首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
The structure of the "black soil" in Northeast China has been greatly deteriorated by long-term intensive conventional mouldboard plow tillage (CT) practices. In this study, micro- morphological observation and image analysis of soil thin sections were conducted to evaluate the impacts of 21 years (1986-2007) of no tillage (NT) on soil structure as compared to CT in an experiment near Gongzhuling City, Jilin Province. Soil organic matter (SOM), wet aggregate stability and saturated hydraulic conductivity (Ks) were also analyzed. Total SOM was not significantly affected by tillage systems, but fresher SOM was observed in the surface layer under NT. The aggregates under NT showed different hierarchies in the form of crumbs, and the mean weight diameter (MWD) of NT was significant higher than that of CT in the surface layer. Platy and blocky aggregates were frequently observed in the lower layers under CT practice. The compound pore structure with intertwined intra- and inter- aggregates pores under NT was well developed in a layer from 0-5 cm to 20-25 era. While under CT system, more inter-aggregate pores and fewer intra- aggregate pores were observed, and planes and channels were frequently found in the 20-25 cm layer, where maeroporosity decreased significantly and a plow pan was evident. The Ks values of NT weresignificantly lower at o-5 cm but significantly higher at 20-95 cm compared with CT, which showed the same trend with macroporosity. These results confirmed that long-term CT practice fragmented the tillage layer soil and compacted the lower layer soil and formed a plow pan. While long-term NT practice in the black soil region favored soil aggregation and a stable porous soil structure was formed, which are important to the water infiltration and prevent soil erosion.  相似文献   

2.
Vertical distribution of soil nematode communities under conventional tillage (CT),no-tillage (NT) and fallow field (FF) treatments in the Lower Reaches of the Liaohe River was investigated at six soil depths (0-5 cm,5-15 cm,15-30 cm,30-50 cm,50-75 cm and 75-100 cm). The results show that total nematode abundance gradually decreases with depth,and the highest number of total nematodes is observed at 0-5 cm depth under NT and FF treatments. The number of fungivores and plant parasites is significantly higher...  相似文献   

3.
Subsurface flow processes in sloping cropland of purple soil   总被引:3,自引:1,他引:2  
Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.  相似文献   

4.
Tillage pedogenesis of purple soils in southwestern China   总被引:5,自引:2,他引:3  
Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO Taxonomy or Entisols in USDA Taxonomy, are formed from purple rocks of the Trias- Cretaceous system, have been developed or at least accelerated the development due to continual tillage operation, especially digging and ridging. The present study took micromorphological investigation on the sedimentary rocks and the soils under different operations of tillage. Results show that the purple rock of Feixiangguan Formation of the Trias system (Tlf) is the easiest to physical weathering and the most fertile soil material enriched in nutrients, and it has been, therefore, mostly cultivated and intensively tilled around the year. It has the fastest soil formation rate. Soil formation rate in the cropland with conventional tillage is higher than that in the forestiand and the grassland. It implies that the artificial brokenness and tillage disturbance play a great role in physical weathering and initiating soil formation processes.  相似文献   

5.
Accurate assessment of soil erosion is an important prerequisite for controlling soil erosion.The engineering-control(E)and tillage(T)factors are the keys for Chinese Soil Loss Equation(CSLE)to accurately evaluate water erosion in China.Besides,the E and T factors can reflect the water and soil conservation effects of engineering-control and tillage practices.But in the current full coverage of soil erosion surveys in China(such as soil erosion dynamic monitoring),for the same practice,the E or T factors are assigned the same value across the country.We selected 469 E and T factors data based on runoff plots from 73 publications,and they came from six soil and water conservation regions.Correlation analysis,regression analysis,and nonparametric tests were used to determine the comparability of the data,and it was proved that the runoff plots dimensions are consistent with the local topography.The results of one-way ANOVA and nonparametric tests for E and T factors in different regions showed that the engineering-control practices have good soil and water conservation effects and weaken the regional differences of other environmental factors,so there were no significant differences in E factors between different regions.However,there were significant differences in T factors between different regions,and the geodetector was applied to explore the intrinsic driving force of the spatial distribution of T factors.The results of the geodetector showed that the dominant driving forces of the spatial distribution of different types of tillage practices were not completely the same.When using CSLE to calculate water erosion,the E factor of the same practice can be used uniformly throughout the country,and the T factor needs to be considered and selected according to regional differences.At the same time,when choosing tillage practices in each water and soil conservation region,practices with better sediment reduction benefits should also be selected according to the regional environmental conditions.  相似文献   

