to temperature changes. These findings show that high-overtone pulsations in M giant stars occur, if at all, in a far more limited number of stars than proposed in the authors' previous discussion of the Hipparcos data alone.  相似文献   

17.
We present Hα spectropolarimetry observations of a sample of 10 bright T Tauri stars, supplemented with new Herbig Ae/Be star data. A change in the linear polarization across Hα is detected in most of the T Tauri (9/10) and Herbig Ae (9/11) objects, which we interpret in terms of a compact source of line photons that is scattered off a rotating accretion disc. We find consistency between the position angle (PA) of the polarization and those of imaged disc PAs from infrared and millimetre imaging and interferometry studies, probing much larger scales. For the Herbig Ae stars AB Aur, MWC 480 and CQ Tau, we find the polarization PA to be perpendicular to the imaged disc, which is expected for single scattering. On the other hand, the polarization PA aligns with the outer disc PA for the T Tauri stars DR Tau and SU Aur and FU Ori, conforming to the case of multiple scattering. This difference can be explained if the inner discs of Herbig Ae stars are optically thin, whilst those around our T Tauri stars and FU Ori are optically thick. Furthermore, we develop a novel technique that combines known inclination angles and our recent Monte Carlo models to constrain the inner rim sizes of SU Aur, GW Ori, AB Aur and CQ Tau. Finally, we consider the connection of the inner disc structure with the orientation of the magnetic field in the foreground interstellar medium: for FU Ori and DR Tau, we infer an alignment of the stellar axis and the larger magnetic field direction.  相似文献   

18.
We report the serendipitous discovery of a population of low-mass, pre-main-sequence (PMS) stars in the direction of the Wolf–Rayet/O-star binary system γ 2  Vel and the Vela OB2 association. We argue that γ 2  Vel and the low-mass stars are truly associated and approximately coeval, and that both are at distances between 360 and 490 pc, disagreeing at the 2 σ level with the recent Hipparcos parallax of γ 2  Vel, but consistent with older distance estimates. Our results clearly have implications for the physical parameters of the γ 2  Vel system, but also offer an exciting opportunity to investigate the influence of high-mass stars on the mass function and circumstellar disc lifetimes of their lower mass PMS siblings.  相似文献   

19.
The aim of this paper is to quantitatively testify the ' small-scale sequential star formation ' hypothesis in and around bright-rimmed clouds (BRCs). As a continuation of the recent attempt by Ogura et al., we have carried out   BVIc   photometry of four more BRC aggregates along with deeper re-observations of two previously observed BRCs. Again, quantitative age gradients are found in almost all the BRCs studied in the present work. Archival Spitzer /Infrared Array Camera data also support this result. The global distribution of near-infrared excess stars in each H  ii region studied here clearly shows evidence that a series of radiation-driven implosion processes proceeded in the past from near the central O star(s) towards the peripheries of the H  ii region. We found that in general weak-line T-Tauri stars (WTTSs) are somewhat older than classical T-Tauri stars (CTTSs). Also the fraction of CTTSs among the T-Tauri stars (TTSs) associated with the BRCs is found to decrease with age. These facts are in accordance with the recent conclusion by Bertout, Siess & Cabrit that CTTSs evolve into WTTSs. It seems that in general the equivalent width of Hα emission in TTSs associated with the BRCs decreases with age. The mass function (MF) of the aggregates associated with the BRCs of the morphological type 'A' seems to follow that found in young open clusters, whereas 'B/C'-type BRCs show significantly steeper MF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号