6.
Under global warming, storm events tend to intensify, particularly in monsoon-affected regions.As an important agricultural area in China, the purple soil region in the Sichuan Basin, where it has a prevailing monsoon climate, is threatened by serious soil erosion. Tillage operations alter runoff and soil erosion processes on croplands by changing the physical properties of the soil surface. To clarify the relationship between tillage and soil erosion in the purple soil region, three different tillage practices in this region were investigated at the plot scale over 4 years: bare land with minimum tillage(BL),conventional tillage(CT) and seasonal no-tillage ridges(SNTR) which was initially designed to prevent soil erosion by contoured ridges and no-tillage techniques. The results showed that although there were no significant differences in the surface runoff and soil erosion among the three practices, BL causedrelatively high surface runoff and soil erosion,followed by CT and SNTR. Classification and comparison of the rainfall events based on cluster analysis(CA) verified that the surface runoff was not significantly different between most intensive event and long intensive events but was significantly different between most intensive and short and medium-duration events. Only the rainfall events with the highest rainfall intensity could trigger serious soil erosion, up to 1000 kg ha-1 in the region. Further detailed investigations on the effects of tillage operations on the soil erosion in a subtropical region with a monsoon climate are needed to provide a basis for modeling catchments and designing better management practices.  相似文献   

7.
Assessment of soil erosion by compensatory hoeing tillage in a purple soil   总被引:2,自引:0,他引:2  
This study explores the role of a traditional tillage method,i.e.,compensatory hoeing,for sustainable agro-ecosystem management in the hilly areas of the Chongqing municipality,south-western China.To validate the effects of compensatory tillage on the terraced slopes,the tillage method of noncompensatory hoeing was conducted on a linear slope.To acquire information about 137 Cs inventories and soil texture,soil samples were collected by a core sampler with a 6.8-cm diameter at 5.0-m intervals along the toposequence and the linear slope in the dry season(March) of 2007.Meanwhile,a tillage erosion model was used for evaluating the spatial pattern of tillage erosion.The 137 Cs data showed that on the terraced slope,soil was lost from the upper slope,and soil deposition occurred at the toe slope positions on each terrace.As a result,abrupt changes in the 137 Cs inventories of soil were found over short distances between two sides of terrace boundaries.Results obtained from the tillage erosion model and the 137 Cs data indicate that soil redistribution mainly results from tillage erosion in the terraced landscape.Consecutive non-compensatory tillage caused soil redistribution on the linear slope,resulting in thin soil profile disappearing at the top and soil accumulating at the bottom positions of the linear slope.This result further validates that compensatory tillage could avoid the complete erosion of the thin soil layer at the summit position.Therefore,this traditional tillage.method,i.e.,compensatory tillage,has maintained the soil quality at the summit of the slope in the past decades.  相似文献   

8.
Soil conservation practices can greatly affect the soil erosion process, but limited information is available about its influence on the particle size distribution(PSD) of eroded sediment, especially under natural rainfall. In this study, the runoff, sediment yields, and effective/ultimate PSD were measured under two conventional tillage practices, downhill ridge tillage(DT) and plat tillage(PT) and three soil conservation practices, contour ridge tillage(CT), mulching with downhill ridge tillage(MDT), and mulching with contour ridge tillage(MCT) during 21 natural rainfall events in the lower Jinsha River. The results showed that(1) soil conservation practices had a significant effect on soil erosion. The conventional tillage of DT caused highest runoff depth(0.58 to 29.13 mm) and sediment yield(0.01 to 3.19 t hm-2). Compared with DT, the annual runoff depths and sediment yields of CT, MDT and MCT decreased by 12.24%-49.75% and 40.79%-88.30%, respectively.(2) Soil conservation practices can reduce the decomposition of aggregates in sediments. The ratios of effective and ultimate particle size(E/U) of siltand sand-sized particles of DT and PT plots were close to 1, indicating that they were transported as primary particles, however, values lower/greater than 1 subject to CT, MDT and MCT plots indicated they were transported as aggregates. The ratios of E/U of claysized particles were all less than 1 independently of tillage practices.(3) The sediments of soil conservation practices were more selective than those of conventional tillage practices. For CT, MDT and MCT plots, the average enrichment ratios(ERs) of clay, silt and sand were 1.99, 1.93 and 0.42, respectively, with enrichment of clay and silt and depletion of sand in sediments. However, the compositions of the eroded sediments of DT and PT plots were similar to that of the original soil. These findings support the use of both effective and ultimate particle size distributions for studying the size selectivity of eroded sediment, and provide a scientific basis for revealing the erosion mechanism in the purple soil area of China.  相似文献   

9.
Comparative study on rain splash erosion of representative soils in China   总被引:5,自引:0,他引:5  
As the first event of soil erosion, rain splash erosion supplies materials for subsequent transportation and entrainment. The Loess Plateau, the southern hilly region and the Northeast China are subject to serious soil and water loss; however, the characteristics of rain splash erosion in those regions are still unclear. The objectives of the study are to analyze the characteristics of splash erosion on loess soil, red soil, purple soil and black soil, and to discuss the relationship between splash erosion and soil properties. Soil samples spatially distributed in the abovementioned regions were collected and underwent simulated rainfalls at a high intensity of 1.2mm/min, lasting for 5, 10, 15, and 20min, respectively. Rain splash and soil crust development were analyzed. It shows that black soil sample from Heilongjiang Province corresponds to the minimum splash erosion amount because it has high aggregate content, aggregate stability and organic matter content. Loess soil sample from Inner Mongolia corresponds to the maximum splash erosion amount because it has high content of sand particles. Loess soil sample from Shanxi Province has relatively lower splash erosion amount because it has high silt particle content and low aggregate stability easily to be disrupted under rainfalls with high intensity. Although aggregate contents of red soil and purple soil samples from Hubei and Guangdong provinces are high, the stability is weak and prone to be disrupted, so the splash erosion amount is medium. Splash rate which fluctuates over time is observed because soil crust development follows a cycling processes of formation and disruption. In addition, there are two locations of soil crust development, one appears at the surface, and the other occurs at the subsurface.  相似文献   

10.
Application of simple and locally based erosion assessment methods that fit to the local condition is necessary to improve the performance and efficiency of soil conservation practices. In this study, rill erosion formation and development was investigated on the topo-sequence of three catchments(300-500 m slope length); and on agricultural fields(6 m and 14 m slope lengths) with different crop-tillage surfaces during erosive storms.Rill density and rill erosion rates were measured using rill cross section survey and close range digital photogrammetry. Rill formation and development was commonly observed on conditions where there is wider terrace spacing, concave slope shapes and unstable stone terraces on steep slopes. At field plot level, rill development was controlled by the distribution and abrupt change in the soil surface roughness and extent of slope length. At catchment scale, however, rill formation and development was controlled by landscape structures, and concavity and convexity of the slope. Greater rill cross sections and many small local rills were associated to the rougher soil surfaces. For instance, relative comparison of crop tillage practices have showed that faba-beantillage management was more susceptible to seasonal rill erosion followed by Teff and wheat tillage surfaces under no cover condition. Surface roughness and landscape structures played a net decreasing effect on the parallel rill network development. This implies that spatial and temporal variability of the rill prone areas was strongly associated with the nature and initial size of surface micro-topography or tillage roughness. Thus, it is necessary to account land management practices, detail micro-topographic surfaces and landscape structures for improved prediction of rill prone areas under complex topographic conditions. Application of both direct rill cross section survey and close range digital photogrammetric techniques could enhance field erosion assessment for practical soil conservation improvement.  相似文献   

11.
Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers (0-400 cm depth) was measured before and after the rainy season in severe drought (2015) and normal hydrological year (2016) in three vegetation restoration areas (artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers (0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers (below 100 cm). In 2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau  相似文献   

12.
Precipitation plays an important role in the water supplies that support ecological restoration by sustaining large-scale artificial plantations in arid and semiarid regions, especially black locust(Robinia pseudoacacia) plantations(RP plantations), which are widely planted due to R. pseudoacacia being an excellent pioneer species. Characterizing the response of soil moisture to rainfall events at different stages of restoration is important for assessing the sustainability of restoration in RP plantations. In this study, we quantified the response of soil moisture to rainfall events at different years of restoration(15, 20 and 30 yr) representing different restoration stages in RP plantations in a typical hilly-gully area, i.e., the Yangjuangou Catchment, of the Loess Plateau, China. Over the growing season(June to September) of 2017, smart probes were placed at nine depths(10, 20, 40, 60, 80, 100, 120, 150, and 180 cm below the soil surface) to obtain volumetric soil water information at 30-min intervals in the three RP plantations. The advance of the wetting front was depicted, and the total cumulative water infiltration was measured. Soil moisture was mainly replenished by eight heavy rainfall events(mean rainfall amount = 46.3 mm), accounting for 88.7% of the rainfall during the growing season. The mean soil moisture content profiles of RP plantations at the three restoration stages were ordered as 30-yr(14.07%) 20-yr(10.12%) 15-yr(8.03%), and this relationship displayed temporal stability. Soil moisture was primarily replenished by rainfall at the 0-60 cm soil depth, and soil moisture remained stable below the 100-cm soil depth. The rainfall regime influenced the advancement of the wetting front. Here, a single rainfall event of 30 mm was the rainfall threshold for infiltration into the 60-cm soil layer. The total infiltration time ranged from 310.5-322.0 h, but no significant differences were found among RP plantations at different restoration stages. Young and old RP plantations had more total infiltration(more than 228.2 mm) and deeper infiltration depths(80-100 cm) than middle-aged plantations. The RP plantation at the intermediate restoration stage exhibited minimal total infiltration(174.2 mm) and a shallow infiltration depth(60 cm) due to the soil physical structure of the plot, which may have limited rain infiltration. More stand conditions that may affect infiltration should be considered for priority afforestation areas.  相似文献   

13.
Earthen structures such as shore protection dikes and river embankments easily suffer from erosion under surface water runoff.This study made experimental efforts to explore the enzyme-induced carbonate precipitation(EICP)method for slope erosion control under surface runoff for earthen structures.The sandy soils were treated by the EICP method for various rounds.Surface characteristics were evaluated by the surface penetration resistance,calcium carbonate content,and surface hard crust thickness of EICP-treated soils.Slope runoff erosion experiments were carried out to evaluate the erosion control performances of the EICP treatment.The surface penetration resistance,calcium carbonate content,and surface hard crust thickness were found to significantly increase with the treatment rounds.In the erosion experiments,it was observed that the level of damages decreased and the water flow volume required to trigger the damage increased with more treatments.The increase in the soil slope angle led to more serious surface damages.The amount and rate that the soil particles were eroded from the slope surfaces declined with more EICP treatments,which was consistent with those of visual observations.The preliminary investigations presented in this study have shown the potential of the EICP method for slope erosion control under surface runoff for earthen structures.  相似文献   

14.
Various kinds of human disturbances on cropland are the main reasons for soil erosion and land degradation. Farming practices in mountainous areas vary greatly among cropland plots because of the heterogeneity of biophysical conditions and differences in farmers’ management behavior. The main purpose of this paper is to develop a composite index of cropland physical disturbance intensity (CLDI) to reflect the plot-scale discrepancy of potential soil erosion in mountainous areas. The study was based on both plot survey and household interview data, collected from six typical catchments in mountainous areas of southwestern China. Four kinds of physical disturbance practices and two kinds of conservation practices during one crop rotation period were synthesized to develop the CLDI index. The rough set theory was referenced to avoid subjectivity during weight allocation. The results show that conventional tillage, deep fertilization, and manual weeding are the main causes of cropland soil erosion, whereas manure application in combination with seasonal fallow reduces soil erosion. Different crop types as well as cropland location factors determine the spatial pattern of CLDI. Crop rotation modes with major crops of tobacco and maize resulted in a maximal CLDI, and cropland plots with a distance radius of 150 meters away from households received the most intensive physical disturbance. These results are critical to help better protect rural environments in mountainous areas. Based on the results, methods to reduce cropland soil erosion are suggested.  相似文献   

15.
降雨过程中降雨强度的变化会影响土体渗透率及饱和过程, 从而改变土体的力学性质, 影响泥石流起动模式及破坏规模。为探究不同降雨模式对震后泥石流起动机制的影响, 自制了小比例模型槽, 结合可控雨型的降雨模拟系统, 进行了人工降雨诱发泥石流的室内模型试验; 基于不同降雨模式下泥石流的起动过程分析, 对坡体内部含水率和孔隙水压力的变化规律进行了研究。研究结果表明: 递增型降雨模式下泥石流发生突然, 呈整体滑坡转化为泥石流起动模式, 坡体破坏规模最大; 递减型降雨模式下表现为后退式溃散失稳起动模式; 均匀型降雨模式下则表现为溯源侵蚀起动模式; 中峰型降雨模式下以局部滑坡转化为泥石流起动模式; Ⅴ型降雨模式下则由坡面侵蚀加剧转化为泥石流启动模式, 破坏规模最小。研究结果可以为九寨沟地区泥石流的预报预警提供参考。   相似文献   

16.
地下水在多孔土层中渗流速度的达西(Darcy)公式是用实验方法得到的。该公式适用于均质各向同性土层中的海流计算,但对各向异性土层中的渗流计算,则不能直接采用。 本文视地下水在多孔土层中的渗流为不可压粘性流体的缓慢层流运动。不计惯性力的作用,用量纲分析法确定运动方程中的摩擦力项表达式,然后导出了地下水在各向异性土层中的渗流速度公式。所得的结果表明,当土壤各向同性时,该公式即简化为达西速度公式。  相似文献   

17.
1INTRODUCTIONSerioussoilerosionhasmadetheeco-environmentfragileintheLoessPlateau.InthemodernsoilerosionoftheLoessPlateau,theman-madeerosionwasthedominanterosionpattern (TANGetal.,1993a,1993b).Manyhumanactivitiesacceleratesoilerosion,butthemostinfluentialactivitiesaretodestroyforestandgrass,eventodestroyallvegetation.Reclamationbydestroyingforestlandandgrasslandartificiallycouldrapidlyincreasesoilerosionintensityinshorttimeandenlargeerosionspacegradually,evenchangeerosiondirectionandwor…  相似文献   

18.
The bank slopes in hydro-fluctuation areas of reservoirs or lakes suffer from severe erosion due to an absence of protection. Waves are one of the important external forces that cause bank erosion and slope failures. However, the processes and quantified impacts of wave-induced erosion on slopes remain unclear under different water level-fluctuation conditions. This paper focuses on the characteristics of wave-induced slope erosion under three conditions: water level dropping(WLD), fixed(WLF) and rising(WLR). A steel tank with glass pane was used to simulate the wave-induced slope erosion in the three treatments. The slope elevation data were collected by using the method of the pin meter for every 15 minutes from the beginning to the end, a total of 5 times during all treatments. These data were processed by using software(SURFER 9.0) to get the slope micro-topography and the erosion volume. Then the temporal and spatial change of slope erosion was analysed according to the erosion amount or erosion rate calculated based on bulk density of slope soil. The results demonstrated that the soil erosion rates for different water level changing treatments are in the following order: WLR>WLD>WLF. For the erosion spatial variation, the middle part of the slope was the major source of sediment in the WLD. The upper part of the slope was the major source of the sediment for the other two treatments. Compared with the standard deviation(SD), the coefficient of variation(CV) based on the SD is more representative of variations in the soil surface roughness(SSR). Furthermore, the good fit between the SSR and soil erosion rate have the potential to be used to predict soil erosion. Above all, the injection angle of the wave determined the rate of erosion to some extent, and the fall-back flow of the wave could also influence the extent of erosion, deposition, and bank morphology. It is vital to choose the appropriate index(SD or CV) in the three water levels to improve the prediction accuracy. This paper could provide scientific knowledge to manage reservoirs or river banks.  相似文献   

19.
The triggering mechanisms of debris flows were explored in the field using artificial rainfall experiments in two gullies, Dawazi Gully and Aizi Gully, in Yunnan and Sichuan Provinces, China, respectively. The soils at both sites are bare, loose and cohesive gravel-dominated. The results of a direct shear test, rheological test and back-analysis using soil mass stability calculations indicate that the mechanisms responsible for triggering debris flows involved the decreases in static and dynamic resistance of the soil. The triggering processes can be divided into 7 stages: rainfall infiltration, generation of excess runoff, high pore water pressure, surface erosion, soil creep, soil slipping, debris flow triggering and debris flow increment. In addition, two critical steps are evident: (i) During the process of the soil mass changing from a static to a mobile state, its cohesion decreased sharply (e.g., the cohesion of the soil mass in Dawazi Gully decreased from 0.520 to 0.090 kPa, a decrease of 83%). This would have reduced the soil strength and the kinetic energy during slipping, eventually triggered the debris flow. (ii) When the soil mass began to slip, the velocity and the volume increment of the debris flow fluctuated as a result of the interaction of soil resistance and the sliding force. The displaced soil mass from the source area of the slope resulted in the deposition of a volume of soil more than 7 - 8 times greater than that in the source area.  相似文献   

20.
Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model. The effect of pore air pressure on rainfall infiltration has been widely recognized and validated by means of numerical simulations and laboratory experiments. However, whether a slope can actually seal pore air continues to be debated by researchers. In this study, a water-air two-phase flow model is used to simulate the rainfall infiltration process on a soil slope, and a field experiment is conducted to realistically test the sealing conditions of a slope. According to the numerical simulation, the areas of water and air flow in and out on the slope surface are relatively stable and can be classified as the "inhalation zone" and "overflow zone", respectively. Intermittent rainfall on the soil slope has an amplifying effect on pore air pressure because rainfall intensity is usually at the millimeter level, and it causes pore air pressure to reach the cm level. A field experiment was performed to determine whether a slope can realistically seal pore air and subsequently verify the regularity of rainfall infiltration. Air pressure sensors were buried in the slope to monitor the pore air pressures during the rainfall process. The monitoring results show that the pore air pressure in the slope changed, which indicates that the slope can seal air. Moreover, the amplification effects of intermittent rainfall on pore air pressure were observed for natural rainfall, which agrees well with the numerical simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号